
AMO- Advanced Modeling and Optimization, Volume 14, Number 1, 2012

Two Notes About Rolling Estimates
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Abstract. This paper proposes two notes rolling estimates. These estimates
are used in rolling analysis to detect instabilities of a time series. At first, it
is seen that, under the null hypothesis of no change point, rolling estimates
constitute a moving average process. Then, we find that using a rolling estimates
in change point test statistics gives better results, in practice.
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1 Introduction. The constancy of parameters of a time series model over
time is too important assumption, in practice. The rolling analysis is useful
technique to monitor a time series. It is done by estimating parameters over
a rolling window with fixed length during the given sample. We describe the
method as follows.

Let {Xt}t≥1 be independent observations come form a statistical distribution
indexed by parameter(s) θ ∈ Θ. Let Xn

1 = (X1, ..., Xn) and θ̂ = T (Xn
1 ) be a

suitable estimator of θ; e.g. maximum likelihood or least square estimates. Let
l ≥ 1 be an integer number and define the rolling estimates given by

θ̂k = T (Xt+l−1
t ), t = 1, 2, ..., n + l − 1.

If {θ̂t}t≥1 do not differ then the parameter θ is fixed over time. However, when
a change has occurred in θ, plotting (t, θ̂t) will detect this shift. Rolling analysis
is studied by Alexander (2001) and Zivot and Wang (2006).

It is easy to see that {θ̂t}t≥1 is a stationary and l-correlated process, that
is cor(θ̂t, θ̂t+h) = 0, for |h| > l. Following Brockwell and Davis (2002), it has a
unique MA(l) representation as

θ̂t = µθ +
l∑

j=1

αjZt−j ,

where µθ = E(θ̂t) and Zt are WN(0, σ2). Therefore,

γ(h) = cov(θ̂t, θ̂t+h) =
{

σ2
∑l−|h|

j=0 αjαj+|h| |h| ≤ l

0 |h| > l,
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with α0 = 1. An estimator for µθ is µ̂ which is unbiased-consistent estimator
with variance

(1/n)
n∑

h=−n

(1− |h|
n

)γ(h).

The moment method estimate is obtained by solving

µθ = µ̂ = (1/n)
n∑

t=1

θ̂t.

The Newton-Raphson may be applied to derive it (see Gelman(1994)). A 95%
confidence bands for µθ is given by

µ̂± 1.96
√

v

n
,

where v =
∑

|h|<∞ γ(h). The γ(h) is estimated by empirical auto-covariance of

θ̂t defined by

γ̂(h) = (1/n)
n−|h|∑
t=1

(θ̂t − µ̂)(θ̂t+|h| − µ̂).

The unknown parameters {αj , j ≥ 1} are estimated using a suitable estima-
tion method such as maximum likelihood method or Yule-Walker approach (see
Brockwell and Davis (2002)). Statistical software R has useful package for per-
forming time series analyses as well as computing these estimators of unknown
parameters. Two criteria for measuring the difference between θ̂t’s are the range
and variance of them, that is

(1/n)
n|∑

t=1

(θ̂t − µ̂)2 and max
1≤t≤n

θ̂t − min
1≤t≤n

θ̂t.

Example 1. Let Xk, k = 1, 2, ..., 1000. Let l = 3 and compute the rolling
means. By moving average modeling, one can see that, for example, ρ̂(i) =
0.0367, 0.0214, −0.0072 for i = 1, 2, 5, respectively. The estimate of σ2 (the
variance of white noise process) is 1.462. One can also see that the variance of
rolling means Xt is 0.972 which indicates that there is no change point.

Remark 1. Here, we suppose that there exists a change point at θ. Then the
MA model with parameters (µθ, {αj}l

j=1, σ
2) shifts to a MA averages with new

parameters (µ′θ, {α′j}l
j=1, σ

′2). Therefore, methods for change point detection in
time series model (e.g Hansen (1992)) may be applied for change point detection.
One should note that using a rolling estimate (instead of original data) in change
point test statistics, we guarantee that the variances of observations are reduced

132



Two notes about rolling estimates

and therefore, this method detects the change point much better. The following
example shows this fact.

Example 2. Suppose that the 500 original data (Xi) come form normal
distribution with common variance 2 and mean changes from 0 to 2 after 300-th
observations. Here, using a Monte Carlo method with M = 1000 repetitions, we
compute the P (k̂i = k) for change point estimator k̂i of i-th method (i = 1, 2).
Here, k̂1 is the minimizer of CUSUM process defined by

∑k
i=1(Xi−X), for k =

1, 2, ..., 499. And, k̂2 is the minimizer of CUSUM process obtained substituting
Xi with rolling means (with l = 3), Xt, t = 1, 2, ..., 497. The X is replaced
with the mean of Xt’s. The following Tables gives the results. It is seen that
k̂2 proposes a better concentrations on k0 = 300. Our studies (are not given
here) shows that (using rolling estimates) the results are much better when the
variance 2 gets large.

Table 1: Probability mass of cusum estimator with Xi’s

k ≤ 295 296 297 298 299 300 ≥ 301
P (k̂1 = k) 0.2 0.1 0.1 0.05 0.15 0.15 0.25

Table 2: Probability mass of cusum estimator with rolling means

k ≤ 295 296 297 298 299 300 ≥ 301
P (k̂1 = k) 0.2 0.05 0.1 0.1 0.1 0.35 0.1
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