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A Note on Beta Approximation for Change Point Estimator
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Abstract. This paper is concerned with Beta approximation for distribu-
tion of change point estimator. This distribution is very important for power
analysis.
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1 Introduction. Let Xkn, k = 1, 2, ..., n be a sequence of independent
observations such that

Xkn = µkn + εkn,

at which µkn = E(Xkn) = θ0n, for k = 1, ..., k0, and = θ1n, for k = k0 + 1, ..., n.
suppose that εkn are iid zero mean random variables with common variance σ2

n.
Let δn = θ0n − θ1n and

√
nδn/σn → λ as n →∞. The above relations describe

a shift in mean model. Since the magnitude of change (δn)over the standard
deviation of data (σn) goes to zero as n goes infinity, we refer to above model
as small change in mean case. Time point k0 is unknown and it is estimated
in practice. Let k0 = [nt0] for some t0 ∈ (0, 1). The change point analysis has
been received considerable attentions in statistical literatures. Some excellent
are Csorgo and Horvath (1997), Chen and Gupta (2000) and Khodadadi and
Asgharian (2004). The cusum (see Lee et al. (2004) and references therein)
change point estimator of k0 is

k̂n = argmaxk|SX
n (k)|,

where SX
n (k) =

∑k
i=1(Xin − Xn) with Xn = (1/n)

∑n
i=1 Xin. Let t̂n = k̂n/n.

The distribution of change point estimator is well studied in the literatures. For
example, when δn and σn are independent of n, Hinkley (1970) showed that
the limiting distribution of k̂n is the maximizer of a two-sided random walk.
Bai (1994) showed that the limiting distribution of least square change point
estimator in linear process setting is minimizer of a two-sided Brownian motion
with a drift. As follows, we derive the asymptotic distribution of t̂n in small
change cases.

One can see that

SX
n (k) = Sε

n(k) +
√

nδn

σn
g∗k0

(k),
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where

g∗k0
(k) =

{
k
n (1− k0

n ) k ≤ k0

−k0
n (1− k

n ) k ≥ k0 + 1.

Change k to [nt] in the above formulas and let Bn(t) = SX
n ([nt]). It is easy to

see that as n →∞, then

Bn(·) =⇒ B(·) + λgt0(·),

where B(t) is standard Brownian bridge on (0, 1) and

gt0(t) =
{

t(1− t0) t ≤ t0
−t0(1− t) t > t0.

Notation =⇒ stands for weak convergence on D(0, 1). Following Kim and Pol-
lard (1990), we conclude that

t̂n
d→ t̂ = argmaxt∈(0,1)|B(t) + λgt0(t)|.

However, this is the asymptotic distribution of t̂n. In the next section, we study
the finite sample distributional behavior of t̂n by a Beta fitting as distribution
of this estimator. This distribution is very important for power analysis.

Remark 1. Note that under the null hypothesis of no change point, then λ =
0 and t̂n converges in distribution to maximizer of |B(t)| over t ∈ (0, 1). Also,
note that since |t̂n| ≤ 1, therefore t̂n is uniformly integrable and so E(t̂n) →
E(t̂). Our Monte Carlo simulation results shows that E(t̂) = 0.5.

2 Beta approximation. In many applications, it is necessary to ap-
proximate the distribution of complicated statistics using known and ”easy to
work” parametric distributions. When the target distribution is continuous and
bounded, a good selection is the Beta distribution (see Habibi, 2011, and refer-
ence therein). Hereafter, we use the notation k̂k0 (t̂t0), to insist the distribution
of k̂n(t̂n) depends on k0 (t0). Since t̂t0 is between 0 and 1, suppose that it has
a beta distribution B(αt0 , βt0). We want to find the functional forms of αt0 and
βt0 such that P (k̂ = k) is well approximated by P ((k− 1)/n ≤ t̂t0 < k/n), that
is

P (k̂ = k) ' P ((k − 1)/n ≤ t̂t0 < k/n),

for k = 1, ..., n − 1. Under H0 (t0 = 0), variable t̂t0 is uniformly distributed on
(0,1), then α0 = β0 = 1. By a Monte Carlo simulation, we understand that the
sampling distribution k̂k0 is unimodal and its mode is k0, we also find that

k̂n−k0

d= n− k̂k0 .
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Therefore, we see that the sampling distribution t̂t0 is unimodal and its mode
is t0 and t̂(1−t0)

d= 1− t̂t0 . We also see that

t̂(1−t0)
d= B(α1−t0 , β1−t0)

d= 1− t̂t0
d= B(βt0 , αt0)

that is βt0 = α1−t0 , for all t0 ∈ (0, 1), and then t̂t0
d= B(αt0 , α1−t0). Since t̂t0 is

unimodal, one can conclude that αt0 > 1. The mode of B(αt0 , α1−t0) is t0, then

αt0 − 1
αt0 + α1−t0 − 2

= t0.

Some solutions are linear functions αt0 = 1+ at0 with a > 0. One can see
that the necessary and sufficient condition for above equation, is that αt0 =
1 + tg(t0),for some positive function g defined on (0, 1) such that

g(t0) = g(1− t0), for every t0 ∈ (0, 1).

As follows, we want to find αt0 . Let mt0 = E(t̂t0). Then αt0 = 1−2t0
1−(1/mt0 )t0

. The
Monte Carlo simulation gives mt0 for some selected values of t0. It is seen that
our method works well for P (k̂ = k0). In practice, a continuity correction is
needed.

Examples. Here, we survey our method for some simulated examples. The
size of data sequence is 100 involves independent observations, there is a change
point in 40. The P (k̂ = 40) for both monte Carlo method and beta approxima-
tion values are given. The results are given in the following table.

Table 1: Simulation Results

dist(before) dist(after) Monte Carlo Beta
N(0, 1) N(−2, 1) 0.627 0.615
N(1, 1) N(3, 1) 0.636 0.645
Exp(1) Exp(3) 0.304 0.299
Exp(1) Exp(2.5) 0.24 0.23
N(0, 1) Exp(1) 0.245 0.24
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