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Abstract

An extension of the popular Halton sequence of quasi-random numbers is described.
This extension allows the use of the same base for more than one dimension, and thus falls
into the large class of sequences known as Niederreiter sequences. The property of distinct
points being distinct in every element is retained, as is the asymptotic uniformity property.
The re-use of bases (typically the smallest primes) means that the asymptotic uniformity
property becomes meaningful sooner than with the standard Halton sequence. A new
performance measure based on the minimal spanning tree is introduced, and its relevance
to global optimization shown. The standard and prime recycling Halton sequences are
compared using this performance measure, both with and without scrambling. These
sequences are also compared using the distance from the closest of the first N members
to randomly chosen points.
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1 Introduction

Quasi-random numbers have been a topic of lively investigation for many years. Quasi-
random numbers differ from pseudo-random numbers in important ways. Both are often used
as substitutes for random numbers. However the former have properties that make them
easily distinguishable from random numbers, whereas the latter are designed to mimic random
numbers in every possible way. These distinguishing properties are often advantageous. For
example quasi-random numbers are typically far more uniformly distributed than random
numbers; a property of great value in search algorithms. Quasi random numbers have a
variety of uses, including in numerical integration [17, 20], simulation [3], and optimization [1,
2, 24, 27, 32].

A number of types of quasi-random numbers exist including Halton [7], Sobol [27], and
Faure sequences [6]. Such sequences can be generalized, leading to large classes of quasi-
random sequences [18, 21, 22, 31]. The quality of these sequences is often measured using star
discrepancy, which is especially relevant to numerical integration as the Koksma-Hlawka [8, 11]
inequality relates the star discrepancy to a bound on the integration error. A related quantity,
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the Lo star discrepancy is also popular due to its relative ease of calculation in comparison to
the star discrepancy [16]. These measures are less relevant to optimization, and so a different
measure based on minimal spanning trees is introduced.

Herein we use an archetypal optimization problem of the form

min f(z) over z€[0,1]" (1)

where the objective function f is continuous. Many other global optimization problems over
bounded regions can be placed in this form by use of penalty or barrier functions, or by other
means. Additionally many other conditions than continuity may apply to f. For clarity this
work is written with (1) in mind, but it also applies to many other optimization problems.
Points in a quasi random sequence can be used as sample points to explore the global features
of the objective f by calculating f at each sample point. These sample points may be
processed in any one of a myriad of ways, possibly leading to further global exploration, or
local searches to refine minima that have been identified. Our interest lies in the effectiveness
of the initial exploration, and its relationship with the locations of the sample points.

In this paper we modify the original Halton sequence so that primes can be used more than
once, and compare the original and prime recycling sequences against one another. All se-
quences considered herein fall into the broad class of quasi random sequences known as Nieder-
reiter sequences [18, 19]. Recycling Halton sequences can also be classified as Niederreiter-
Halton sequences [9]. The extreme generality of Niederreiter sequences means it is much
clearer to construct recycling sequences by generalizing the Halton sequence rather than spe-
cializing Niederreiter sequences. Our goal here is to identify and numerically test specific
examples of prime recycling sequences in the context of global optimization.

Many techniques have been proposed to improve the behaviour of the original Halton
sequences. These techniques can also be applied to prime recycling sequences. Indeed the
scope for such variation is greater for the prime recycling sequences than the original one.
We examine the effect on prime recycling sequences of what is perhaps the most popular of
these techniques: scrambling.

Different performance measures are used than for numerical integration. We use two such
measures; one based on the length of the minimal spanning tree between the first N points
of a sequence, and the other a comparison between pairs of sequences as to which generates
the closest point to a randomly chosen point.

2 Halton sequences and variants

The Halton sequence [7] {¢(k)}32, in [0,1)" is defined componentwise. Each component has
an associated base b;, where the set of bases by, ..., b, are co-prime. The i*® component of
the k' point is generated by radix inversion in base b; as follows. Let

k=dy---dy base b;

where d; is the j'' digit of k in its base b; expansion. The radix inversion of k gives the 't
element ¢;(k) which is
(Z)Z(k) = O.d() ce dm base bz‘. (2)

This may be written in the alternative form
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Here | x| is the ‘floor’ function defined by |z | = max{s € Z: s < z}, where Z is the integers.

A valued property (the Uniformity Property) of Halton sequences is that they are asymp-
totically uniformly distributed. The reason for this uniformity can be seen as follows. Along
the 7" coordinate axis subdivide the interval [0, 1) into b; sub-intervals of equal length. The
cross products of these sub-intervals subdivide [0,1)" into B = [[;", b; boxes. It can be
shown [7] that for any B consecutive Halton sequence points, each box contains exactly one
such point. If a point lies in a specific box, then k& mod b; must take a specific value for each
1 =1,...,n. The Chinese Remainder Theorem then determines ¥ mod B provided by, ..., b,
are co-prime. This property, and its extensions to finer subdivisions of [0,1)", ensure that
Halton sequences are far more evenly distributed than random points. This property is only
meaningful once k is of the order of B, or larger. The choice that minimizes B is when b; is
the i*" smallest prime. Even with this choice B grows rapidly as n increases.

For small n Halton sequences are very effective, however as dimension increases long
periods of correlation between entries start to appear. For example, using b; = 41 and by = 43
the first 41 points lie in the hyperplane 41z1 = 43x2, and most of the next 41 points lie on
a parallel hyperplane, and so on. Some pictures showing long periods of correlation between
components of Halton sequences can be found in [5, 29]. This problem can be avoided for low
dimensions by choosing b; as the i*" prime [25]. For higher dimensions a variety of strategies
have been proposed, including shuffling, random starts, leaped sequences, and scrambling.

Shuffling a Halton sequence [15] is done in two stages. First all N points in the Halton
sequence are generated, and then for each i = 1,...,n in turn, the " entries of all N Halton
points are randomly permuted. A disadvantage of this is that N must be known in advance,
which is not usually the case in optimization. Moreover, the uniformity property may be
lost by this shuffling process. Numerical work in [26] shows that shuffled sequences perform
significantly worse than other low discrepancy sequences.

The Halton sequence can be viewed as applying the von Neumann—Kakutani transfor-
mation in base b; to the i*" element of o(k), for i = 1,...,n, with the origin as the initial
point [12]. Wang and Hickernell [30] and Okten [23] generalize the Halton sequence by se-
lecting a random initial point in [0, 1)™ and repeatedly applying the von Neumann—Kakutani
transformation to each element in base b;. This preserves the uniformity of each individual
Halton sequence. The random sampling also allows errors to be estimated in Monte Carlo
integration.

Kocis and Whiten [10] introduce the Halton sequence leaped, which essentially uses every
L™ point of a Halton sequence with bases by, ...,b,, where L is co-prime with every base
b;. Numerical integration experiments by these authors show the Halton sequence leaped is
very effective in practice in a wide range of dimensions up to 400. The leaping strategy can
be applied to sequences other than the Halton sequence. In particular [10] also investigate
leaped Faure and Sobol sequences. Their results show that leaping is less effective for these
sequences than for the Halton sequence.

2.1 Scrambled Halton Sequences

The most popular way of improving the Halton sequences seems to be scrambling. Braaten
and Weller [4] introduced scrambling by replacing each d; with m;(d;), where m; is a permu-
tation on the set {0,...,b; — 1}. These permutations were formed one element at a time by
choosing each next element to minimize the Lo star discrepancy of the permutation. This
strategy has been shown to be effective in breaking up the long periods of correlation between
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elements of ¢ [10, 29]. Vandewoestyne and Cools [29] showed using numerical experiments
that one very effective option is the reversing permutation given by 7(0) = 0 and 7(d) = b;—d
otherwise. Chi et. al. [5] and others [24] consider permutations of the form

Wi(dj) = widj mod b; where w; € [1, b; — 1] N Z. (3)

The uniformity property is preserved for scramblings such as [4, 5], and also for leaped
Halton sequences. More sophisticated permutations have been proposed, including reversing
the binary digits of each d;, and eliminating any values that are too large [10].

3 Recycling Primes

The uniformity property is useful in optimization as it means no large holes exist in the
sample points. It is an asymptotic property, and only becomes meaningful once k is of the
order of B, or larger. Unfortunately as n grows, B grows very rapidly even when b; is the
i*h smallest prime. One way to reduce B is to use the smallest primes more than once. This
means the radix inversion process must be modified otherwise elements of ¢(k) which share a
base will have identical values. In this section a modified form of the radix inversion is given
which possesses the uniformity property. Additionally it retains the property that different
points differ in every element.

For the moment we consider a sequence constructed using single generic base b. We use
d; as the 4" digit in the base b expansion of k, viz.

k=dmndm—1--didy base b.

Multiple elements (¢1, ..., ¢g say) of ¢ can be constructed using the base b via
oo 1 Sj+i—1
$i=> Xy > dy| modb i=1,...,8S. (4)
=0 =j

As an example consider the case when n = 5 = 3. Using 5; to denote the ;' digit of ¢; (i.e.
¢; = 0.656% ...), the first two digits of ¢1, ¢2 and ¢3 are given by

6(1) =dpy 58:d0—}—d1 68:d0+d1+d2 and (5)
5%:d1+"'+d3 (5%:d1+"'+d4 5%:d1+"'+d5 all mod b.

This example illustrates how the uniformity property is preserved. If dimensions 1 to 3 are
evenly subdivided into b? intervals, their direct products give b5 boxes in [0, 1)3. Which box a

point lies in is determined by &}, . .., 3. Forward substitution in (5) gives a bijection between
do,...,ds and 56, .. ,5:1)’. Any b% consecutive points run through all possible combinations of
do, . ..,ds, so any b® consecutive points have one point per box.

Recycling primes also creates subsequences of points which lie on a single hyperplane. For
rand sin {1,...,S}, if ¢, = ¢, then 07 =067 for j =0,1,2,.... Using s > r without loss of
generality, we have

538‘_6;:d5j+7’+"'+d5'j+871:0 Vi=0,1,2,....
The worst case is when r =5 — 1 and s = 5, in which case these equations become

d(j+1)5—1:0 ]:0,1,2
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These equations are satisfied for the first 4! points in a prime recycling Halton sequence,
and also for later subsequences of the same length. This imposes an upper limit on how many
times a prime can be recycled without resurrecting the problem of long periods of correlation
between entries of ¢. If larger primes are being used, smaller primes may be able to be
recycled more than once without extending the maximum length of a subsequence of points
on one hyperplane.

The corresponding period for which elements of ¢ with distinct bases are linearly related
is the smaller of the two bases. For the same base used S times, it is b°~'. One can clearly
use each base twice without increasing the period for which entries are linearly related. In
addition a base b can be used S times if 5*~! is not larger than the second largest base. Using
the smallest primes as bases, the linear relation period for n dimensions is minimized by the
first n bases in the list

2, 3, 2, 5 3, 2 7, 5 11, 7, 2, 3, 13, 11, 17, 13,
2, 19, 17, 23, 19, 29, 23, 5, 3, 31, 29, 37, 31, 2, 41, 37,
43, 41, 47, 43, 53, 47, 7, 59, 53, 61, 59, 67, 61,

We now revert to the full notation and consider all bases b; at once. For theoretical
purposes we sort the elements of ¢ so that all elements using the same base are contiguous.
The largest index of elements using a base b; is given by

T(i) =max{je€l,...,n:b =b;}.

Using T'(0) = 0, the elements of ¢ using base b; are those with index values from T'(i — 1) + 1
to T'(4) inclusive. Hence T'(i) — T'(i — 1) = S(i), which is the number of times base b; is used.

3.1 Scrambling and Recycling

The original Halton sequence has been improved by a variety of scrambling techniques, and
most of these can be directly employed in conjunction with recycling. Here we consider
scrambling methods which permute each digit in each base b; expansion of the point number
k. Specifically the digits {0, ...,b; — 1} are permuted using a permutation 7 on {0,...,b; — 1}
which satisfies 7(0) = 0 but is otherwise arbitrary. In [5] it is shown that permutations not
satisfying m(0) = 0 lead to biased sequences because they alter the infinite sequence of trailing
zeros that the radix inversion of every integer ends in. The permutation can vary between
elements of ¢, even if they share the same base, and from digit to digit. Hence the notation
ﬂé denotes the permutation applied to the ¢*" digit d@ of the expansion of k£ in base b;. The
formula for ¢;(k) becomes

00 S(i)j+i—T(i—1)—1

1 o
b= el > mi(dy)|  mod b; | | . (6)

=0 (=j

3.2 Theoretical properties

The first result shows that distinct points in the sequence remain distinct after projection
onto any subspace of R™ spanned by one or more unit coordinate vectors. This is relevant
to optimization because objective functions often have negligible variation with respect to
some decision variables. Without this projection property, calculating an objective function
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at many different points could yield the same function value many times over, leading to a
massive waste of computational effort.

Proposition 1 Any two distinct points in a scrambled prime-recycling Halton sequence are
distinct in every coordinate.

proof: Consider element i of ¢(k):
bi(k) =0-65010% ... base b;.

Equation (4) shows that

0 = mHd}) + -+ Thior-n-1 (Gsiori--1) mod. ;. (7)
For this Halton point there exists J such that d;- = 7r§ (d;) = 0 for all j > J. Consider now
element 7 of Halton point number &, with the base b; expansion

E = EMEM—l .. .3130 base bi

where the number of the zero leading digits of k is sufficient to ensure M > J. Let ¢;(k) =
¢i(k). Then back substitution using (7) with j = M, ..., J + 1 in that order shows that

my (du) = -+ =74 (dysr) =0
and hence B B
dy =+ =djp1=0.
Continued back substitution with j = J,...,0 determines 773(8 1)+, m5(do) uniquely, which
gives dj,...,dy uniquely. Hence k = k giving the required result. O

The next result shows that the scrambled prime recycling Halton sequences are asymp-
totically uniform across [0, 1)".

Proposition 2 Let the unit hypercube be subdivided into boxes of equal size and shape, where
each bozx is of the form

[mlbl_‘h, (my + 1)b1—Jl) X - X [mpby ™, (my, + 1)y )

for integers myq, ..., my, satisfying 0 < m; < b;;]i for alli =1,...,n. Here each J; € Z is
positive, and

Vi,je{l,...,n}, bi=b; = J;=Jj.

Then any consecutive H?Zlb;.]" points in the scrambled prime recycling Halton sequence have
exactly one point in each boz.

proof: We subdivide the entries of ¢ a collection of into sets, where each set has a single
base b, and different sets have distinct bases. It is shown that the entries in each set can be
handled together in a way that allows us to then apply the Chinese Remainder Theorem.

First we consider a single such set of entries of ¢ which correspond to a base b;. Let the
first J; digits of ¢;(k) in base b; be given by

¢i(k) = 0.508%...8% _1  base b;.
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In what follows we suppress the ‘¢’ superscript on d; because d; is independent of ¢ on any
range of i values for which b; is constant. Equation (6) gives

5;' = W;'(dj) +ot W;’S(i)—&-i—T(i—l)—l (djS(i)Jrz‘—T(z'—l)—l) base b;.
These equations can be solved for 7 (dp), . . . 7W%jﬂ)S(z’)A(d(j+1)5(i)—1) in that order by con-
sidering pairs of values (j,7) in increasing lexicographic order; that is to say (ji,71) pre-
cedes (ja,i2) if either j; < ja, or both j; = jo and i1 < i3. Once the permuted values of
do, - ., d(j4+1)5(i)—1 are known the original values of these digits are also determined uniquely.
This gives the first S(i).J; digits of k, which may be expressed as

k= dg(iys—1 - do mod %7, (8)

Each set of entries of ¢ gives an equation of the form (8). Second, the Chinese Remainder
Theorem may be applied to the collection of equations, each of the form (8), where each
equation corresponds to a set of entries of ¢. The Chinese Remainder Theorem shows that k
is determined uniquely, mod [[:, b;] ¢ as required. O

This result can be used to directly construct upper bounds on the L., norm star dis-
crepancy D* following the approach taken by Halton [7] and others. We do not do so here
because the difference between such bounds and the actual star discrepancy can be vast [25].
Also, such bounds are asymptotic and in practice one often uses few enough points that these
asymptotic properties are not relevant. Finally, the star discrepancy is related to the quality
of a quasi-random sequence in numerical integration via the Koksma-Hlawka inequality. Our
interest lies primarily in optimization, and so the L, star discrepancy is less relevant.

Proposition 2 introduces an interesting trade-off. Consider the Halton sequence with
distinct b; as the n smallest primes. Recycling primes by replacing the largest primes with
smaller ones reduces the value of k at which the uniformity property becomes relevant, with
the smallest such k occurring at b; = 2 for all 4. Initially recycling primes also reduces the
long periods of correlation between entries of ¢ by removing the largest primes. There comes
a point which these correlations occur between entries with the same base. Beyond this, one
can only improve uniformity at the expense of worsening correlation.

4 Measuring Coverage

Sobol and Shukhman [28] show that the minimum distance py between two points in the
first N members of a Sobol sequence is at least /n/(2N). They numerically evaluate the
minimum distances for Halton, Faure, and Sobol sequences in 3 and 10 dimensions. Their
results show the three types of sequence are similar, with the minimum distances for these
sequences being within a factor of 2 of one another. These numerical computations suggest
that py ~ 1/3/N.

The minimum distance is not a particularly useful measure of quality in an optimization
context. Consider the case when an objective function is sampled at N quasi-random points.
Even if py is extremely small, there may only be a very small number of pairs of points which
are very close, and hence only a small number of function evaluations are superfluous. A
different quasi-random sequence may have a higher py, but many more pairs of points which
are close enough to give approximately the same function value. The same defect may occur
with larger groupings of points. For example in one dimension the points {e,2¢,...,2Ne}
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are clearly inferior to N widely spaced pairs of points of the form {s/N,(s/N) + €} for
s=0,...,N —1, when Ne << 1.

A quantity which more accurately represents the quality of a quasi random sequence is
sought. Our approach is to use an existing simplification of stochastic models already used
in global optimization.

A common strategy in global optimization is to model the unknown objective function by
a stochastic process (see e.g. [32]). This can lead to very complicated conditional probability
distributions as the number of known points grows. A simplifying assumption was introduced
by Mockus [14], in which the distribution of values at a sample point is dependent only on
the closest previous sample point. The distribution of function values at the new sample
point is shown to be Gaussian [13], and its mean is taken to be the function value of the
closest previous sample point. The variance of the new sample point’s function value is a
monotonically increasing function of the distance from it to the nearest known sample point.
The distributions of the function value differences between sample points and their closest
predecessors are assumed to be independent of one another. There is clearly much flexibility
here. However without further knowledge of how an objective function has arisen, a natural
approach is to consider the line segment between the new and closest previous sample points.
An obvious assumption is that increments in the objective function are independent and
identically distributed. This yields a variance proportional to the distance between these two
sample points.

The quality of a set of sample points Y = {y1,...,yn} is defined as the sum of standard
deviations of the objective function values f,. = f(y,). The greater the total standard devia-
tion, the more information is gained about the function. One sample point (hereafter y;) is
chosen as a ‘first point’. This point has no nearest neighbor, and so the standard deviation
of f1 is not determined by the distance to any other sample point. Since the minimizer of the
objective function f is invariant with respect to the addition of an arbitrary constant, the
standard deviation of f; can be removed by choice of this arbitrary constant. The standard
deviation of each f., r > 1, is determined by the distance between y, and another sample
point y,y. A graph is constructed by drawing edges from y,,) to y, for each r = 2,..., N.
This graph has N vertices and N — 1 edges. The only meaningful possibility is that the graph
is a tree. If it were not, it would be disconnected and contain a cycle. If it were disconnected,
the function values on two disjoint subgraphs would be invariant under translation of one
subgraph’s sample points relative to the other’s. Also, if there exists a cycle then the random
variables f.— f,) on the edges of that cycle are no longer independent. The edges are selected
to minimize the total standard deviation, and so this tree is the minimal spanning tree. The
minimal spanning tree is independent of the choice of root y;, as required. If more than one
minimal spanning tree exists, we choose one arbitrarily; our interest lies in the length of the
tree, not the tree itself.

A simple observation as to why the standard deviation is used for the edge length rather
than the variance is as follows. In one dimension if the variance is used as the edge length,
the length of the minimal spanning tree is max(Y) — min(Y") irrespective of the locations of
the remaining N — 2 points. In contrast, with the standard deviation as the edge length, the
length of the minimal spanning tree is maximized when the points are equally spaced between
min(Y) and max(Y).
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Table 1: Average (standard deviation) edge length of the minimal spanning trees for the first
N points of the standard (std) and prime recycling (rec) Halton sequences. Neither sequence

is scrambled.
5 dimensions 15 dimensions 25 dimensions 35 dimensions 45 dimensions

N | std rec std rec std rec std rec std rec
251071 069 0.95 1.05 0.95 1.18 0.95 1.21 0.95 1.26
50 | 0.66 0.64  0.99 1.04 1.01 1.19 1.01 1.26 1.01 1.32
100 | 0.60  0.59  0.95 1.00 1.05 1.18 1.05 1.27 1.05 1.33
200 | 0.54 0.54 0.92 0.97 1.04 1.18 1.06 1.28 1.08 1.34
400 | 0.50  0.51  0.90 0.95 1.02 1.16 1.05 1.27 1.08 1.34
800 | 0.47 0.47 0.88 0.92 1.01 1.13 1.04 1.27 1.06 1.34

4.1 Numerical coverage estimates

Sequences were compared in two ways. The first looked at the average edge lengths of the
minimal spanning spanning trees for several standard and prime recycling Halton sequences.
The second looked at which of a pair of sequences found the closest point to a randomly
chosen point most often. In all numerical work, the prime recycling sequence used the primes
in the order given in Section 3 as bases. It was found that the reversing permutation [29]
made little difference on either the standard or the prime recycling sequence, and so only
scrambling of the form (3) have been investigated further.

The minimal spanning tree length of the standard Halton sequence is compared to that of
the prime recycling sequence (both without permutation) in Table 1. In 5 dimensions the two
are comparable, except that for the first 50 points or so the standard sequence is superior.
In contrast for 15, 25, 35, and 45 dimensions the prime recycling sequence is clearly superior,
and the margin grows with increasing dimension. In higher dimensions the average separation
between points initially grows with both types of sequence as N increases, and then eventually
starts to fall. This is due to the fact that both sequences initially have correlations between
elements with similar bases.

A similar comparison between the scrambled Halton, and scrambled prime recycling Hal-
ton sequences is given in Table 2. Both use multiplicative scrambling of the form (3), where
the coefficients w; are as listed in [5]. The recycling sequence alters the permutation from one
use of a base b; to the next. The permutation W}(d) of a digit d is formed as follows. First
d is shifted upwards ¢ — T'(i — 1) — 1 times yielding a value ds, where the upwards shift of d
is d 4+ 1, except that the upwards shift of b — 1 is 1 (not 0). The value of 7r§- (d) is then set
equal to w?(171)+1(dus). This makes the permutation for the first use of base b; identical to
the permutation used for b; for the standard sequence.

The two scrambled sequences perform identically in lower dimensions, with the prime
recycling one having a slight edge from 25 dimensions up. The margin between the sequences
may appear very slight, but the numbers are averaged square roots of distances between
points. In n dimensions raising the ratio of these numbers to the (2n)™ power gives the ratio
of volumes of hyperspheres closest to each point. In 45 dimensions the volume ratio is of the
order of 5.

Pairwise comparisons between the various sequences are made on random cone functions.
Each such cone function is of the form ||z — ¢||2, where the centre ¢ is chosen randomly from a
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Table 2: Average (standard deviation) edge length of the minimal spanning trees for first N
points of the scrambled standard (std) and scrambled prime recycling (rec) Halton sequences.
The recycling sequence uses shifted permutations for different instances of each prime.
5 dimensions 15 dimensions 25 dimensions 35 dimensions 45 dimensions
N | std rec std rec std rec std rec std rec
251068 0.69 1.07 1.07 1.23 1.25 1.36 1.39 1.46 1.49
50 | 0.64 0.65 1.03 1.04 1.22 1.24 1.34 1.37 1.43 1.48
100 | 0.60 0.60 1.00 1.00 1.19 1.20 1.33 1.35 1.42 1.46
200 | 0.56  0.55  0.98 0.97 1.18 1.18 1.31 1.33 1.41 1.45
400 | 0.52  0.50  0.95 0.94 1.16 1.16 1.30 1.32 1.40 1.43
800 | 0.47 047 0.93 0.92 1.14 1.14 1.28 1.30 1.39 1.42

uniform distribution on the unit hypercube. For each pair of sequences 400 such cone functions
were minimized, and the number of times each sequence found the closest point to the centre
c counted. The number of successes for each sequence follows a binomial distribution. If
both sequences were equally likely to find the closest point to the cone’s minimizer, then the
mean number of successes for each sequence would be 200, with a standard deviation of 10.
Three pairs of sequences were compared: the standard and prime recycling sequences, both
without scrambling; the scrambled standard and unscrambled prime recycling sequences; and
scrambled standard sequence with the scrambled prime recycling sequence. The outcomes
are presented in Table 3.

In 15 dimensions and above, recycling is clearly beneficial in the absence of scrambling.
Indeed five of the ten trials showed the recycling sequence to be better by two or more standard
deviations. The comparison between the two scrambled sequences shows a similar pattern, but
not quite as strongly. Only four results reached two standard deviations in favour of recycling.
The comparison between the scrambled standard sequence and the unscrambled recycling
sequence is interesting. Essentially it shows a tie, with perhaps a suggestion that recycling is
better at 25 dimensions and above. None of the results were outside the two standard deviation
boundaries. In contrast, the scrambled standard sequence performs significantly better on the
minimal spanning tree length test. The discrepancy between the two performance measures
may be due to the fact that the cone functions are not produced using a stochastic process
remotely like that envisioned by Mockus in [13, 14].

5 Conclusion

Specific instances of the Niederreiter-Halton sequence which allow bases to be re-used have
been examined. Recycling bases retains the theoretical properties of the standard Halton se-
quences, and dramatically reduces the number of points needed before the uniformity property
becomes meaningful. Strategies such as scrambling and leaping can be applied to recycling
sequences. These strategies do not change the number of points needed before uniformity
becomes meaningful. Hence prime recycling improves on the uniformity property for all such
sequences. Recycling can also reduce the length of correlations between elements of a quasi-
random sequence.

A new quality measure for quasi-random sequences relevant to optimization has been in-
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Table 3: A comparison of the first N points of the standard and recycling Halton sequences
on minimizing ||z — ¢|| over 400 random centres c¢. The entries list the number of times the
recycling sequence got the closest value to the centre for 400 centres drawn randomly from a
uniform distribution on the unit hypercube.

no scrambling only std scrambled both scrambled
n|N=400 N =800| N=400 N =2800| N=400 N = 800
5 188 187 195 197 185 213
15 226 199 203 185 223 204
25 223 217 198 211 210 199
35 231 220 202 211 212 227
45 215 238 210 202 223 221

troduced. The standard and recycling sequences have been compared using this new measure,
and on a large number of randomly generated cones. These show recycling significantly im-
proves the standard Halton sequence. Scrambled standard and recycling sequences are also
compared, and the recycling sequence is again better, although the margin is smaller.

There is scope for much further work in exploring the use of scrambling, leaping, and other
strategies with recycling Halton sequences. The results for scrambled recycling sequences
herein have simply copied the scrambling used for standard Halton sequences. A thorough
exploration of possible permutations for recycling sequences is likely to yield scramblings
that are significantly better on those sequences than scramblings designed for the standard
sequence. Many papers have been written exploring these variations of the Halton sequence,
and it is beyond the scope of a single paper to do so for the recycling sequences.

References

[1] M. A. Abramson, C. Audet, J. E. Dennis Jr., and S. Le Digabel, OrthoMADS: a deter-
ministic MADS instance with orthogonal directions, SIAM J. Opt., 20 (2009), 948-966.

[2] M. M. Ali and C. Storey, Topographical multi-level single linkage, J. Global Optim., 5
(1994), pp. 349-358.

[3] C. R. Bhat, Simulation estimation of mixed discrete choice models using randomized and
scrambled Halton sequences, Transportation Research part B, 37 (2003), 837-855.

[4] E. Braaten and G. Weller, An improved low-discrepancy sequence for multi-dimensional
quasi-Monte Carlo integration, J. Comput. Phys., 33 (1979), 249-258.

[5] H. Chi, and M. Mascagni, and T. Warnock, On the optimal Halton sequence, Math.
Computers in Simulation, 70 (2005), 9-21.

[6] H. Faure, Discrépance de suites assocées a un systéme e numération (en dimension s),
Acta Arithmetica, 41, (1982), 337-351.

[7] J. Halton, On the efficiency of certain quasi-random sequences in evaluating multi-
dimensional integrals, Numerische Mathematik, 2 (1960), 84-90.

27



8]

[9]

[10]

[11]

[12]

[13]

[14]

C.J. Price and C.P. Price

E. Hlawka, Funktionen von beschrankter variation in der theorie der Gleichverteilung,
Ann. Mat. Pura. Appl. 54, (1961), 352-333.

R. Hofer, On the distribution properties of Niederreiter-Halton sequences, Journal of
Number Theory, 129 (2009), 451-463.

L. Kocis and W. J. Whiten, Computational investigations of low discrepancy sequences,
ACM Trans. Math. Software, 23 (1997), 266-294.

J. F. Koksma, Een algemeene stelling uit de theorie der gelijkmatige verdeeling modulo
1, Mathematica B (Zutphen), 11 (1942/43), 7-11.

J. P. Lambert, Quasi-Monte Carlo, low discrepancy sequences, and ergodic transforma-
tions, J. Computational and App. Math., 12 & 13 (1985), 419-423.

J. Mockus, On Bayesian methods for seeking the extremum and their applications, In-
formation Processing 77, North-Holland, 1977, 195-200.

J. Mockus, The simple Bayesian algorithm for multidimensional global optimization, in
Numerical techniques for stochastic systems, F. Archetti and M. Cugiani (Eds.), pp. 369—
377, North-Holland, 1980.

W. J. Morokoff and R. E. Caflish, Quasi-random sequences and their discrepancies, SIAM
J. Sci. Comput., 15 (1994), 1251-1279.

J. Matousek, On the Lo—discrepancy for anchored boxes, J. Complezity, 14 (1998), 527—
556.

H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers, Bulletin
Amer. Math. Soc., 84 (1978), 957-1041.

H. Niederreiter, Point sets and sequences with small discrepancy, Monatsch. Math., 104
(1987), 273-337.

H. Niederreiter, Low-discrepancy and low-dispersion sequences, Journal of Number The-
ory, 30 (1988), 51-70.

H. Niederreiter, Error bounds for quasi-Monte Carlo integration with uniform point sets,
J. Computational App. Math., 150 (2003), 283-292.

H. Niederreiter, Constructions of (¢,m, s) nets and (t, s) sequences, Finite Fields Appl.,
11 (2005), 578-600.

H. Niederreiter and C.P. Xing, Low discrepancy sequences and global function fields with
many rational places, Finite Fields Appl., 2 (1996), 241-273.

G. Okten, Generalized von Neumann-Kakutani transformation and random-start scram-
bled Halton sequences, J. Complexity, 25 (2009), 318-331.

C. J. Price, Non-linear semi-infinite programming, Ph.D. Thesis, 1992, Department of
Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand.

28



Prime recycling in Halton sequences: an optimization perspective

[25] Ch. Schlier, Discrepancy behaviour in the non-asymptotic regime, App. Num. Math, 50
(2004), 227-238.

[26] Ch. Schlier, On scrambled Halton sequences, App. Num. Math, 58 (2008), 1467-1478.

[27] 1. M. Sobol, On the systematic search in a hypercube, STAM J. Num. Anal., 16 (1979),
790-793.

[28] I. M. Sobol and B. V. Shukhman, Quasi-random points keep their distance, Math. and
Computers in Simulation, 75 (2007), 80-86.

[29] B. Vandewoestyne and R. Cools, Good permutations for deterministic scrambled Halton
sequences in terms of Lo—discrepancy, J. Comp. App. Math. 189 (2006), 341-361.

[30] X. Wang and F. J. Hickernell, Randomized Halton sequences, Math. Computer Modelling,
32 (2000), 887-899.

[31] S. Tezuka, Polynomial arithmetic analogue of Halton sequences, ACM Trans. Model.
Comput. Simul. (1993), 3, 99-107.

[32] A. Torn and A. Zilinskas, Global Optimization, Lecture Notes in Computer Science,
Vol. 350, Springer-Verlag, Berlin Heidelberg New York, 1989.

29



