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Abstract 

 In this paper, an integer bilevel programming problem is considered in 

which the upper level objective function is linear fractional and the lower level 

objective function is quadratic. The variables at both the levels are related by the 

set of linear constraints. An algorithm is developed to find the integer solution for 

the bilevel programming problem. Applying the Kuhn-Tucker conditions at the 

lower level, the bilevel programming problem is converted to a linear fractional 

programming problem with complementarity constraints. Gomory's cut is applied 

to find an integer solution of the linear fractional programming problem which 

satisfies the complementarity constraints and hence determines the optimum 

integer solution of the given bilevel programming problem. A computational 

approach is also given to solve the above problem by converting the integer 

variables to 0−1 variables. The method is illustrated with the help of an example. 
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Introduction 

 The Bilevel programming problem (BLPP) is defined as 

(BLPP) 
X

Max f (X,Y)  

  where Y solves 

  
Y

Max F(X,Y)  

  subject to (X, Y) ∈ S, 

where S = {(X, Y) : AX + BY ≤ b;  X, Y ≥ 0}. 

In (BLPP), two decision makers are located at two different hierarchical levels, 

upper level and lower level, each controlling independently a separate set of 

decision variables. Both the levels are interested in optimizing their own 

objectives. The objectives at each level are conflicting in nature. 

(BLPP) has been used by researchers in several fields ranging from economics to 

transportation engineering. (BLPP) is used to model problems involving multiple 

decision makers. These problems include traffic signal optimization [17], 

structural design [15] and genetic algorithms [13]. (BLPP) has been developed and 

studied by Bialas and Karwan [7,8] in the year 1982, 1984; Candler and Townsley 

[10] in 1982; Bard [3,4,5] in the year 1983, 84, 92 developed different techniques 

for solving (BLPP). 

Linear Fractional programming problem is studied by many authors [2,7,8,11]. 

Charnes.et.al. formulated linear fractional programming problem to a linear 

programming problem by applying the transformation. A Quadratic Fractional 

Programming Problem has been worked upon earlier also by many authors. Cabot 

et.al. [9] in the year 1970 solved the non-convex quadratic minimization problem 

by ranking the extreme points.  R.Gupta and M.C. Puri [12] in 1994 have 
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developed an algorithm for ranking the extreme points of Quadratic Fractional 

Programming Problem.  

Most applications of bilevel programming that have appeared in the literature, deal 

with central economic planning at the regional level. In this context, the 

government is considered as the leader who controls a set of policy variables such 

as tax rates, import quotas and price supports. The particular industry targeted for 

regulation is viewed as the follower. In most cases, the follower tries to maximize 

net income subject to the prevailing technological, economic and government 

constraints. Fractional programs arise in various circumstances in management 

science as well as other areas. Maximization of productivity, maximization of 

return on investment, maximization of cost/time give rise to a fractional program. 

Based on the Kuhn-Tucker conditions and the duality theory, Wang et al. [19] has 

derived necessary and sufficient optimality conditions for linear-quadratic bilevel 

programs. A parametric method for solving bilevel programming problem has 

been discussed by Faisca, Dua, Rustem, Saraiva and Pistikopoulos [14]. 

 Here, in this paper we have taken linear fractional function at the upper 

level and quadratic function at the lower level. An algorithm is developed in which 

the lower level problem using the Kuhn-Tucker conditions is combined with the 

upper level problem to form a fractional programming problem with 

complementarity conditions. Then,using Gomory's cut an integer solution of the 

bilevel programming problem is obtained. 

Mathematical Formulation 

 The linear fractional / quadratic integer bilevel programming problem 

(LFQIBPP) is given by 
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(LFQIBPP) 
1

1 1 2 2
1

X
1 1 2 2

c X c X
Max Z (X)

d X d X

+ + α=
+ + β

 

  where for a given X1, X2 solves 

  
2

T T
2

X

1
Max Z (X) e X X QX

2
= +  

  subject to X∈S, 

where S = {X = (X1, X2) ∈ 1 2n n+
� : A1X1 + A2X2 ≤ b, X1, X2 ≥ 0 and integers}. 

1 2n n
1 1 2 2c ,d ; c ,d ; ,∈ ∈ α β ∈� � � ; 1 2m n m n m

1 2A ;   A ;   b× ×∈ ∈ ∈� � � ; 

e = (e1, e2) ∈ 1 2n n+
� . 

Q is an ((n1 + n2)  × (n1 + n2)) symmetric positive semi-definite matrix. Here,  

S ⊂ 1 2n n+
�  defines the common constraint region and it is assumed that the 

feasible region S is closed and bounded. 

It is also assumed that (d1X1 + d2X2 + β) > 0 ,∀ (X1, X2) ∈ S. The feasible region 

of the lower level problem, for a given X1, is defined as 

 2n
1 2 1 2S(X ) {X : (X ,X ) S}= ∈ ∈� . 

Relaxed Problem 

Consider the relaxed problem of (LFQIBPP), in which the integral condition is not 

considered. 

Define the relaxed problem (RLFQBPP) as 

(RLFQBPP) 
1

1 1 2 2
1

X
1 1 2 2

c X c X
Max Z (X)

d X d X

+ + α=
+ + β

 

                   where for a given X1, X2 solves 

                        
2

T T
2

X

1
Max Z (X) e X X QX

2
= +  

  subject to X∈S′, 

where S′ = {X = (X1, X2) ∈ 1 2n n+
� : A1X1 + A2X2 ≤ b; X1, X2 ≥ 0}. 
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Consider the lower level problem of (RLFQBPP) for a given X1, 

    
2

T T
2

X

1
Max Z (X) e X X QX

2
= +  

   11 12 1T T T
1 1 2 2 1 2

21 22 2

Q Q X1
e X e X [X   X ]

Q Q X2

   
= + +    

   
 

subject to                     A2X2 ≤ b − A1X1 

                         X2 ≥ 0. 

Here , T T T T T
1 1 2 2 1 11 1 1 12 2 2 22 2

1 1
f (X) e X e X X Q X X Q X X Q X

2 2
= + + + +   

 2 1 2 2g(X) b A X A X 0= − − ≥ . 

Define the Lagrangian function L(X, λ) as 

 L(X, λ) = f(X) + λTg(X) 

where λ ≥ 0 is a vector of Lagrange's multipliers.  

Applying the Kuhn-Tucker conditions, we have 

 T T
2 1 12 22 2 2

2

L
0 e X Q Q X A 0

X

∂ ≤ ⇒ + + − λ ≤
∂

 (1) 

 
L

0 g(X) 0
∂ ≥ ⇒ ≥
∂λ

⇒ b − A1X − A2X2 ≥ 0 (2) 

 T T T T
2 2 2 1 12 22 2 2

2

L
X 0 X (e X Q Q X A ) 0

X

∂ = ⇒ + + − λ =
∂

 (3) 

 T T
1 1 2 2

L
0 (b A X A X ) 0

∂λ = ⇒ λ − − =
∂λ

 (4) 

In equation (2), introducing the surplus variable, we get 

 



R.Arora and S.R. Arora  

 

 62

 b − A1X1 − A2X2 − Iy = 0 

or A1X1 + A2X2 + Iy = b (5) 

   y ≥ 0 

From equations (4) and(5) 

  λTy = 0 (6) 

In equation (1), introducing the slack variable, we get 

 T T
2 1 12 22 2 2e X Q Q X A Iu 0+ + − λ + =  

⇒ T T
1 12 22 2 2 2X Q Q X A Iu e− + + λ − =  (7) 

  u ≥ 0 

Using equations  (3) and(7) 

 T
2X u  = 0  (8)  

Thus, the given (RLFQBPP) problem reduces to a linear fractional programming 

problem (RLFPP), given by 

(RLFPP) 
1 2

1 1 2 2
1

X ,X
1 1 2 2

c X c X
Max Z (X)

d X d X

+ + α=
+ + β

 

  subject to A1X1 + A2X2 + Iy = b 

  T T
1 12 22 2 2 2X Q Q X A Iu e− − + λ − =  (9) 

  X1, X2, λ, y, u ≥ 0 

with the condition λTy = 0 and T
2X u  = 0. 

Here, I is the identity matrix of appropriate dimension and the condition λTy = 0 

and T
2X u  = 0 represents the complementarity condition. 
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The above problem (RLFPP) is a relaxed problem in which the integrality 

condition is not considered. If we impose the integer restriction on the above 

problem, it becomes an integer linear fractional programming problem (ILFPP), 

defined as, 

(ILFPP) 
1 2

1 1 2 2
1

X ,X
1 1 2 2

c X c X
Max Z (X)

d X d X

+ + α=
+ + β

 

  subject to A1X1 + A2X2 + Iy = b                                          (10) 

  T T
1 12 22 2 2 2X Q Q X A Iu e− − + λ − =  

  λ, y, u ≥ 0 

  X1, X2 ≥ 0 and integers, 

with the condition that λTy =0 and T
2X u  = 0. 

The problem (RLFPP) without the complementarity condition is a linear fractional 

programming problem whose optimal solution will be at an extreme point. We are 

interested in finding an integer solution of (RLFPP) which satisfies the 

complementarity conditions. It will be the solution of (ILFPP) and hence that of 

the given bilevel programming problem. 

(RLFPP) problem can be rewritten as 
1 1 2 2

1 1 2 2
1 2

n n n n1 1 1 2 2 1 1
1 1 1 1 1 1 2 2 2 2

1 n n n n2 1 1 2 2 1 1X ,X
1 1 1 1 1 1 2 2 2 2

z c x c x ... c x c x ... c x
Max Z (X)

z d x d x ... d x d x ... d x

+ + + + + + + α= =
+ + + + + + + β

 

subject to 

 1 2

1 2

n n1 1 1 2 1 2 1 2 2 2
11 1 12 1 1,n 1 11 2 12 12 1,n 2 1 1a x a x .... a x a x a x .... a x y b+ + + + + + + + =  

 ... ... ... ... ... ... ... ... ... ...  

 1 2

1 2

n n1 1 1 2 1 2 1 2 2 2
m1 1 m2 1 m,n 1 m1 2 m2 2 m,n 2 m ma x a x .... a x a x a x .... a x y b+ + + + + + + + =  

 
2 1 2 2

1

1,n n 1,n n11 1 12 2 11 1 12 2 2
12 1 12 1 12 1 22 2 22 2 22 11 1

2 1
m m 1 2

q x q x .... q x q x q x .... q x a

... a u e

− − − − − − − − + λ

+ + λ + =
 

 ... ... ... ... ... ... ... ... ... ... 

 
1 1 1 2 1 2 1 2 2

2

2

1 2 2

n ,1 n ,2 n ,n n n ,1 n ,n n1 2 1 2
12 1 12 1 12 1 22 2 22 2 1,n 1

n2
m ,n m n 2

q x q x .... q x q x .... q x a

... a u e

− − − − − − − + λ

+ + λ + =
 

 X1, X2, λ, y, u ≥ 0 

with the condition λTy = 0 and T
2X u 0= , 
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where 1 1n n1 2
1 1 1 1c (c ,c ,....,c )= ∈� ; 2 2n n1 2

2 2 2 2c (c ,c ,....,c )= ∈� ; 

 1 1n n1 2
1 1 1 1d (d ,d ,....,d )= ∈� ; 2 2n n1 2

2 2 2 2d (d ,d ,....,d )= ∈� ; 

 1 1 2 2n n n n1 2 1 2
1 1 1 1 2 2 2 2X (x ,x ,...., x ) ; X (x ,x ,...., x )= ∈ = ∈� �  

 m m
1 m 1 my (y ,...., y ) ( ,...., )= ∈ λ = λ λ ∈� � ; 

 2

2

nm
1 m 1 nb (b ,....,b ) ; u (u ,....,u )= ∈ = ∈� � ; 

 2 2n n1
2 2 2e (e ,....,e )= ∈� . 

1 2

1 2

1 2 1 1 2 2

1 1 1 2 2 2
11 12 1,n 11 12 1,n

m n m n
1 2

1 1 1 2 2 2
m m m,n m m m,n

a a .... a a a .... a

A ... ... ... ... , A ... ... ... ...

a a ... a a a ... a

× ×

   
   = ∈ = ∈   
   
   

� �  

2 2

1 2 2 2

1 1 2 2 2 2

1,n 1,n11 11
12 12 22 22

n n n n
12 22

n ,1 n ,n n ,1 n ,n
12 12 22 22

q .... q q .... q

Q ... ... ... , Q ... ... ...

q ... q q ... q

× ×

   
   = ∈ = ∈   
   
   

� �  

The optimal solution of (RLFPP) problem can be expressed in the form of  

 B

B

0 j j
j N

1

0 j j
j N

c c x

Max Z (X)
d d x

∈

∈

+
=

+

∑

∑
 

 subject to 
B

*
i i ij j B

j N

x x x , j N , i B
∈

= − α ∈ ∈∑  

 xi, xj  ≥ 0 and integers ,∀ i ∈ B, j ∈ NB ,  

where B is the set of basic variables and NB is the set of non-basic variables, 
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 1
j j jc (z c )= −  is the reduced cost of the numerator,  

 2
j j jd (z d )= −  is the reduced cost of the denominator, 

 1 2 2 1
j j j j jz (z d ) z (z c )∆ = − − −  is the total reduced cost. 

At the optimality, all j B0, j N∆ ≤ ∈ . 

The solution for (RLFPP) is given by 

 * 0
i i j 1

0

c
x x , x 0, Max Z (X)

d
= = = . 

Let the current optimal solution of (RLFPP) does not satisfy the integrality 

condition. Let the basic variable xk be not an integer in the current optimal 

solution which is otherwise required to be an integer. 

Let the equation of xk be given by  

 
B

*
k k kj j

j N

x x x
∈

= − α∑  

This implies  

 
B

*
k k k kj kj j

j N

x [x ] f {[ ] f }x
∈

= + − α +∑  

or 
B B

*
k k kj j k kj j

j N j N

x [x ] [ ]x f f x
∈ ∈

− + α = −∑ ∑  

where [ *
kx ] is the integral part and fk is the fractional part of xk, where xk is the 

basic variable. [ kjα ] is the integral part and fkj is the fractional part of kjα .   

The necessary condition for the variable xk to be integral is that 
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B

k kj j
j N

f f x 0
∈

− ≡∑   (mod 1) 

But 
B

k kj j k
j N

f f x f 1
∈

− < <∑  

Therefore, the necessary condition for the integrability becomes 

 
B

k kj j
j N

f f x 0
∈

− ≤∑  

or 
B

kj j k
j N

s f x f
∈

− = −∑  

This is the Gomory's cut, where s is a slack variable. This is the required cut which 

should be applied to the optimal table of (RLFPP) problem. 

Since all xj = 0, j ∈ NB, it follows that s = − fk which is infeasible. This means that 

after applying the cut, the solution becomes optimal but is not feasible. 

To solve the above table, find the departing variable according as 

 r i i
i

b Min{b ,b 0}= < . 

Choose the entering variable according as 

 j
rj

rj

Max : y 0
y

 ∆ < 
  

. 

Proceed with this process till all ib 0≥ . 

 If the resulting optimum solution is an integer, the process ends. Otherwise, 

the process is repeated. After getting the integer solution, check whether the 

complementarity conditions T
2X u  = 0 and λTy = 0 are also satisfied. If the 
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complementarity conditions are not satisfied, enter that variable into the basis such 

that T
2X u  = 0 and λTy = 0 is satisfied. The optimal integer solution so obtained 

will be the solution of the bilevel programming problem. 

Algorithm for solving linear fractional / quadratic  integer bilevel 

programming problem 

Step 1  Consider the problem (LFQIBPP) defined as 

  
1

1 1 2 2
1

X
1 1 2 2

c X c X
Max Z (X)

d X d X

+ + α=
+ + β

 

  where for a given X1, X2 solves 

  
2

T T
2

X

1
Max Z (X) e X X QX

2
= +  

  subject to A1X1 + A2X2 ≤ b 

  X1, X2 ≥ 0 and integers.   

Step 2   Define the relaxed problem (RLFQBPP) of (LFQIBPP) problem, 

without considering the integer condition. 

Step 3  Consider the follower's problem for a given value of X1.  

  Let T T T T T
1 1 2 2 1 11 1 1 12 2 2 22 2

1 1
f (X) e X e X X Q X X Q X X Q X

2 2
= + + + +  

  and  g(X) = b − A1X1 − A2X2 ≥ 0. 

  Define the Lagrangian function L(X, λ) = f(X) + λTg(X). 

  Apply the Kuhn Tucker conditions and convert (RLFQBPP) 

problem to (RLFPP) problem with the condition that λTy = 0 and 

T
2X u  = 0. 
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Step 4  Let (X1
*, X2

*) be an optimal solution for the problem (RLFPP). 

  If (X1
*, X2

*) is an integer solution, go to step 6, else, go to step 5. 

Step 5  Apply Gomory's cut to the optimal table of (RLFPP) problem to  

find an integer solution. If it is an integer solution go to step 6, 

otherwise repeat step 5. 

Step 6   Check the complementarity conditions λTy = 0 and T
2X u  = 0 for the 

integer solution. If the integer solution satisfies the complementarity 

conditions, then this is the optimum integer solution of (LFQIBPP) 

problem. Otherwise, find the next integer solution which satisfies 

λTy = 0 and T
2X u  = 0. 

Example 1:  Consider a linear fractional/ quadratic integer bilevel programming 

problem. 

(LFQIBPP) 
1

1 2 3
1 1 2 3

x
1 3

2 x 2x 2x
Max Z (x ,x ,x )

3 x x

+ − −=
+ +

 

  where (x2, x3) solves  

  
2 3

2 2 2
2 1 2 3 1 2 3 1 2 2 3 1 2 3

x ,x
Max Z (x ,x ,x ) x x x 2x x 2x x 2x 7x 6x= + + + + − − −  

  subject to  x1 + 2x2 + x3   ≤ 10 

    x1           + x3   ≤ 2 

    3x1 + x2           ≤ 4 

   x1, x2, x3 ≥ 0 and integers. 
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Solution: Consider the relaxed problem for (LFQIBPP), defined as 

(RLFQBPP) 
1

1 2 3
1 1 2 3

x
1 3

2 x 2x 2x
Max Z (x ,x ,x )

3 x x

+ − −=
+ +

 

  where (x2, x3) solves 

  
2 3

2 2 2
2 1 2 3 1 2 3 1 2 2 3 1 2 3

x ,x
Max Z (x ,x , x ) x x x 2x x 2x x 2x 7x 6x= + + + + − − −  

  subject to  x1 + 2x2 + x3   ≤ 10 

    x1           + x3   ≤ 2 

    3x1 + x2           ≤ 4 

                                         x1, x2, x3 ≥ 0 .     

  Define the Lagrangian function as  

  L(x1, x2, x3, λ) = f(x1, x2, x3) + λTg(x1, x2, x3) 

  
2 2 2
1 2 3 1 2 2 3 1 2 3

1 1 2 3 3 1 3 3 1 2

(x x x 2x x 2x x 2x 7x 6x )

(10 x 2x x ) (2 x x ) (4 3x x )

= + + + + − − −
+λ − − − + λ − − + λ − −

 

Applying the Kuhn-Tucker conditions, we have 

 2 1 3 1 3
2

L
0 2x 2x 2x 7 2 0

x

∂ ≤ ⇒ + + − − λ − λ ≤
∂

 

 3 2 1 2
3

L
0 2x 2x 6 0

x

∂ ≤ ⇒ + − − λ − λ ≤
∂

                                            

 1 2 3
1

L
0 10 x 2x x 0

∂ ≥ ⇒ − − − ≥
∂λ

                                                        (11) 

 1 3
2

L
0 2 x x 0

∂ ≥ ⇒ − − ≥
∂λ

 

 1 2
3

L
0 4 3x x 0

∂ ≥ ⇒ − − ≥
∂λ
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 2 2 1 2 3 1 3
2

L
x 0 x (2x 2x 2x 2 7) 0

x

∂ = ⇒ + + − λ − λ − =
∂

 

 3 3 2 3 1 2
3

L
x 0 x (2x 2x 6) 0

x

∂ = ⇒ + − λ − λ − =
∂

 

 T
1 1 1 2 3

1

L
0 (10 x 2x x ) 0

∂λ = ⇒ λ − − − =
∂λ

                                            (12) 

 T
2 2 1 3

2

L
0 (2 x x ) 0

∂λ = ⇒ λ − − =
∂λ

 

 T
3 3 1 2

3

L
0 (4 3x x ) 0

∂λ = ⇒ λ − − =
∂λ

 

Using (11) and (12), formulate the problem (RLFPP),  

(RLFPP) 
1 2 3

1 2 3
1

x ,x ,x
1 3

2 x 2x 2x
Max Z (X)

3 x x

+ − −=
+ +

 

subject to   x1 + 2x2 + x3 + y1 = 10 

  x1            + x3 + y2 = 2 

  3x1 + x2          + y3 = 4 

  2x1 + 2x2 + 2x3 − 2λ1 − λ3 + u1 = 7 

   2x2 + 2x3 − λ1 − λ2 + u2 = 6    

  x2u1 = 0,  x3u2 = 0,   λ1y1 = 0,   λ2y2 = 0,  λ3y3 = 0 

  x1, x2, x3, λ1, λ2, λ3, y1, y2, y3, u1, u2 ≥ 0 

Solving the above problem, the optimal table obtained as 
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   cj→ 1 −2 −2 0 0 0 0 0 0 0 0 

   dj→ 1 0 1 0 0 0 0 0 0 0 0 

CB DB VB XB x1 x2 x3 y1 y2 y3 λ1 λ2 λ3 u1 u2 

0 0 y1 26/3 0 5/3 1 1 0 −1/3 0 0 0 0 0 

0 0 y2 2/3 0 −1/3 1 0 1 −1/3 0 0 0 0 0 

1 1 x1 4/3 1 1/3 0 0 0 1/3 0 0 0 0 0 

0 0 u1 13/3 0 4/3 2 0 0 −2/3 −2 0 −1 1 0 

0 0 u2 6 0 2 2 0 0 0 −1 −1 0 0 1 

z1=10/3 zj
1−cj → 0 7/3 2 0 0 1/3 0 0 0 0 0 

z2=13/3 zj
2−dj→ 0 1/3 −1 0 0 1/3 0 0 0 0 0 

 ∆j→ 0 −9 −12 0 0 −1/3 0 0 0 0 0 

 

Since ∆j ≤ 0, therefore, it is an optimal solution but not an integer solution. 

Applying the cut on equation x1, we have 

 1 2 3

4 1 1
x x y

3 3 3
= + +  

2 3

1 1 1
x y

3 3 3
∴ + ≥    or 2 3 1

1 1 1
x y s

3 3 3
+ − =  

Applying the cut in the above optimal table and solving it, the final table so 

obtained is 
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   cj→ 1 −2 −2 0 0 0 0 0 0 0 0 0 

   dj→ 1 0 1 0 0 0 0 0 0 0 0 0 

CB DB VB XB x1 x2 x3 y1 y2 y3 λ1 λ2 λ3 u1 u2 s1 

0 0 y1 9 0 2 1 1 0 0 0 0 0 0 0 −1 

0 0 y2 1 0 0 0 0 1 0 0 0 0 0 0 −1 

1 1 x1 1 1 0 0 0 0 0 0 0 0 0 0 1 

0 0 u1 5 0 2 2 0 0 0 −2 0 −1 1 0 −2 

0 0 u2 6 0 2 2 0 0 0 −1 −1 0 0 1 0 

0 0 y3 1 0 1 0 0 0 1 0 0 0 0 0 −3 

z1=3 zj
1−cj → 0 2 2 0 0 0 0 0 0 0 0 1 

z2=4 zj
2−dj→ 0 0 −1 0 0 0 0 0 0 0 0 1 

 ∆j→ 0 −8 −11 0 0 0 0 0 0 0 0 −1 

 
Here, ∆j ≤ 0.  x1 = 1,  x2 =0, x3 = 0. 

Also, x2u1 = 0,  x3u2 =0,  λ1y1 = 0,  y2λ2 = 0,  λ3y3 = 0. 

This is an optimal integer solution for the bilevel programming problem 

(LFQIBPP), with Z1 = 3/4 and  Z2 = 1. 

An Alternative Approach for Solving Linear Fraction al /Quadratic Integer 

Bilevel Programming Problem 

Consider the problem (LFQIBPP) as 

(LFQIBPP) 
1

1 1 2 2
1

X
1 1 2 2

c X c X
Max Z (X)

d X d X

+ + α=
+ + β

 

  where for a given X1, X2 solves 

  
2

T T
2

X

1
Max Z (X) e X X QX

2
= +  

  T T T T T
1 1 2 2 1 11 1 1 12 2 2 22 2

1 1
e X e X X Q X X Q X X Q X

2 2
= + + + +  

  subject to X ∈ S, 

 S = {X = (X1, X2) ∈ 1 2n n
1 1 2 2 1 2: A X A X b; X ,X 0 and integers}+ + ≤ ≥� . 
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The variables in this problem are integers only, they can be converted in the form 

of 0 or 1 by applying the following transformations. 

 Replace the integer variables xk according to the relation  

  
kN

n 1
k n

n 1

x 2 y−

=

=∑  (13) 

 where yn = 0 or 1, and Nk is determined according to the upper limit on the 

variable xk. 

 The 0 − 1 bilevel programming problem so obtained is 

(0 − 1 LFQBPP) 1 1 2 2
1

1 1 2 2

g Y g Y
Max Z (Y)

h Y h Y

+ + γ=
+ + δ

 

   Max Z2(Y) = pTY + 
1

2
YTRY                                              (14) 

   subject to B1Y1 + B2Y2 ≤ b 

   Y1, Y2 ∈ {0, 1}. 

Solution Procedure for solving (0 −−−− 1 LFQBPP) Problem 

In (0−1 LFQBPP) problem, the follower's problem is a quadratic problem which 

can be converted to a linear program [18], by making the following conversions, 

(1)  Any zero-one variable that has a positive exponent is replaced by that 

variable to the power one. 

(2) Any product of 0−1 variables may be changed to a linear 0 − 1 function. 

Replace the product ykyℓ by introducing a 0 − 1 variable ukℓ = ykyℓ, and 

adding the following constraints in the constraint set (14) 
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  yk + yℓ − ukℓ ≤ 1 

  −yk − yℓ + 2ukℓ ≤ 0 (15) 

  where ukℓ ∈ {0,1}  

Based on the above results (0−1) linear fractional quadratic bilevel programming 

problem can be converted to (0−1) linear bilevel programming problem which can 

be solved using LINDO (6.1). 

Example 2 : Consider the linear fractional quadratic integer bilevel programming 

problem (LFQIBPP)  as in example 1. 

 The variables considered were integer variables. They are converted to 0−1 

variables by the following conversions, 

 x1 = y1 

 x2 = y2 + 2y3 + 4y4 (16) 

 x3 = y5 + 2y6 

(LFQIBPP) problem reduces to (0−1 LFQBPP) problem, defined as 

(0−1 LFQBPP) 
1

1 2 3 4 5 6
1

y
1 5 6

2 y 2y 8y 8y 2y 4y
Max Z (Y)

3 y y 2y

+ − − − − −=
+ + +

 

   where (y2, y3, y4, y5,y6) solves 

  

2 6

2 2 2 2 2 2
2 1 2 3 4 5 6 1 2 1 3

y ,...,y

1 4 2 3 2 4 2 5 2 6 3 4

3 5 3 6 4 5 4 6 5 6 1

2 3 4 5 6

Max Z y y 4y 16y y 4y 2y y 4y y

8y y 4y y 8y y 2y y 4y y 16y y

4y y 8y y 8y y 16y y 4y y 2y

7y 14y 28y 6y 12y

= + + + + + + +

+ + + + + +
+ + + + + −
− − − − −
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   subject to 

   y1 + 2y2 +4y3 + 8y4 + y5 + 2y6 ≤ 10 

   y1                             + y5 + 2y6 ≤ 2                                  (17) 

   3y1 + y2+ 2y3 + 4y4                   ≤ 4 

   y1, y2, y3, y4, y5, y6 ∈ {0, 1}. 

Solving the leader's problem subject to the constraints (17) by LINDO (6.1), we 

get y1 = 1, y2 = 0, y3 = 0, y4 = 0, y5  = 0, y6 = 0. Put y1 = 1 in the follower's 

problem.  

Use conversions 2i iy y , i 2,3,4,5,6= =  and ykyℓ = ukℓ (k ≠ ℓ, k, ℓ = 2, 3, 4, 5, 6). 

Introduce the constraints 

 yk + yℓ − ukℓ ≤ 1,      k, ℓ = 2, 3, 4, 5, 6 (18) 

 −yk − yℓ + 2ukℓ ≤ 0  

Solving the follower's problem for y1 = 1, subject to the constraints (17) and (18), 

using LINDO (6.1), we get y2 = 0, y3 = 0,y4 = 0, y5= 0,y6 = 0 

Put y1 = 1, y2 = 0, y3 = 0, y4 = 0, y5 = 0, y6 =0, in (16), we get 

 x1 = 1,  x2 = 0  and x3 = 0. 

Thus, this is an alternate approach for finding the integer solution of Linear 

Fractional /Quadratic Integer Bilevel Programming Problem. 

 

Conclusions 

In this paper, the linear Fractional/ Quadratic Bilevel Programming Problem is 

converted to a linear fractional programming problem with complementarity 
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constraints using the Kuhn- Tucker conditions. An integer solution of this problem 

is obtained by applying the Gomory’s cut. An alternate approach for solving this 

problem using LINDO(6.1) is also given by converting the integer variables to 0-1 

variables. 
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