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Abstract 

The problem of estimating kinetic parameters in dynamic models is important and even 
more difficult than with algebraic models. The solution of these types of problems is 
usually very difficult due to their highly nonlinear, multidimensional and multimodal 
nature. This paper presents a comparative study of Differential Evolution (DE) 
algorithms for solving such problems. In this work, two modified versions of DE 
algorithm [called Modified Differential evolution (MDE) and Trigonometric Differential 
Evolution (TDE)] are used to solve kinetic parameter estimation problems from chemical 
engineering field. The computational efficiency of MDE algorithm is compared with that 
of DE and TDE algorithms. Results indicate that performance of MDE algorithm is better 
than that of DE and TDE algorithms. 
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1. INTRODUCTION 

Parameter estimation is a key step in the development of mathematical models of 
physical phenomena and the problem of estimating parameters in dynamic models is 
important and even more difficult than with algebraic models. The extra difficulty arises 
from the inclusion of nonlinear differential-algebraic equations in the optimization 
problems. This type of problems arises most often in the estimation of kinetic constants 
from experimental time series data [Floudas et al., 1999]. 
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In general, there are two types of approaches to address the parameter estimation 
problem for such dynamic systems. Both, the sequential and simultaneous approaches of 
dynamic optimization have been widely studied in this context [Michalik et al., 2009]. In 
either approach, the objective is to minimize a weighted squared error between the 
observed values and those predicted by the model [Lin and Stadtherr, 2006]. The key idea 
is to estimate an unknown parameter vector p = (p1,...,pn)T of a mathematical model that 
describes a real-life situation, by minimizing the distance of some known experimental 
data from theoretically predicted values of a model function at certain time values 
[Schittkowski, 2007]. Thus, kinetic parameters of model that cannot be measured directly 
also can be identified by a least squares fit and analyzed subsequently in a quantitative 
way.  

The solution of these types of problems is usually very difficult due to their highly 
nonlinear, multidimensional and multimodal nature. In fact, several deterministic 
techniques [Esposito and Floudas, 2000; Gau and Stadtherr, 2000; 2002; Papamichail and 
Adjiman, 2004; Tang, 2005; Lucia et al., 2005; Lin and Stadtherr, 2006; Schittkowski, 
2007; Michalik et al., 2009] have been proposed to solve these problems but difficulties 
related to ease of implementation, global convergence, and good computational 
efficiency have been frequently found.  

Nowadays, evolutionary algorithms have become popular for solving problems of 
highly nonlinear, multidimensional and multimodal nature, in various science & 
engineering disciplines. Differential Evolution [Storn and Price, 1995] is one such 
algorithm. DE algorithm has been applied to solve several types of problem (nonlinear, 
mixed integer nonlinear, dynamic optimization) encountered especially in chemical 
engineering [Wang and Chiou, 1997; Chiou and Wang, 1999; Angira, 2005; Angira and 
Babu, 2006; Angira and Alladwar, 2007]. Also, a detailed review of the basic concepts of 
DE and its application to many types of problems and the theoretical studies conducted 
on DE so far is presented in literature [Das and Suganthan, 2011]. 

Recently, a modified version of DE named Modified Differential Evolution (MDE) 
was proposed [Angira and Babu, 2005]. But the application of DE or MDE to solve 
kinetic parameter estimation problem in open literature is scarce [Liu and Wang, 2009; 
Babu and Sastry, 1999; Angira, 2011]. This paper presents the application and 
performance evaluation of MDE for solving problems of estimating kinetic parameters in 
nonlinear dynamic models of chemical engineering processes. Numerical results are 
compared with that of obtained using DE and TDE algorithms. Details of the DE, TDE 
and MDE algorithms are avoided for the sake of brevity and the reader may refer to 
literature [Fan and Lampinen, 2003; Angira, 2005; Angira and Babu, 2006; Babu and 
Angira, 2006] for the same. This paper is organized as follows. Test problems are 
described briefly in Section-2. Results and discussion are presented in Section-3 followed 
by conclusions in Section-4. 
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2. TEST PROBLEMS  
2.1. A First-Order Irreversible Liquid-Phase Reaction 

This example is a parameter estimation problem with two parameters and two 
differential equations in the constraints. It appears in literature [Tjoa and Biegler, 1991; 
Floudas et al. 1999; Esposito and Floudas, 2000]. It involves a first-order irreversible 
isothermal liquid-phase chain reaction: . The problem can be 
formulated as follows: 
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Initial conditions:    ( ) 101 ==tx   and  ( ) 002 ==tx ;                                              (7) 
 
Variable bounds are: 10,0 21 ≤≤ kk , tf = 1.0, and x1, x2 are the mole fractions of 

components A and B, respectively. k1 and k2 are the rate constants of the first and second 
reaction, respectively. is the experimental point for the state variable j at time texp

, jxμ μ. 
The experimental points are taken from literature [Floudas et al., 1999].  
 

2.2. Catalytic Cracking of Gas Oil 
 This parameter estimation test problem consists of three parameters and two 
differential equations in the constraints. It appears in literature [Tjoa and Biegler, 1991; 
Floudas et al., 1999; Esposito and Floudas, 2000]. It involves an overall reaction of 
catalytic cracking of gas oil (A) to gasoline (Q) and other side products (S): 

QA k⎯→⎯ 1  
       3k        2k  

 
S 

 
 This reaction scheme involves nonlinear reaction kinetics rather than the simple 
first-order kinetics in the previous test problem. Only the concentrations of A and Q were 
measured; therefore, the concentration of S does not appear in the model for estimation. 
The problem can be formulated as follows:  
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Subject to constraints 2
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Initial Conditions        ( ) 101 ==tx ; and ( ) 002 ==tx ;                                          (16) 
 Variable bounds are 20,,0 321 ≤≤ kkk , tf = 0.95, and x1, x2 are the mole fractions 
of components A and Q, respectively. k1, k2 and k3 are the rate constants of the respective 
reactions. is the experimental point for the state variable j at time texp

, jxμ μ. The 
experimental points are taken from literature [Floudas et al., 1999]. 
 

3. RESULTS & DISCUSSIONS 
For the numerical solution of the above test problems, each continuous problem is 

transformed into a finite-dimensional nonlinear programming problem using state 
parameter discretization (known as the sequential approach). Here the state parameters 
are discretized in to D stages of known experimental state variable data. Differential 
equations are integrated using Runge-Kutta 4th order method, in each D stage so as to 
evaluate the objective function and the constraints. 

For each test problem, 50 different simulation runs of each DE, MDE and TDE 
algorithms are carried out. Algorithms are coded in C language. The reported results of 
this study are obtained using an IBM computer (Pentium-IV/3.2 GHz). Termination 
criteria used is  (where max and min is best and worst objective 
function values respectively). 

⎣ ⎦ 12101minmax −×≤−

  

3.1. A First-Order Irreversible Liquid-Phase Reaction 
For this kinetic parameter estimation problem, the key parameters of DE, MDE and 

TDE are taken as F = 0.5, CR = 0.8, Mt = 0.9, NP = 10*D. Table-1 shows the highest, 
average and lowest fractional difference of 50 different runs of each algorithm. The 
fractional difference (fd) is given by bestd JJf /1−= where Jbest is the best objective 
function value reported in literature [Floudas et al., 1999] and J is obtained objective 
function value. For this test problem Jbest = 1.18584×10-06. It is found that fd value is same 
for all algorithms and for all 50 runs. The precision of results is quantified by standard 
deviation of zero for all three algorithms.  

Table-2 shows comparison of results of all three algorithms. From Table-2, it is clear 
that all three algorithms are converging to same global optimum value. The CPU-time 
required to obtain global optimum using MDE is less than that of DE and TDE algorithm. 
MDE takes approximately 17% less CPU-time as compared to DE & TDE algorithms. 
The CPU-time required to obtain global optimum using TDE algorithm is nearly same as 
that required by DE. 
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Table-1. Fractional difference variation for Test Problem-2.1. 
Fractional difference (fd) Algorithm Highest Average Lowest 

DE -4.2×10-06 -4.2×10-06 -4.2×10-06

MDE -4.2×10-06 -4.2×10-06 -4.2×10-06

TDE -4.2×10-06 -4.2×10-06 -4.2×10-06

 
Table-2. Comparison of Results for Test Problem-2.1. 

Algorithm Best Objective function value (J) obtained CPU time (s) 
DE 1.185845×10-06 0.40 

MDE 1.185845×10-06 0.33 
TDE 1.185845×10-06 0.39 

 
The global optimum parameters (corresponding to true global optimum objective 

function value) obtained are same for each algorithm, which are k1 = 5.003487, and k2 = 
1.0. The experimental data points and the obtained data points (for a typical run) for state 
variables are shown in Fig. 1 & 2. From Fig. 1 & 2, it is clear that obtained state variable 
data is matching with that experimental data and as reported in literature [Floudas et al., 
1999; Esposito & Floudas, 2000; Papamichail & Adjiman, 2004]. 
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Fig. 1. Experimental data points and obtained data points for state variable (x1) of 

Test Problem-2.1. 
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Fig. 2. Experimental data points and obtained data points for state variable (x2) of 

Test Problem-2.1. 
 

3.2. Catalytic Cracking of Gas Oil 
 For this kinetic parameter estimation problem, the key parameters of DE, MDE 
and TDE are taken as F = 0.5, CR = 0.8, Mt = 0.9, NP = 10*D. Table-3 shows the highest, 
average and lowest fractional difference of 50 different runs of each algorithm. For this 
problem, Jbest = 2.655670×10-03. The overall accuracy of 50-fd values is quantified by 
their average of 0.000001 for DE and MDE algorithms and an average value of -
0.011534 for TDE algorithm as shown in Table-3. The precision of results is quantified 
by standard deviation of zero for DE and MDE algorithms and 0.038172 for TDE 
algorithm. 
 

Table-3. Fractional difference variation for Test Problem-2.2. 
Fractional difference (fd) Algorithm Highest Average Lowest 

DE 1.0×10-06 1.0×10-06 1.0×10-06

TDE 1.0×10-06 -0.011534 -0.234029 
MDE 1.0×10-06 1.0×10-06 1.0×10-06
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Table-4 shows comparison of results for all three algorithms. From Table-4, it is clear 
that all three algorithms are converging to same global optimum value up to eleven 
decimal places. The CPU-time required to obtain global optimum using MDE is less than 
DE and TDE algorithm. MDE algorithm takes approximately 19% less CPU-time as 
compared to DE algorithm. The CPU-time required to obtain the global optimum using 
TDE algorithm is 48% more as compared MDE algorithm and 36% more as compared to 
DE algorithm. The global optimum parameters (corresponding to true global optimum 
objective function value) obtained are same for each algorithm, which are k1 = 12.21401, 
k2 = 7.979833, and k3 = 2.22162. 

 
Table-4. Comparison of Results for Test Problem-2.2. 

Algorithm Best Objective function value (J) obtained CPU time (s) 
DE 2.65566×10-03 1.02 

TDE 2.65566×10-03 2.27 
MDE 2.65566×10-03 0.82 

 

From Fig. 3, it can be observed that for this test problem the TDE algorithm 
converged into closer vicinity of the global optima while DE and MDE algorithms 
converged to the true global optima. This suggests that DE & MDE algorithms have 
better convergence reliability than the TDE algorithm. 

The experimental data points and the obtained data points (for a typical run) are 
shown in Fig. 4 & 5. From Fig. 4 & 5, it is clear that obtained state variable data is 
matching with that reported in literature [Floudas et al., 1999; Esposito and Floudas, 
2000; Papamichail and Adjiman, 2004]. 
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Fig. 3(a). DE algorithm 
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Fig. 3(b). MDE algorithm
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Fig. 3(c). TDE algorithm 

Fig. 3. Histograms of the function values obtained by the DE, MDE, and TDE 
algorithms for fifty independent trial runs for Test Problem-2.2. 
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 Fig. 4. Experimental data points and obtained data points for state variable (x1) of 

Test Problem-2.2. 
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Fig. 5. Experimental data points and obtained data points for state variable (x2) of 

Test Problem-2.2 
 

 
4. CONCLUSIONS 

In this paper the performance of DE, TDE, and MDE algorithms is compared for 
solving problems of estimating kinetic parameters from chemical engineering. The 
performance of TDE algorithm was found to be worst among the three algorithms used in 
the present study. The two algorithms (DE and MDE) are able to obtain global optimum 
with 100% convergence overall the 50 different executions of the each algorithm. But 
MDE algorithm is found to be efficient and faster than the DE and TDE algorithms for 
the test problems considered in the present paper.  
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