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Abstract. An important application of stochastic optimization – simulation 
optimization, where the objective function can be evaluated only by computer 
simulation, is considered. We examined some difficulties arised in solving these 
problems applying the finite-difference stochastic approximation (FDSA) 
method. Also, we investigated efficiency of the FDSA algorithm depending on 
the coefficients that generate the step length in optimization algorithm and the 
perturbation value of gradient approximation of objective function. 
Efficiency is measured by the mean values of the objective function at the final 
estimates of the algorithm, over the specified number of replications.  

Keywords: Stochastic optimization; Simulation optimization; Efficiency of the 
FDSA algorithm.  

 

1. INTRODUCTION  

There have been countless applications of the stochastic approximation method  in the greater than 
half century since the seminal publication [Robbins and Monro, 1951]. Some areas include neural 
network, simulation-based optimization, evolutionary algorithms, machine learning, experimental 
design, and signal processing applications such as noise cancellation and pattern recognition. 
Building on that paper stochastic approximation (SA) algorithm based on the finite-difference 
(FD) gradient approximation was introduced, for scalar   in [Kiefer and Wolfowitz, 1952] and 
multivariate   in [Blum, 1954]. In particural, that FDSA algorithm is based on an approximation 
to the gradient formed from noisy measurements of the objective function. We shall consider 
efficiency of the algorithm solving  the standard unconstrained stochastic optimization problem  
  min ( ) ( ) ,L E y


    (1) 

where L  is a scalar function of n  unknowns called objective function, while      y L      
is the noisy measurements of  objective function (     represents the noise term). The recursive 
procedure here is in the general SA form  
  1 ,k k k k ka g      (2) 
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where  k kg   is the estimation of the gradient L    at the iteration k  based on the noisy 

measurements of objective function, and 0ka   is the step length in the k-th iteration of 
algorithm. For the estimation of  true gradient we use two-sided FD form 
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where , 1, 2,.., ,i i n   denotes a vector with a 1 in the i-th place and 0’s elsewhere, and 0kc   
defines the difference magnitude. 

The paper is organised as follows. In Section 2 we present a set of sufficient conditions 
for almost sure convergence of the FDSA method, with emphasis on the condition that refers to 
the step length and the perturbation value of gradient approximation. Section 3 contains 
analysis of choice of coefficients that generate the step length and the perturbation value of 
gradient approximation of objective function, where we proposed how to choose these 
coefficients in order to achieve a better performance of the algorithm. That section also contains 
numerical results which justify proposed choice of coefficients. All numerical results are obtained 
using a programming language Matlab. The last section contains final remarks and conclusions.  

2. CONVERGENCE OF THE FDSA METHOD  

 As with any search algorithm, it is of interest to know whether the iteration k  generated 

with FDSA method converges to a solution *  as .k   That result guarantees that the iteration 

k  will fall into a small neighborhood of a solution *  after sufficient function evaluations. Many 
sufficient conditions have been given over the years for almost sure convergence of the FDSA 
recursion in (2) and (3). We shall present so called statistics conditions.  

2.1 Convergence conditions 

This subsection presents the set of sufficient conditions for almost sure convergence of 
the FDSA iterations k  [Spall, 2003]. These conditions apply when there is a unique minimum of 
the problem (1). Hence, they apply if there are no local minima different from the (unique) global 
minimum. Note that these conditions are sufficient conditions, so many practical implementations 
of the FDSA will produce satisfactory results when one or more of the conditions are not satisfied. 
For convenience, let    .i

k k k ic       
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(C2)  (unique minimum) There is a unique minimum *  of the problem (1) such that for 
every 0   

*
in f 0g

  


 
  and    

*

*in f 0 .L L
  

 
 

   
 

(C3)  (mean-zero and finite variance noise)   For all 1,2,..., ,i n  and 0,1,2,...k   
   ( ) 0i i
k k kE         a.s. and  2( )i

k kE C      a.s. for some 0C   that is 

independent of k and .  
(C4)  (bounded Hessian matrix) The Hessian matrix ( )H   of objective function exists and is 

uniformly bounded in norm for all Rn (i.e., all componets of ( )H   are uniformly 
bounded in magnitude). 

  
From the point of view of the user’s input, condition (C1) is the most relevant. This 

condition includes restrictions on kc as well as on .ka It is apparent that 0kc   slower than .ka  

Also, the condition 
0

k k
k

a c




   requires that ka  and kc decay faster than sometimes 

recommended for practical applications. For the sequences  ka  and  kc  the best choice is 

 
 1k
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k A 
 

  and  
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 (4) 

where , , ,a c   and   are strictly positive and the coefficient 0A   is stability constant, 
because it affects the stability of the algorithm. 

The problem is how to choose the coefficients a  and A  in (4), to ensure the 
convergence of the FDSA. If we choose 0,A   there are a potential problems depending on the 
size of the coefficient .a  Choosing a large numerator a  in hope of producing nonnegligible step 
sizes after the algorithm has been running awhile may cause unstable behavior in the early 
iterations (when the denominator is still small). On the other hand, choosing a small a  leads to 
stable behavior in the early iterations but sluggish performance in later iterations. For this reason, 
picking 0A   is usually recommended. A strictly positive A  allows choice of a larger a  
without risking unstable behavior in the early iterations. Then, in the later iterations, the coefficient 
A  in the denominator becomes negligible relative to the ,k  while the relatively large a  in the 

numerator helps maintain a nonnegligible step size. [Spall, 2003] recommended that a reasonable 
choice for the stability constant is to pick A  such that is approximately 5 to 10 percent of the total 
number of allowed iterations in the search process.Usually, some numerical experimentations are 
required to choose the best value of the coefficient a  that appears in the gain. 

2.2 Rate of convergence 

However, convergence by itself gives no information about the rate with which the 
iterations approach to the solution. For that purpose we need the probability distribution of 
iterations k , since the iterations generated by FDSA are random vectors. Sacks was the first to 
establish the asymptotic normality of the FDSA. [Sacks, 1958] shows that for the FDSA algorithm 
under appropriate conditions 
  2 0       and  3 2 0,    (5) 
holds 
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    .2 * , , ,dist
k FD FDk N k        (6)   

where .dist  denotes converges in distribution, FD  is a mean vector that depends on the 

Hessian *( )H   and the third derivative  *''' ,L  FD  is some covariance matrix that depends 

on *( )H  , and both FD  and FD  depend on the coefficients , , ,a c   and   in the gain 

sequences ka  and .kc  The coefficient   and   govern the decay rate for the gains  ka  and 

 ,kc  respectively. (6) implies that for large k ,  kE   is approximately equal to 

* 2 .FDk    Hence,  kE   has a limiting value of *.  

Expresion (6) also implies that the rate at which the iterations k  approaches *  is  

proportional in a stochastic sense to 2k   for large .k  With the gain forms (4), and under weaker 
condition (C1’)†1 for convergence of the iterations, we know that 1 2   and 0.   The 
conditions in (5) put further constraints on   and ,  implying that 

 0.6 1, 0.1 1 2, 1 2.           (7) 

Under the weaker condition (C1’) and (4), we find that   is maximized at 1  and 1 6,   
leading to a maximum rate that is proportional to 2 1 31 ,k k   for large .k  That is, the 

maximum rate of convergence for the FDSA algorithm under the general conditions is 1 3(1 )O k  
in an appropriate stochastic sense. 

3. THE CHOICE OF COEFFICIENTS 

This section focuses on the selection of the coefficients , , , ,a A c   and   in the gains 

ka  and kc  appearing in (4). Suppose that the objective function ( )L   can only be measured in 
the presence of the noise ( ).   More specifically, suppose that measurements of ( )L   at any   
are available as       , 0,1,2...k ky L k       Estimation k , which is close to the true 

solution *  of the problem (1), in most cases does not have to be the best in the sense of values of 
( )L  . This is the reason why efficiency is measured by the mean values of the objective function 

at the final estimations of solution. The true objective function values ( )kL   are used in 
constructing all tables. These values are not available to the algorithm, which use only noisy 
measurements  y   at the various values of  . 

As already mentioned in Section 2, the coefficient A  is stability constant, while the 
coefficients   and   regulate the decay rate of the gains  ka  and  .kc The rate of 

convergence of k  to *  is maximized at 1  and 1 6,   but in practical problems it may not 
be the best to choose those values, because it is often (but not always) preferable in practice to 

                                                
1(C1’) is the condition (C1) without 
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have a slower decay rate. Practical values of   and   that are effectively as low as possible while 
satisfying (C1’) and (7) are 0.602 and 0.101, respectively. This provides more power to the 
algorithm through larger step sizes when k  is large. 

If the noise has been arised in simulation, than the deviation changes dramatically with 
 , so there are a potential problems with negative effects of the noise. In practical applications, 
the gains are usually chosen by trial and error on some small-scale (reduced number of iterations) 
version of the full problem. In order to verify reported conclusions a computer program is coded in 
Matlab to solve the standard test function associate with M/M/1 queueing problem: 

Test function :  
Let us consider the stochastic optimization problem  

 
 

 
0,1

min ( )R L


    


  ,  (8) 

where  L   denotes the mean number of customers in an M/M/1 queueing system with arrival 

rate 1  ,   is the mean service time which is to be determined, while and   are specified 

costs. The aim is to find a value of  0,1   that minimize total expected cost  .R   From 

queueing theory it is known that    1 ,L      so the analytical solution of this problem is  

 * .
 




 

In contrast of that, the values of the mean number of customers in system  L   have been 

obtained by simulation for various values of  .  In this paper    , 10,1    is selected, so the 

corresponding theoretical optimal mean service time is *  0.7597, and the optimal response is 
*( )R   16.3246. 

For the initial point of optimization algorithm we choose the mean point of interval (0,1), 
i.e. we set 0 0.5.   Every time when either iteration k  or value k kc   in the gradient 
approximation (3) is outside interval  0,1 , we choose values which are the nearest to the end 
points of that interval. In case of our numerical example we shall set those values on 0.01 i 0.95. 
At each experimental point, the simulation terminates when a number of customers cusn  have 

completed services. In this study, 5 values for cusn  have been selected somewhat arbitrarily. For 
each of these values, the experiment is repeated 10 times to construct confidence intervals. 
Apparently, as cusn  increases the deviation of the estimated mean number of customers in the 

system decreases (as we can see in Table 1). In other words, cusn  serves as an indicator for the 
deviation of noise.  
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Table 1: Sample deviation of the estimated mean number of customers in system  L   over the 
sample of size 3  

Number of 
customers ncus 

Sample deviation for various values of θ  
0.01   0.1   0.2   0.3   0.4   0.5   

100 0.0004 0.0069 0.0364 0.0743 0.0236 0.3853 
1000 0.0003 0.0049 0.0091 0.0317 0.0516 0.0209 
10000 0.0001 0.0021 0.0058 0.0086 0.0246 0.0288 
100000 0.00006 0.0007 0.0002 0.0010 0.0021 0.0235 
1000000 0.00001 0.0001 0.0002 0.0009 0.0021 0.0037 

 
 
Second part of Table 1 

Number of 
customers ncus 

Sample deviation for various values of θ 
0.6   0.7   0.8   0.9   0.95   

100 0.9243 0.3099 0.5892 0.3051 2.1028 
1000 0.3715 0.5319 1.2178 5.8653 1.8629 
10000 0.0647 0.1010 0.0473 0.5874 2.2317 
100000 0.0321 0.0319 0.1886 0.5098 0.9930 
1000000 0.0060 0.0087 0.0031 0.1183 0.9178 

 

The values  y   appearing in gradient approximation (3) have been obtained by 

simulation over 3 replications, while coefficients in gain sequences  ka  and  kc  are choosen 

as folows. For the coefficients   and   which regulate the decay rate of the gains  ka  and 

 ,kc  we choose practical values 0.602   and 0.101  ,  while for stability constant A  we 
choose 10% of the total number of allowed iterations in the search process. In order to obtain 
aproximate optimal values of coefficient a , 5 values of coefficient 

 c 0.0001, 0.001, 0.01, 0.1, 1 , together with values of mentioned coefficients, have been 
tested in some small-scale (10 iterations) version of the full problem. Then, those optimal values of 
coefficients are used in investigating efficiency of the FDSA method depending on the number of 
function evaluations.  

Table 2 presents the mean values of the cost function  R   at the final   estimates 
over 10 replications, depending on the number of function evaluations .n  The mean values are 
approximate 90 percent confidence interval constructed according to a t-distribution with 10-1=9 
degrees of freedom. These intervals are derived from the sample variance 2s  of the terminal cost 
function values over the sample of 10 terminal values. Each confidence interval is constructed 
according to  

 sample mean – 2
0 10,t s sample mean + 2

0 10t s ,  

where t0 is the t-value with 9 degrees of freedom.  
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Table 2: Sample means and approximate 90 percent confidence intervals for terminal values 
 kR   in the case of various number of customers 

Number of 
customers 
ncus 

c  a  
Number of function evaluations n  

n=20 n=200 n=1000 

100 1 0.0001 16.5647 
16.5642,16.5652 

16.4051 
16.4048,16.4054 

16.3782 
16.3778,16.3785 

1000 0.1 0.01 16.3436 
16.3330,16.3542 

16.3328 
16.3229,16.3428 

16.3281 
16.3258,16.3304 

10000 0.1 0.02 16.3370 
16.3253,16.3488 

16.3277 
16.3261,16.3294 _______________ 

100000 0.1 0.01 16.3321 
16.3299,16.3342 

16.3272 
16.3269,16.3275 _______________ 

 
Analysing the data in Table 2, we can see that for the values 100cusn   and 

100000cusn  , as number of function evaluations n  increases the mean values obtained by 

algorithm are closer to the optimal response *( )R   16.3246 (note the nonoverlap in the 
confidence intervals). The confidence intervals for values  1000,10000cusn   illustrate the 
common phenomenon in stochastic problems that terminal iteration need not to be the best of the 
iterations, neither in the sense of distance from k  to unknown solution * , nor in the sense of 
values of objective function. Also, in order to neutralize negative effects of the noise arised in 
simulation (sample deviation significantly varies for various values of  ), the number of 
customers in simulation should be at least 1000. 

4. CONCLUSION 

This article provides some suggestions in order to avoid difficulties arised in solving 
simulation-based optimization problems, when the finite-difference stochastic approximation 
(FDSA) method is used for solving. Because the deviation of the noise arised in simulation 
significantly varies from iteration to iteration, there are problems in choosing the values of 
coefficients that generate the step length in optimization algorithm and the perturbation value 
of gradient approximation of objective function. This is the reason why it is difficult to 
automate the gain selection process, so the values of coefficients (especially values of coefficients 
c  and a ) must be chosen by trial and error.  

At the end, note that simulation process is just the part of the optimization process, so as 
the number of customers in simulation process increases computer time also significantly 
increases. This is the reason why in Table 2 the mean values for 1000n   function evaluations, in 
cases 10000cusn   and 100000cusn  , are omitted.  
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5. APPENDIX  

function FDSA_queueing 
%This code computes the mean values of objective function at the 
terminal iterations for the FDSA method, as well as corresponding 
confidence intervals 
 
global p      %global variables 
p=1;          %dimension of problem 
n=1000;          %number of function evaluations  
replications=10;     %number of replications 
theta_0=0.5*ones(p,1);    %initial point 
 
a=1;                 %values of coefficients  
c=1; 
A=0.1*n/(2*p); 
alfa=0.602;                
gama=0.101;            
 
g=zeros(p,1);         
true_theta=0.7597;  %true solution 
theta_lo=0.01*ones(p,1);     %lower bounds on theta 
theta_hi=0.95*ones(p,1);     %upper bounds on theta 
rand('seed',71111113)       
fun_noise='queueing'; %values in the presence of noise      
fun_nonoise='objective_function'; %true objective function  
meanfun=0; 
meanfunsq=0; 
t=1.833;               %t-value for Student’s distribution  
 
    for i=1:replications 
          theta=theta_0; 
          for k=1:n/(2*p)    
                ak=a/(k+A)^alfa; 
                ck=c/k^gama; 
                thetaplus=theta+ck; 
                thetaminus=theta-ck; 
                thetaplus=min(thetaplus,theta_hi); 
                thetaplus=max(thetaplus,theta_lo); 
                thetaminus=min(thetaminus,theta_hi); 
                thetaminus=max(thetaminus,theta_lo); 
                yplus=feval(fun_noise,thetaplus); 
                yminus=feval(fun_noise,thetaminus); 
                g=(yplus-yminus)/(2*ck);  
              theta=theta-ak*g;                
              theta=min(theta,theta_hi); 
              theta=max(theta,theta_lo); 
        end 
        eval=feval(fun_nonoise,theta); 
        meanfun=(i-1)*meanfun/i+eval/i; 
        meanfunsq=(i-1)*meanfunsq/i+(eval^2)/i; 
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    end 
   
disp('Sample mean') 
meanfun 
 
if replications >1 
           s=(replications/(replications-1))^0.5*(meanfunsq-     
              meanfun^2)^0.5;  
           int_left= meanfun - t*s/replications^0.5;         
           int_right= meanfun + t*s/replications^0.5; 
           disp('Confidence interval') 
           [int_left,int_right]       
else 
end 
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