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Abstract

In this paper we are concerned with optimal control problems whose cost are quadratic and
whose state are governed by linear delay differential equations and general boundary con-
ditions. The basic new idea of this paper is to propose an efficient and robust algorithm
for the solution of such problems by the conjugate gradient method(CGM) via quadratic
programming. Our results are promising as compared with existing algorithms.
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1 INTRODUCTION

Optimal control problems constrained by delay differential equations using the maximum principle[6]
involves the solution of a set of 2n two-point boundary-value problem in which both delay and
advance terms are present. The solution of such problems is impossible computationally or oth-
erwise. Therefore, the main objective of all computational aspects of optimal time-delay systems
has been to device a methodology to avoid the solution of the mentioned 2-point boundary-value
problem[6].

Jamishidi et al.[6] proposed a near optimum controller for linear systems with input time-
delay through the introduction of a small parameter 0 ≤ ǫ ≤ 1 and McLaurin’s series expansion.
The control has an exact feedback portion and a truncated series open loop gain, which is only
valid for ǫ << 1. Jaechong [5] introduced a class of linear operators for linear delay differential
equations in such a way that the state equation subject to a starting function can be viewed
as an inhomogeneous boundary value problem in the linear operator equation. Although the
method avoids the usual semi-group theory treatment to the problems but only gives the nec-
essary theory for such problems. Agrawal et al. [1] gives the necessary theory for constrained
variational problem with time delay. Their theoretical consideration can be applied to obtain
the analytical solution of certain variational problems. The Control parametrization Enhanc-
ing Technique(CPET) is extended to a general class of constrained time-delayed optimal control
problems by Wong et al. [14]. A model transformation approach is used to convert the time-
delay problem to an optimal control problem involving mixed boundary conditions, but without
time- delay. This technique(CPET) increases the number of state and control variables involved
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over a reduced finite time interval in obtaining the solution of the problem. Guo-Ping et al.
[4] proposed a control method which transforms the differential equation with time delay of the
system dynamics into a form without any time delay through a particular transformation. A
numerical algorithm for control implementation is presented, since the obtained expression of the
optimal controller contains an integral term that is not convenient for online calculation. Smith
[13] proposed an evolutionary algorithm to the optimal control of delay differential equations.
Due to complexity and numerical intensity of the problem, a black box solver was developed
which gives better solution though with long computational time compared to existing algo-
rithms. The computational method for solving optimal control problem which is governed by a
switched system dynamical system with time delay is developed by Changzhi et al. [2]. They
derived the required gradient of the cost function which is obtained via solving a number of delay
differential equations forward in time, in which the resulting control problem can be solved as
a mathematical programming problem. An extended discretized scheme is proposed by Olotu
et al. [10] to examine the convergence profile of a quadratic control problem constrained by
evolution equation with real coefficients. With an unconstrained formulation of the problem via
the penalty-multiplier method, the discretization of the time interval and differential constraint
is carried out. An operator, to circumvent the cumbersome calculation inherent in some earlier
schemes[8, 9], such as the function space algorithm, is established and proved.

In this paper, the discretized algorithm via quadratic programming technique[11] is extended
to optimal control of delay differential equations. In the proposed algorithm, the optimal control
problem is discretized and through the construction of penalty matrix, the optimal control prob-
lem becomes large sparse quadratic programming problem. The effectiveness and robustness of
the control method is demonstrated by simulation studies of two dynamical models.

This paper is organized as follows. Section 2 presents the statement of the problem where
the necessary conditions and optimality system are derived. In section 3, the proposed algorithm
is developed. The error and convergence analysis is given in section 4. Section 5 provides the
simulation and comparison studies of the proposed algorithm. Finally, a concluding remark is
given in section 6.

2 STATEMENT OF THE PROBLEM

Considering the following class of linear system with output time-delay.

ẋ(t) = Ax(t) + Bx(t − r) + Cu(t), (2.1)

x(t) = h(t), t ∈ [−r, t0],

where x ∈ R
n,u ∈ Rm are the state and control vectors, A,B and C are constant matrices of

appropriate dimensions, h(t) is the state’s initial function, t0 is the initial process time and r is
the time delay, assumed to be constant, but not necessarily small. A control vector u(t) should
be obtained which would minimize a quadratic functional,

J(u) =

∫ tf

t0

(xTPx + uTQu)dt, (2.2)

and satisfy the constraints of equation (2.1).

In equation(2.2), the matrix P and Q are symmetric positive-definite, and tf is the final
process time assumed to be finite.

118



An Algorithm for Optimal Control of Delay Differential Equations

Theorem 1. Given the optimal control u∗ and solution x(t)∗ of the state system (2.1) that
minimizes J(u) over U ; where U is set of admissible controls, then there exists adjoint variable
µ(t) ∈ Rn satisfying

{

µ̇(t) = 2Px(t) − AT µ(t) − BT µ(t + r), t0 ≤ t ≤ tf − r

µ̇(t) = 2Px(t) − AT µ(t), tf − r ≤ t ≤ tf
(2.3)

and with transversality condition

µ(T ) = 0 (2.4)

u∗(t) =
Q−1CT

2
µ(t) (2.5)

Proof. By introducing adjoint variable µ(t) ∈ Rn, the required augmented functional from equa-
tion(2.1) and equation(2.2) can be formed. The Hamiltonian function is given as

H(x,u, µ, ẋ) = xT (t)Px(t) + uT (t)Qu(t) + µT (t)(ẋ − Ax(t) − Bx(t − r) − Cu(t)). (2.6)

Obtaining the necessary conditions for optimal control problem using the Euler-Lagrangian(E-L)
equations for H, regarded as function of the four vector variables(x,u, µ, ẋ), we have

ẋ(t) = Ax(t) + Bx(t − r) + Cu(t), t ∈ [0, T ] (2.7)

µ̇(t) = 2Px(t) − AT µ(t) − BT µ(t + r), 0 ≤ t ≤ T − r (2.8)

µ̇(t) = 2Px(t) − AT µ(t), T − r < t ≤ T (2.9)

u(t) =
Q−1CT

2
µ(t), t ∈ [0, T ], (2.10)

which are the required optimality conditions.

The optimality system of equations(2.7)-(2.10) represents a system of linear 2-point boundary
values problems involving both delay and advance terms. Clearly, the coupling that exists between
x(t) and µ(t) and the fact that variables with t, t − r, t + r arguments are involved, make the
solution of such problems impossible, both analytically and numerically by indirect method.

3 DEVELOPMENT OF THE ALGORITHM

In order to obtain numerical solutions to equations(2.1) and (2.2) by direct method, we shall
replace the constrained problem by appropriate discrete optimal control problem. Partitioning
the interval [t0, tf ] into s sub-intervals with knots t0 < t1 < t2 · · · < tf and tk = k∆tk, where ∆tk
is the mesh size of kth sub-interval . If these sub-intervals are small enough, we can assume that
in any sub-interval [k − 1, k], the values x(t) and u(t) can be approximated by zero order spline
xk and uk respectively. Our optimal control problem(2.1) and (2.2) is then approximated by;

minJ(u) =
s

∑

k=0

xT
k (tk)Mxk(tk) + uT

k (tk)Nuk(tk) (3.1)

subject to
ẋk(tk) = Axk(tk) + Bxk(tk − r) + Cuk(tk) (3.2)
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where M = P∆tk and N = Q∆tk. Furthermore, we shall use finite difference approximation to
write

xk+1(tk) = xk(tk) + ẋk(tk)∆tk, (3.3)

thus, the constraint(3.2) becomes;

xk+1(tk) = Fxk(tk) + Gxk(tk − r) + Huk(tk) (3.4)

where F = In×n + A∆tk, G = B∆tk, and H = C∆tk.

By parameter optimization[7], the discretized problem becomes a large sparse quadratic pro-
gramming problem. We give a matrix representation

minJ(z) = zT
k (tk)Dzk(tk) + c (3.5)

subject to
Ezk(tk) = k (3.6)

and
zT

k (tk) = (xT
1 (tk),x

T
2 (tk), · · · ,xT

s (tk),u
T
0 (tk),u

T
1 (tk), · · · ,uT

s (tk)) (3.7)

where D is a block diagonal matrix of order (n + m)s + m, with entries given by:

[D]ii =

{

M, i = 1, 2, · · · , s

N, i = s + 1, s + 2, · · · , 2s + 1

where ith element corresponds to ith block, and c = xT
k (0)Mxk(0). The matrix E is block matrix

of order ns × (n + m)s + m with the representation

E =
(

K
... L

... 0

)

. (3.8)

Let n1 = r
∆tk

and xk−n1
(tk) = xk(tk − r), then K is an ns × ns sparse block matrix with

principal block diagonal elements [K]ii = In×n and lower block principal diagonal elements
[K]ij = −F,∀ i, j block, such that i = j + 1 and [K]ij = −G,∀ i = n1 + 1, · · · , n, and j =
1, 2, · · · , n1.[L] is an ns × ms block diagonal matrix with block diagonal elements [L]ii = −H,
and 0 is an ns × m zero matrix. The column vector k is of order ns × 1 with entries given
by:[k]1:n,1 = Fxk(0) + Gx−n1

(−r),[k]nj:n(j+1) = Gxi−n1
(ti − r), i = 2, 3, · · · , n1, j = i − 1, and

[K]i1 = 0, i = n1 + 1, · · · , ns.

Using proposition 2.8 of [3], the quadratic programming(QP) problem(3.5) and(3.6) is equiv-
alent to the solution of the saddle point system of linear equations

(

D ET

E 0

)(

zk(tk)
λ

)

=

(

0

k

)

(3.9)

where λ ∈ Rns is the Lagrange multipliers. If E is a full row rank matrix, we can solve equa-
tion(3.9) effectively by the Gaussian elimination with suitable pivoting strategy, or by a symmet-
ric factorization which takes into account that equation(3.9) is indefinite. Alternatively, we can
use MINRES, a Krylov space method which generates the iterates minimizing the Euclidean of
the residual in the Krylov space. The performance of the MINRES depend on the spectrum of
the KKT system(3.9), similarly as the performance of the conjugate gradient method. Hence,
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unconstrained minimization problem by penalty function method is

minLρ(zk (tk )) = zT (tk )Dz(tk ) + c + ρ 〈Ez(tk ) − k,Ez(tk ) − k〉 (3.10)

on expansion, we have

minLρ(z(tk )) = zT (tk )Aρz(tk ) + Bρz(tk ) + Cρ (3.11)

Equation (3.11) is the quadratic form representation for the unconstrained minimization problem,
where Lρ(z(tk )) is penalized Lagrangian, ρ is penalty parameter, the penalized matrix Aρ =
[

D + ρETE
]

, Bρ = −2ρkTE and Cρ = ρkTk + c.

Lemma 1 (Olotu et al[11]). Consider the continuous optimal control problem(2.1) and (2.2) and
the associated discretized optimal control problem (3.5) and (3.6), the matrix D defined in (3.11)
is positive symmetric definite and well-conditioned.

The property of a problem being well-conditioned indicates the problem is independent of
the numerical method that is being used to obtain its solution. Since we have established the
positive symmetric definiteness of D, we state the following lemmas.

Lemma 2 (Dostiàl[3]). Let D ∈ R((n+m)s+m)×((n+m)s+m) be a symmetric positive definite matrix,
let E ∈ R(ns)×((n+m)s+m),ρ > 0, and let KerD ∩ KerE = 0. Then the penalized matrix Aρ is
positive definite.

Lemma 3 (Dostiàl[3]). Let D ∈ R((n+m)s+m)×((n+m)s+m) be a symmetric positive definite matrix,
let E ∈ R(ns)×((n+m)s+m),µ > 0 such that

zT (tk)Dz(tk) ≥ µ ‖z(tk)‖ , z(tk) ∈ KerD

Then Aρ is positive definite for sufficiently large ρ

The lemmas ensure the sufficient condition for z∗(tk) ∈ R((n+m)s+m) to a be local minimum
point. We solve the unconstrained minimization equation(3.11) by conjugate gradient algorithm
in the inner loop and enforce the feasibility condition in the outer loop as stated in the following
algorithm.

Algorithm 1 Conjugate Gradient Algorithm for Constrained Optimal Control Problem

Step 1. Select a z0,0(tk) ∈ IR(n+m)s+m, c > 1 and ρ0 > 0. Set k = 0.
Step 2. Set i = 0 and set p0 = −g0 = −∆Lρ(z0,0(tk))

Step 3. Compute αi =
pT

i pi

pT
i Aρpi

Step 4. Set z0,i+1(tk) = z0,i + αipi

Step 5. Compute ∆Lρ(zi+1(tk))
Step 6. If ∆Lρ(z0,i+1(tk)) = 0 and Ez0,i+1(tk) = k stop;else go to step 7.
Step 7. If ∆Lρ(z0,i+1(tk)) 6= 0, set

gi+1 = ∆Lρ(z0,i+1(tk)),

pi+1 = −gi+1 + γipi, with γi =
gT

i+1
gi+1

gT
i gi

Step 8. Set i = i + 1, and go to step 3.
Step 9. Else if Ez0,i+1(tk) 6= k, set ρk+1 = cρk; set k = k + 1 and go to step 2.
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4 ERROR AND CONVERGENCE ANALYSIS

In this section, the error and convergence analysis of the Algorithm(1) is given as a computa-
tional algorithm via quadratic programming for obtaining optimal solutions to optimal control
of delay differential equations. The feasibility error estimates for the penalty approximation of
quadratic programming problem(3.5) and (3.6) is stated in the theorem below. The error bound
is proportional to 1

ρ
, but dependent on E and k.

Theorem 2. Let D,E,c and k be those of the definition of problem(3.5) to (3.6) with E 6= 0 not
necessarily a full rank matrix, let β̄min > 0 denote the smallest nonzero eigenvalues of ED−1ET ,
let ǫ denote a given positive number, and let ρ > 0.

If zk(tk) is such that
‖∇Lρ‖ ≤ ǫ, (4.1)

then the feasibility error satisfies

‖Ezk(tk) − k‖ ≤ (1 + β̄minρ)−1(
ǫ

2

∥

∥ED−1
∥

∥ + ‖k‖), (4.2)

Proof. Let us recall that for any vector zk(tk)

∇Lρ(zk(tk)) = 2
(

D + ρETE
)

zk(tk) − 2ρETk,

so that, after denoting g = ∇Lρ(zk(tk)) and Aρ =
(

D + ρETE
)

,

zk(tk) =
1

2
A−1

ρ (g + 2ρETk).

It follows that

Ezk(tk) =
1

2
EA−1

ρ (g) + ρEA−1
ρ ETk

Using
EA−1

ρ = (I + ρED−1ET )−1ED−1, (4.3)

which can be shown from Sherman Morrison-Woodbury formula and the fact that D is symmetric
positive definite, and by simple manipulation, we get

Ezk(tk) − k =
1

2
EA−1

ρ (g) + ρ(I + ρED−1ET )−1ED−1ETk − k

=
1

2
EA−1

ρ (g) + (I + ρED−1ET )−1
(

(I + ρED−1ET ) − I
)

k − k

=
1

2
EA−1

ρ (g) − (I + ρED−1ET )−1k.

By using the assumptions that k ∈ Im(E) and ‖g‖ ≤ ǫ, and Lemma 1.6 of [3], and properties of
norm, then Equation(4.2) is immediate.

The bounds on the approximation error of the discretized continuous algorithm via quadratic
programming using the feasibility error estimates(4.2) can be improved. The improvement on
the approximation error of the optimal point is stated as follows.

Theorem 3. Let D,E,c and k be those of the definition of problem(3.5) and (3.6) with E not
necessarily a full rank matrix, let λmin denote the least eigenvalue of D, let σ̄min denote the least
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nonzero singular value of E, let(ẑk(tk), λLS) denote the least square KKT pair for problem(3.5)
and (3.6), let β̄min > 0 denote nonzero eigenvalue of the matrix ED−1ET , let ǫ > 0,ρ > 0, and

λ = ρ(Ezk(tk) − k). (4.4)

If zk(tk) is such that
‖∇Lρ‖ ≤ ǫ,

then

‖λ − λLS‖ ≤ ǫ
κ(D)

σ̄min
+

‖D‖ ( ǫ
2

∥

∥ED−1
∥

∥ + ‖k‖)

σ̄2
min(1 + ρ)β̄min

(4.5)

and
∥

∥

∥
zk(tk) − ˆzk(tk

∥

∥

∥
≤ ǫ

κ(D) + 1

λmin
+

κ(D)( ǫ
2

∥

∥ED−1
∥

∥ + ‖k‖)

σ̄min(1 + ρβ̄min)
(4.6)

Proof. Let us denote g = ∇Lρ(zk(tk)) and e = Ezk(tk) − k, so that

2(Dzk(tk) + ET λ) = g and Ezk(tk) = k + e

If
‖g‖ = ‖Lρ(zk(tk))‖ ≤ ǫ,

then by Theorem(2)

‖Ezk(tk) − k‖ ≤ (1 + β̄minρ)−1(
ǫ

2

∥

∥ED−1
∥

∥ + ‖k‖).

Substituting into the estimates(2.47) and (2.48) of Proposition 2.12 of [3], we get

∥

∥ET (λ − λLS)
∥

∥ ≤ ǫκ(D) +
‖D‖ ( ǫ

2

∥

∥ED−1
∥

∥ + ‖k‖)

σ̄min(1 + ρβ̄min)
(4.7)

and equation(4.6). To complete the proof, notice that λ − λLS ∈ ImE, so that

σ̄min ‖λ − λLS‖ ≤
∥

∥ET (λ − λLS)
∥

∥

.

In investigating Algorithm(1), we are often interested in the rate at which it converges to
a limit. Given a sequence {zk(tk)} ⊂ R(n+m)s+m with zk(tk) → z∗, the typical approach is to
measure the rate of convergence in terms of error function.

e : R
(n+m)s+m → R

such that e(zk(tk)) ≥ 0, ∀zk(tk) ∈ R(n+m)s+m and e(z∗(tk)) = 0.
Assume that ek 6= 0, ∀k and

lim
k→∞

ek+1

e
p
k

= lim
k→∞

‖zk+1(tk) − z∗(tk)‖

‖zk(tk) − z∗(tk)‖
p ≤ β < 1 (4.8)

If p = 1 and 0 ≤ β ≤ 1 then {zk(tk)} converges linearly with convergence ratio β. If β = 0 then
{zk(tk)} converges super linearly with convergence ratio β. Also, if p = 2 and 0 ≤ β ≤ 1 then
{zk(tk)} converges quadratically with convergence ratio β.
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Figure 1: Optimal control curve for example(1)

Most optimization algorithms of interest produce sequence converging either quadratically or
super linearly. It is known in literature[12] that algorithms using conjugate gradient method are
said to converge quadratically. Thus,in this paper we also examine the quadratic convergence of
the developed algorithms for numerical examples below.

5 NUMERICAL EXAMPLES

In this section, we demonstrate the reliability of algorithm(1) to optimal control of delay differen-
tial equation to other methods such as control parametrization technique(CPT)[14] and evolution-
ary algorithms[13]. All computations in the following examples were performed in the MATLAB
environment, Version 7.6.0324 Release(2008a) running on a Microsoft Windows V istaTM Home
Premium operating system with an Intel(R)Pentium(R) Dual processor running at 1.87GHz.

In order to investigate the performance of the new algorithm, we consider the following
continuous optimal control problems constrained by delay differential equations due to Smith[13];

Example 1.

Minimize J =

2
∫

0

(x2(t) + u2(t)) dt (5.1)

subject to

ẋ(t) = tx(t) + x(t − 1) + u(t), (5.2)

x(t) = 1, t ∈ [−1, 0].
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Figure 2: Optimal state trajectory for example(1)

The optimality system is;

ẋ(t) = tx(t) + x(t − r) + u(t), t ∈ [0, 2], (5.3)

µ̇(t) = 2x(t) − tµ(t) + µ(t + 1), t ∈ [0, 1], (5.4)

µ̇(t) = 2x(t) − tµ(t), t ∈ [1, 2], (5.5)

u(t) =
µ(t)

2
, t ∈ [0, 2], (5.6)

where µ(t) is the adjoint variable. The optimality system(5.3)-(5.6) is not amenable to both ana-
lytical method of solutions and indirect numerical methods. Applying classical control parametriza-
tion technique proposed by Wong[14], we have, by letting,

y1(t) = x(t), t ∈ [0, 1]

y2(t) = x(t + 1), t ∈ [0, 1]

v1(t) = u(t), t ∈ [0, 1]

v2(t) = u(t + 1), t ∈ [0, 1]

the resulting non-delayed re-formulation of Example(1) as;

Minimize J =

1
∫

0

(y2
1(t) + y2

2(t) + v2
1(t) + v2

2(t)) dt (5.7)

subject to the non-delayed differential equations on the interval[0, 1]

ẏ1(t) = ty1(t) + 1 + v1(t), (5.8)

ẏ2(t) = ty2(t) + y1(t) + v2(t) (5.9)
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together with boundary constraints

y1(0) = 1, (5.10)

y1(1) = y2(0). (5.11)

The solution of optimal control problem(5.7)-(5.11) is J = 6.1391, while the new algorithm gives
J = 4.7971 in 12 seconds, which compared favorably with evolutionary algorithm which has best
value of J = 4.796817 and worst value of J = 4.84888 in hours. We also investigated the quadratic
convergence of the new algorithm on example(1) by setting p = 2 in equation(4.8). The graph

0 50 100 150 200 250
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number of iterations

Figure 3: quadratic convergence for example(1)

above shows that 0 ≤ β ≤ 1, which shows that the new algorithm exhibits quadratic convergence.

Example 2.

Minimize J =

∫ 5

0

1

2
(10x2

1 + x2
2 + u2)dt (5.12)

subject to

ẋ1(t) = x2(t) (5.13)

ẋ2(t) = −10x1(t) − 5x2(t) − 2x1(t − τ) − x2(t − τ) + u(t) (5.14)

x1(t) = 1.0 − τ ≤ t ≤ 0 (5.15)

x2(t) = 1.0 − τ ≤ t ≤ 0 (5.16)

For this system; P =

(

5 0
0 0.5

)

, Q =
(

0.5
)

, A =

(

0 1
−10 −5

)

,B =

(

0 0
−2 −1

)

and
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Figure 4: Optimal state trajectory for example(2)
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Figure 5: Optimal state trajectory (x1(t)) for example(2)

P =

(

0
1

)

. The optimality system for optimal control problem(5.12)-(5.16) is;

ẋ1(t) = x2(t), t ∈ [0, 5] (5.17)

ẋ2(t) = −10x1(t) − 5x2(t) − 2x1(t − τ) − x2(t − τ) + u(t) t ∈ [0, 5] (5.18)

µ̇1(t) =

{

10x1(t) + 10µ2(t) + 2µ2(t + τ) t ∈ [0, 5 − τ ]
10x1(t) + 10µ2(t) t ∈ [5 − τ, 5]

(5.19)

µ̇2(t) =

{

x2(t) − µ1(t) + 5µ2(t) + µ2(t + τ) t ∈ [0, 5 − τ ]
x2(t) − µ1(t) + 5µ2(t) t ∈ [0, 5 − τ ]

(5.20)

u(t) = 2µ2(t) t ∈ [0, 5] (5.21)

where µ1(t) and µ2(t). The optimality system cannot be solved by both analytical method and
indirect numerical method due to coupling that exist between the state variables and adjoint vari-
ables.
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Figure 6: Optimal state trajectory (x2(t)) for example(2)

The optimal control problem(5.12)-(5.16) is solved for two different values of τ , namely 0.1 and
1.0 using the new algorithm. We obtained J = 2.5586 for τ = 0.1 in 65 seconds and J = 2.9189
for τ = 1.0 in 93 seconds, compared with the evolutionary algorithm which gives J = 2.5628 for
τ = 0.1 and J = 2.9277 for τ = 1.0 both in hours.

6 Conclusion

An algorithm for obtaining optimal control for delay differential equations is obtained in this
paper. The result obtained by the new algorithm for optimizing Delay differential equations
compares favorably with the Evolutionary algorithm and existing algorithms.The new algorithm
exhibits quadratic convergence, which is an advantage over existing methods that inculcate con-
jugate gradient for determination of near optimal control to the optimization of delay differen-
tial equations. Thus, we have shown that conjugate gradient method for solving constrained
quadratic programming problem is well suited for solving a certain class of discretized optimal
control problems with delay term. Thus, the algorithm is attractive computationally and can be
easily extended to nonlinear and time varying systems.
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