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Abstract

Recently, Zhang, Zhou and Li [Optim. Methods Softw., 22 (2007), pp. 697-711]
proposed a three-term Hestenes-Stiefel (THS) nonlinear conjugate gradient method
for optimization and proved its global convergence for strongly convex functions. In
this note we further investigate the convergence properties of the THS method on
convex optimization. We show that the THS method converges globally for convex
functions with the strong Wolfe line search and obtain its R-linear convergence rate
under suitable assumptions.
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1 Introduction

In this paper we consider the following unconstrained optimization problem:

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a smooth function and its gradient g(x) , ∇f(x) is available.
In [6], Zhang et al. proposed a three-term Hestenes-Stiefel (THS) nonlinear conjugate

gradient method for nonlinear optimization, that is, the search direction generated by
the THS method is defined by

dk =

{
−gk, if k = 0,

−gk + βHS
k dk−1 − θkyk−1, if k ≥ 1,

(1.2)

where

βHS
k =

gT
k yk−1

dT
k−1yk−1

, θk =
gT
k dk−1

dT
k−1yk−1

,

yk−1 = gk−gk−1 and gk = g(xk). The THS method was proved to be globally convergent
for strongly convex functions [6]. To ensure global convergence of the THS method for
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general functions, based on the MBFGS method and CBFGS method [1, 2], two variants
of the THS method were proposed [6]. One is the modified THS method whose search
direction is given by

dk =

{
−gk, if k = 0,

−gk + βMHS
k dk−1 − θM

k γk−1, if k ≥ 1,

where

βMHS
k =

gT
k γk−1

dT
k−1γk−1

, θM
k =

gT
k dk−1

dT
k−1γk−1

,

γk−1 = yk−1 + tksk−1, tk = max
{
0,−yT

k−1sk−1

‖sk−1‖2

}
+ µ

with a given constant µ > 0. Another is the cautious THS method which generates the
search direction

dk =

{
−gk, if sT

k−1yk−1 < ε1‖gk−1‖sk−1‖2,

−gk + βHS
k dk−1 − θkyk−1, otherwise,

where ε1 is a given positive constant and sk−1 = xk−xk−1. These two methods converge
globally even for nonconvex optimization [6]. Extensive numerical results in [6] show
that these three methods perform very well especially for large-scale problems.

The purpose of this paper is to further study the convergence properties of the original
(unmodified) THS method (1.2) on convex optimization. In fact, in the next section we
show its global convergence for convex functions and obtain its R-linear convergence rate
for strongly convex functions under some conditions.

2 Convergence properties

In this paper we consider the following iterative process

xk+1 = xk + αkdk, k = 0, 1, . . . , (2.1)

where dk is determined by the THS method (1.2) and the stepsize αk is computed by
the strong Wolfe line search

{
f(xk + αkdk) ≤ f(xk) + δαkg

T
k dk,

|g(xk + αkdk)T dk| ≤ −σgT
k dk,

(2.2)

where 0 < δ < σ < 1
2 . An important property of (1.2) is that the direction dk satisfies

gT
k dk = −‖gk‖2, (2.3)

which is independent of line search used and the convexity of the objective function [6].
In this section, we make the following assumptions for global convergence analysis.

Assumption 2.1
(i) The level set Ω0 = {x ∈ Rn| f(x) ≤ f(x0)} is bounded;
(ii) f ∈ C2 and f is a convex function.
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Assumption 2.1 implies that the gradient g satisfies Lipschitz condition, that is, there
exist an neighborhood Ω of Ω0 and a positive constant L such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω. (2.4)

Now we present some useful lemmas for global convergence of the THS method.

Lemma 2.1. [3, Lemma 3.4] Let Assumption 2.1 hold and the sequence {xk} be generated
by (2.1), (1.2) and (2.2). Then there exists a positive constant M1 > 0 such that

‖yk‖2

sT
k yk

≤ M1. (2.5)

Lemma 2.2. Let Assumption 2.1 hold and the sequence {xk} be generated by (2.1), (1.2)
and (2.2). Then there is a positive constant m1 such that

∞∑

k=0

−αkg
T
k dk < ∞, αk ≥ m1

−gT
k dk

‖dk‖2
= m1

‖gk‖2

‖dk‖2
. (2.6)

Proof. The first inequality of (2.6) follows from the first condition in (2.2). From the
second condition in (2.2), (2.4) and (2.3), we have

Lαk‖dk‖2 ≥ dT
k yk ≥ −(1− σ)gT

k dk = (1− σ)‖gk‖2,

which implies that the second inequality of (2.6) holds with m1 = 1−σ
L . ¤

It is clear that (2.6) and (2.3) imply

∞∑

k=0

‖gk‖4

‖dk‖2
< ∞. (2.7)

The following result shows that the THS method converges globally.

Theorem 2.1. Let Assumption 2.1 hold and the sequence {xk} be generated by (2.1),
(1.2) and (2.2). Then

lim inf
k→∞

‖gk‖ = 0. (2.8)

Proof. From the second inequality in (2.2) and the fact αk > 0, we have

sT
k yk ≤ −(1 + σ)αkg

T
k dk,

which together with the first inequality of (2.6) means that

sT
k yk → 0.

This and (2.5) yield
‖yk‖ → 0. (2.9)

Now we assume the inequality (2.8) is not true. Then there exists a constant ε > 0
such that

‖gk‖ ≥ ε, ∀k ≥ 0. (2.10)
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Moreover, the second inequality in (2.2) and (2.3) imply

dT
k−1yk−1 ≥ −(1− σ)gT

k−1dk−1 = (1− σ)‖gk−1‖2. (2.11)

From the definition of the search direction (1.2), the relation (2.3) and (2.11), we
have

‖dk‖2 = −‖gk‖2 − 2gT
k dk + ‖βHS

k dk−1 − θkyk−1‖2

= ‖gk‖2 + ‖βHS
k dk−1 − θkyk−1‖2

≤ ‖gk‖2 + 4‖gk‖2‖yk−1‖2 ‖dk−1‖2

(dT
k−1yk−1)2

≤ ‖gk‖2 +
4

(1− σ)2
‖gk‖2‖yk−1‖2 ‖dk−1‖2

‖gk−1‖4
.

This together with (2.9) and (2.10) implies that

‖dk‖2

‖gk‖4
≤ 1
‖gk‖2

+
4‖yk−1‖2

(1− σ)‖gk‖2

‖dk−1‖2

‖gk−1‖4
≤ M1 +

‖dk−1‖2

‖gk−1‖4
≤ M1k + M0

holds for two positive constant M0 and M1, which contradicts to (2.7). This finishes the
proof. ¤

Now we begin to prove the R-linear convergence of the THS method. We present the
following assumption.
Assumption 2.2 f ∈ C2 and f is strongly convex, namely, there are two positive
constants m and M such that

m‖d‖2 ≤ dT∇2f(x)d ≤ M‖d‖2, ∀d ∈ Rn, x ∈ Ω. (2.12)

Under Assumption 2.2, the sequence {xk} converges to the unique minimizer x∗ of
the problem (1.1). Moreover, Assumption 2.2 yields

1
2
m‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ 1

m
‖g(x)‖2. (2.13)

Theorem 2.2. Let Assumption 2.2 hold and the sequence {xk} be generated by (2.1),
(1.2) and (2.2). Then {xk} is R-linearly convergent in the sense that

f(xk+1)− f(x∗) ≤ rk
(
f(x0)− f(x∗)

)
, ‖xk+1 − x∗‖ ≤ √

r
k( 2

m
(f(x0)− f(x∗))

) 1
2 ,

where 0 < r < 1 is a constant.

Proof. Assumption 2.2 implies that

dT
k−1yk−1 ≥ mαk−1‖dk−1‖2.

This together with (1.2) and (2.4) means

‖dk‖ ≤ ‖gk‖+
2‖gk‖Lαk−1‖dk−1‖2

dT
k−1yk−1

≤ ‖gk‖
(
1 +

2L

m

)
. (2.14)
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From (2.6) and (2.14), we obtain

δαk ≥ δmm1

m + 2L
, m2. (2.15)

From the line search (2.2), (2.6) and (2.13), we have

f(xk)− f(xk+1) ≥ δαk‖gk‖2 ≥ m2‖gk‖2 ≥ m2m
(
f(xk)− f(x∗)

)
,

which implies that

f(xk+1)− f(x∗) ≤ (1−m2m)
(
f(xk)− f(x∗)

) ≤ rk
(
f(x0)− f(x∗)

)
, (2.16)

where 0 < r , 1−m2m < 1. Then from the above inequality and (2.13), we have

‖xk+1 − x∗‖ ≤ √
r
k( 2

m
(f(x0)− f(x∗))

) 1
2 .

The proof is then completed. ¤
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