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Abstract. In this paper, we propose an iterative algorithm approximating a common ele-

ment of the set of solutions of a finite family of variational inclusions, of solutions of equilib-

rium problems and of the set of fixed points of nonexpansive mappings in a Hilbert space.

We prove the strong convergence of the proposed iterative algorithm to the unique solution

of a variational inequality, which is the optimality condition for a minimization problem.

Our results extend and generalize related results.
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1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. 2H denotes the
family of all the nonempty subsets of H. Let C be a nonempty closed convex subset of H.

Let F be a bifunction from C×C to R, where R is the set of real numbers. The equilibrium
problem for F : C × C → R is to find x ∈ C such that

(1.1) F (x, y) ≥ 0, ∀y ∈ C.

The set of solutions of (1.1) is denoted by EP (F ). The problem (1.1) is very general in the
sense that it includes, as special cases, optimization problems, variational inequalities, Nash
equilibrium problem in noncooperative games, and others.

Recall that a mapping S of a closed convex subset C into itself is nonexpansive if there
holds that ‖Sx− Sy‖ ≤ ‖x− y‖,∀x, y ∈ C. F (S) = {x ∈ H : Sx = x} is the set of fixed points
of mapping S. A mapping f : C → C is called contractive if there exists a constant α ∈ (0, 1)
such that ‖fx− fy‖ ≤ α‖x− y‖,∀x, y ∈ C.

Let A : H → H be a single-valued nonlinear mapping and M : H → 2H be a set-valued
mapping. The variational inclusion is to find a point u ∈ H such that

(1.2) θ ∈ A(u) + M(u)

where θ is the zero vector in H. The set of solutions of problem (1.2) is denoted by I(A,M).
If H = Rm, then problem (1.2) becomes the generalized equation introduced by Robinson [16].
If A = 0, then problem (1.2) becomes the inclusion problem introduced by Rockafellar [17]. If
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M = ∂φ : H → 2H , where φ : H → R∪{+∞} is a proper convex lower semicontinuous function
and ∂φ is the sub-differential of φ, then the variational inclusion problem (1.2) is equivalent to
called the mixed quasi-variational inequality which is to find u ∈ H such that

(1.3) 〈Au, v − u〉+ φ(y)− φ(u) ≥ 0, ∀y ∈ H,

(see, e.g., [13]). If M = ∂δC , where C is a nonempty closed convex subset of H and δC : H →
[0,∞] is the indicator function of C, then the variational inclusion problem (1.2) is equivalent
to variational inequality problem

(1.4) 〈Au, v − u〉 ≥ 0, ∀v ∈ C,

(see, e.g., [11]). More generally, we can have a finite family of variational inclusions

(1.5) findu ∈ H such that θ ∈ Ai(u) + Mi(u), ∀i = 1, 2, . . . , N.

In [1], it is shown that in the case of a single variational inclusion, the formulation provides a
convenient framework for the unified study of optimal solutions in many optimization-related
areas covering mathematical programming, complementarity, variational inequalities, optimal
control, mathematical economics, equilibria, game theory, and so forth.

The formulation (1.5) extends this formalism to a finite family of variational inclusions
covering, in particular, various forms of feasibility problems (see, e.g., [3]).

Mapping Wn has been intensively studied and applied to develop various iterative algo-
rithms for finding common solutions of fixed points of a finite family of nonexpansive mappings
and of other problems (see, e.g., [2, 7, 21, 22]). Since under suitable conditions (to be stated
precisely in Section 2), JM,λ(I − λA) is a nonexpansive mapping, we can introduce following
mapping Wn for a finite family of variational inclusions (1.5).

(1.6)

Un,1 = tn,1J
1
λ1,n

(I − λ1,nA1) + (1− tn,1)I,

Un,2 = tn,2J
2
λ2,n

(I − λ2,nA2)Un,1 + (1− tn,2)I,

...

Un,N−1 = tn,N−1J
N−1
λN−1,n

(I − λN−1,nAN−1)Un,N−2 + (1− tn,N−1)I,

Wn = Un,N = tn,NJN
λN,n

(I − λN,nAN )Un,N−1 + (1− tn,N )I,

where Ai : H → H is an αi-inverse-strongly monotone mapping, Mi : H → 2H is a maximal
monotone mapping and the resolvent operator J i

λi,n
associated with Mi is defined by

J i
λi,n

(u) = (I + λi,nMi)−1(u), u ∈ H, i ∈ {1, . . . , N},
for λi,n > 0. Such a mapping Wn is called the Wn-mapping generated by {Jk

λk,n
(I−λk,nAk)}N

k=1

and {tn,k}N
k=1. Nonexpansivity of Jk

λk,n
(I − λk,nAk) yields the nonexpansivity of mapping Wn.

Recently, Zhang et al. [23], Peng et al. [14], Cholamjiak and Suantai [5], and Plubtieng and
Sriprad [15] studied variational inclusions and presented strong convergent results. Plubtieng
and Sriprad [15] proposed the following iterative scheme for finding a common element of the
set of solutions to the problem (1.2), the set of solutions of an equilibrium problem, and the
set of fixed points of nonexpansive mappings Sn in Hilbert space. Starting with x1 ∈ H, define
sequence {xn}, {yn}, and {un} by

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H,

xn+1 = αnγf(xn) + (I − αnB)Snyn,

yn = JM,λ(un − λAun), ∀n ≥ 0
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where B be a strongly bounded linear operator on H. They proved that under certain ap-
propriate conditions imposed on {αn} and {rn}, the sequences {xn}, {yn}, and {un} converge
strongly to z ∈ (

⋂∞
i=1 F (Si)) ∩ EP (F ) ∩ I(A,M).

In this paper, inspired and motivated by [23, 14, 5, 15], we introduce an iterative scheme
for finding a common element of the set of solutions of a finite family of variational inclusions
problems (1.5) with multi-valued maximal monotone mappings and inverse-strongly monotone
mappings, the set of solutions of an equilibrium problem and the set of fixed points of nonex-
pansive mappings in Hilbert space. Starting with an arbitrary point x1 ∈ H, define sequences
{xn} and {un} by

F (un, y) +
1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H,

xn+1 = εnγf(xn) + βxn + ((1− β)I − εnB)SnWnun,

for all n ∈ N, where εn ∈ (0, 1), {rn} ⊂ (0,∞), B be a strongly bounded linear operator on H,
{Sn} is a sequence of nonexpansive mappings on H and mapping Wn is defined by (1.6). Under
suitable conditions, we prove that the sequences {xn}, {un} and {Wnun} converge strongly
to x ∈ Ω := (

⋂N
k=1 I(Ak,Mk)) ∩ EP (F ) ∩ (

⋂∞
i=1 F (Si)) which is the unique solution of the

variational inequality

(1.7) 〈(B − γf)x∗, x− x∗〉 ≥ 0 ∀x ∈ Ω,

Variational inequality (1.7) is the optimality condition for the minimization problem.

min
x∈Ω

1
2
〈Bx, x〉 − h(x),

where h is a potential function for γf . Our results extend and improve some corresponding
results in [23, 14, 5, 15].

2. Preliminaries

Let C be a closed convex subset of H. Recall that the (nearest point) projection PC from
H onto C assigns to each x ∈ H the unique point PCx ∈ C satisfying the property

‖x− PCx‖ = min
y∈C

‖x− y‖.

The following lemma characterizes the projection PC .

Lemma 2.1. ([19]) Given x ∈ H and y ∈ C. Then PCx = y if and only if there holds the
inequality

〈x− y, y − z〉 ≥ 0 ∀z ∈ C.

Recall that a mapping A : H → H is called α-inverse strongly monotone, if there exists an
α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ H.

Let I be the identity mapping on H. It is well known that if A : H → H is an α-inverse strongly
monotone and 0 < λ ≤ 2α, then I − λA is a nonexpansive mapping.

A set-valued mapping M : H → 2H is called monotone if for all x, y ∈ H, f ∈ Mx, and
g ∈ My imply 〈x − y, f − g〉 ≥ 0. A monotone mapping M : H → 2H is maximal if its graph
G(M) := {(f, x) ∈ H ×H|f ∈ M(x)} of M is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping M is maximal if and only if for
(x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(M) implies f ∈ Mx.
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Let the set-valued mapping M : H → 2H be maximal monotone. It is worth mentioning
that the resolvent operator JM,λ associated with M is single-valued, nonexpansive, and 1-inverse
strongly monotone, (see, e.g., [4]), and that a solution of problem (1.2) is a fixed point of the
operator JM,λ(I − λA) for all λ > 0 (see, e.g., [10]). Therefore, a solution of problem (1.5) is
an element of common set of fixed points of the operators JMi,λ(I − λAi), i ∈ {1, . . . , N}, for
all λ > 0.

Lemma 2.2. ([18]) Let {xn} and {zn} be bounded sequences in a Banach space X and let
{βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn and lim supn→∞ βn < 1. Suppose

xn+1 = βnxn + (1− βn)zn

for all integers n ≥ 0 and

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖xn − zn‖ = 0.

Lemma 2.3. ([20]) Let {an} be a sequence of nonnegative real numbers satisfying the property:

an+1 ≤ (1− γn)an + γnβn, n ≥ 0

where {γn} is a sequence in (0,1) and {βn} is a sequence in R such that

(i)
∞∑

n=1
γn = +∞;

(ii) lim sup
n→∞

βn ≤ 0 or
∞∑

n=1
|γnβn| < +∞.

Then limn→∞ an = 0.

Lemma 2.4. (The Resolvent Identity) Let M be a maximal monotone operator. For λ > 0,
µ > 0 and x ∈ H,

JM,λx = JM,µ

(µ

λ
x +

(
1− µ

λ

)
JM,λx

)
.

Lemma 2.5. Let A be α-inverse-strongly-monotone and M be a maximal monotone operator.
For λ > 0, µ > 0 and x ∈ H,

‖JM,λ(I − λA)x− JM,µ(I − µA)x‖ ≤
∣∣∣1− µ

λ

∣∣∣ (‖JM,λ(I − λA)x‖+ ‖x‖) .

Proof. From Lemma 2.4, we have

‖JM,λ(I − λA)x− JM,µ(I − µA)x‖
= ‖JM,µ

(µ

λ
I +

(
1− µ

λ

)
JM,λ

)
(I − λA)x− JM,µ(I − µA)x‖

≤ ‖µ

λ
(I − λA)x +

(
1− µ

λ

)
JM,λ(I − λA)x− (I − µA)x‖

≤
∣∣∣1− µ

λ

∣∣∣ (‖JM,λ(I − λA)x‖+ ‖x‖) .

¤

Lemma 2.6. ([12]) Assume that A is a strongly positive linear bounded operator on a Hilbert
space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1− ργ̄.

Lemma 2.7. ([8]) Let C be a nonempty closed convex subset of H and F : C ×C → R satisfy
following conditions:

(A1) F (x, x) = 0, ∀x ∈ C;
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(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(A3) lim sup

t→0+
F (tz + (1− t)x, y) ≤ F (x, y), ∀x, y, z ∈ C;

(A4) for each x ∈ C, F (x, ·) is convex and lower semicontinuous.

For x ∈ C and r > 0, set Tr : H → C to be

Tr(x) =
{

z ∈ C : F (z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
.

Then Tr is well defined and the following hold:

1. Tr is single-valued;
2. Tr is firmly nonexpansive [9], i.e., for any x, y ∈ E,

‖Trx− Try‖2 ≤ 〈Trx− Try, x− y〉;
3. F (Tr) = EP (F );
4. EP (F ) is closed and convex.

By the proof of Lemma 5 in [6], we have following lemma.

Lemma 2.8. Let C be a nonempty closed convex subset of a Hilbert space H and F : C×C → R
be a bifunction. Let x ∈ C and r1, r2 ∈ (0,∞). Then

(2.1) ‖Tr1x− Tr2x‖ ≤
∣∣∣∣1−

r2

r1

∣∣∣∣ (‖Tr1x‖+ ‖x‖).

From the definition 2.6 given by Colao, Marino and Xu [7], we can give following definition.

Definition 2.9. Let C be a nonempty convex subset of a Hilbert space H. Let Ai : H → H,
i ∈ {1, . . . , N} be αi-inverse-strongly monotone mappings and Mi : H → 2H , i ∈ {1, . . . , N}
be maximal monotone mappings. Let t1, · · · , tN be real numbers such that 0 ≤ ti ≤ 1 and
λi ∈ (0, 2αi], i ∈ {1, . . . , N}. We define a mapping W of C into itself as follows:

(2.2)

U1 = t1J
1
λ1

(I − λ1A1) + (1− t1)I,

U2 = t2J
2
λ2

(I − λ2A2)U1 + (1− t2)I,

...

UN−1 = tN−1J
N−1
λN−1

(I − λN−1AN−1)UN−2 + (1− tN−1)I,

W = UN = tNJN
λN

(I − λNAN )UN−1 + (1− tN )I.

Such a mapping W is called the W -mapping generated by J1
λ1

(I − λ1A1), . . . , JN
λN

(I − λNAN )
and t1, . . . , tN .

Lemma 2.10. Let C be a nonempty convex set of a Hilbert space, Ai : H → H, i ∈ {1, 2, . . . , N}
be αi-inverse-strongly monotone mappings and Mi : H → 2H , i ∈ {1, 2, . . . , N} be maximal
monotone mappings. Let {tn,i}N

i=1 be sequences in [0, 1] such that tn,i → ti and {λi,n} be
sequences such that λi,n ∈ (0, 2αi] and λi,n → λi, λi ∈ (0, 2αi], (i = 1, . . . , N). Moreover for
every n ∈ N, let W be the W-mappings generated by {J i

λi
(I − λiAi)}N

i=1 and t1, . . . , tN and
Wn be the Wn-mappings generated by {J i

λi,n
(I −λi,nAi)}N

i=1 and tn,1, . . . , tn,N . Then for every
x ∈ C, it follows that

(2.3) lim
n→∞

‖Wnx−Wx‖ = 0.
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Proof. Let x ∈ C. For k ∈ {1, . . . , N}, Uk and Un,k be generated by J1
λ1

(I−λ1A1), . . . , JN
λN

(I−
λNAN ) and t1, . . . , tN and J1

λ1,n
(I − λ1,nA1), . . . , JN

λN,n
(I − λN,nAN ) and tn,1, . . . , tn,N respec-

tively, as in Definition 2.8. From Lemma 2.5, we have

‖Un,1x− U1x‖
= ‖tn,1J

1
λ1,n

(I − λ1,nA1)x + (1− tn,1)x− t1J
1
λ1

(I − λ1A1)x− (1− t1)x‖
= ‖tn,1(J1

λ1,n
(I − λ1,nA1)x− J1

λ1
(I − λ1A1)x) + (tn,1 − t1)(J1

λ1
(I − λ1A1)x− x)‖

≤ ‖J1
λ1,n

(I − λ1,nA1)x− J1
λ1

(I − λ1A1)x‖+ |tn,1 − t1|‖J1
λ1

(I − λ1A1)x− x‖

≤
∣∣∣∣1−

λ1,n

λ1

∣∣∣∣ (‖J1
λ1

(I − λ1A1)x‖+ ‖x‖) + |tn,1 − t1|‖J1
λ1

(I − λ1A1)x− x‖.

Let k ∈ {2, ..., N}, then

‖Un,kx− Ukx‖
= ‖tn,kJk

λk,n
(I − λk,nAk)Un,k−1x + (1− tn,k)x− tkJk

λk
(I − λkAk)Uk−1x

− (1− tk)x‖
= ‖tn,k

(
Jk

λk,n
(I − λk,nAk)Un,k−1x− Jk

λk,n
(I − λk,nAk)Uk−1x

)

+ tn,k

(
Jk

λk,n
(I − λk,nAk)Uk−1x− Jk

λk
(I − λkAk)Uk−1x

)

+ (tn,k − tk)
(
Jk

λk
(I − λkAk)Uk−1x− x

) ‖

≤ ‖Un,k−1x− Uk−1x‖+
∣∣∣∣1−

λk,n

λk

∣∣∣∣ (‖Jk
λk

(I − λkAk)Uk−1x‖+ ‖Uk−1x‖)

+ |tn,k − tk|‖Jk
λk

(I − λkAk)Uk−1x− x‖.
Hence,

‖Wnx−Wx‖ = ‖Un,Nx− UNx‖

≤
N∑

k=2

( ∣∣∣∣1−
λk,n

λk

∣∣∣∣ (‖Jk
λk

(I − λkAk)Uk−1x‖+ ‖Uk−1x‖)

+ |tn,k − tk|‖Jk
λk

(I − λkAk)Uk−1x− x‖
)

+
∣∣∣∣1−

λ1,n

λ1

∣∣∣∣ (‖J1
λ1

(I − λ1A1)x‖+ ‖x‖) + |tn,1 − t1|‖J1
λ1

(I − λ1A1)x− x‖.

Since for every k ∈ {1, . . . , N}, limn→∞ |tn,k − tk| = 0 and limn→∞ |λk,n − λk| = 0, the result
follows. ¤

Lemma 2.11. Let C be a nonempty closed convex set of a Hilbert space H. Let Ai : H → H,
i ∈ {1, . . . , N} be αi-inverse-strongly monotone mappings and Mi : H → 2H , i ∈ {1, . . . , N} be
maximal monotone mappings with

⋂N
i=1 I(Ai,Mi) 6= ∅. Assume λi ∈ (0, 2αi], i ∈ {1, . . . , N},

and {λi,n}N
i=1 be sequences such that λi,n ∈ (0, 2αi] and λi,n → λi, i ∈ {1, . . . , N},∀n ≥ 1. Let

t1, . . . , tN be real numbers such that 0 < ti < 1 for every i = 1, . . . , N − 1 and 0 < tN ≤ 1,
and {tn,i}N

i=1 be sequences in (0,1) and satisfy tn,i → ti. For every n ∈ N, let W be the W-
mappings generated by {J i

λi
(I−λiAi)}N

i=1 and t1, . . . , tN and Wn be the Wn-mappings generated
by {J i

λi,n
(I − λi,nAi)}N

i=1 and tn,1, . . . , tn,N . Then
⋂N

i=1 I(Ai,Mi) = F (W ) =
⋂∞

n=1 F (Wn).

Proof. Following Colao et al. [7] and using F (J i
λi

(I − λiAi)) = I(Ai,Mi), i ∈ {1, . . . , N}, we
have F (W ) =

⋂N
i=1 I(Ai,Mi).
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Next we show
⋂∞

n=1 F (Wn) =
⋂N

i=1 I(Ai,Mi). Take p ∈ ⋂N
i=1 I(Ai,Mi) arbitrarily, then

J i
λi,n

(I − λi,nAi)p = p, i ∈ {1, . . . , N} and n ≥ 1. From (1.6), it follows Wnp = p, ∀n ≥ 1

and consequently, p ∈ ⋂∞
n=1 F (Wn). So we have

⋂N
i=1 I(Ai,Mi) ⊆

⋂∞
n=1 F (Wn). On the other

hand, put p ∈ ⋂∞
n=1 F (Wn) and q ∈ ⋂N

i=1 I(Ai,Mi). Assume Un,0 = I, by (1.6), we get, for
k ∈ {1, . . . , N},

‖Wnp−Wnq‖ = ‖Un,Np− Un,Nq‖
= ‖[tn,NJN

λN,n
(I − λN,nAN )Un,N−1p + (1− tn,N )p]

− [tn,NJN
λN,n

(I − λN,nAN )Un,N−1q + (1− tn,N )q]‖
≤ tn,N‖JN

λN,n
(I − λN,nAN )Un,N−1p− JN

λN,n
(I − λN,nAN )Un,N−1q‖

+ (1− tn,N )‖p− q‖
≤ tn,N‖Un,N−1p− Un,N−1q‖+ (1− tn,N )‖p− q‖
≤ . . .

≤
N∏

i=k+1

tn,i‖Un,kp− Un,kq‖+

(
1−

N∏

i=k+1

tn,i

)
‖p− q‖

=
N∏

i=k+1

tn,i

∥∥[tn,kJk
λk,n

(I − λk,nAk)Un,k−1p + (1− tn,k)p]

− [tn,kJk
λk,n

(I − λk,nAk)Un,k−1q + (1− tn,k)q]
∥∥ +

(
1−

N∏

i=k+1

tn,i

)
‖p− q‖

=
N∏

i=k+1

tn,i

∥∥tn,k[Jk
λk,n

(I − λk,nAk)Un,k−1p− Jk
λk,n

(I − λk,nAk)Un,k−1q]

+ (1− tn,k)(p− q)‖+

(
1−

N∏

i=k+1

tn,i

)
‖p− q‖

≤
N∏

i=k

tn,i‖Jk
λk,n

(I − λk,nAk)Un,k−1p− Jk
λk,n

(I − λk,nAk)Un,k−1q‖

+

(
1−

N∏

i=k

tn,i

)
‖p− q‖

≤
N∏

i=k

tn,i‖Un,k−1p− Un,k−1q‖+

(
1−

N∏

i=k

tn,i

)
‖p− q‖

≤ ‖p− q‖.

From Lemma 2.10, we have, as n →∞.

‖Wp−Wq‖ ≤
N∏

i=k+1

tn,i

∥∥tn,k[Jk
λk,n

(I − λk,nAk)Un,k−1p− Jk
λk,n

(I − λk,nAk)Un,k−1q]

+ (1− tn,k)(p− q)‖+

(
1−

N∏

i=k+1

tn,i

)
‖p− q‖
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≤
N∏

i=k

tn,i‖Jk
λk,n

(I − λk,nAk)Un,k−1p− Jk
λk,n

(I − λk,nAk)Un,k−1q‖+

(
1−

N∏

i=k

tn,i

)
‖p− q‖

≤ ‖p− q‖.
Since

‖Wp−Wq‖ = ‖p− q‖
and 0 < tn,i < 1 for all i ∈ N, we have, for every k ∈ N,

‖tn,k[Jk
λk,n

(I − λk,nAk)Un,k−1p− Jk
λk,n

(I − λk,nAk)Un,k−1q] + (1− tn,k)(p− q)‖
= ‖Jk

λk,n
(I − λk,nAk)Un,k−1p− Jk

λk,n
(I − λk,nAk)Un,k−1q‖

= ‖p− q‖.

Since Hilbert space H is strictly convex and q ∈ ⋂N
i=1 I(Ai,Mi), we have

p− q = Jk
λk,n

(I − λk,nAk)Un,k−1p− Jk
λk,n

(I − λk,nAk)Un,k−1q

= Jk
λk,n

(I − λk,nAk)Un,k−1p− q

and hence
p = Jk

λk,n
(I − λk,nAk)Un,k−1p, k = 1, . . . , N.

On the other hand, from

Un,kp = tn,kJk
λk,n

(I − λk,nAk)Un,k−1p + (1− tn,k)p = p, ∀n ∈ N, k = 1, . . . , N,

we have
Wp = lim

n→∞
Wnp = lim

n→∞
Un,Np = p,

which implies p ∈ F (W ). Hence we obtain
⋂∞

n=1 F (Wn) ⊆ F (W ) =
⋂N

i=1 I(Ai,Mi) and then⋂∞
n=1 F (Wn) =

⋂N
i=1 I(Ai,Mi). Thus the proof is completed.

¤

Lemma 2.12. For all x, y ∈ H, there holds the inequality

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.

3. Main result

Theorem 3.1. Let H be a real Hilbert space, F be a bifunction from C × C → R satisfying
(A1)− (A4) and {Sn} be a sequence of nonexpansive mappings on H. For i = {1, . . . , N}, let
Ai : H → H be αi-inverse-strongly monotone mappings, Mi : H → 2H be maximal monotone
mappings such that Ω := (

⋂N
k=1 I(Ak,Mk)) ∩EP (F ) ∩ (

⋂∞
i=1 F (Si)). Let f be a contraction of

H into itself with a constant α and B be a strongly bounded linear operator on H with coefficient
γ̄ > 0 and 0 < γ < γ̄/α. Moreover, let {εn} be a sequence in (0, 1), {tn,i}N

i=1 sequences in [a, b]
with 0 < a ≤ b < 1, {rn} a sequence in (0,∞), and {λi,n}N

i=1 sequences such that λi,n ∈ (0, 2αi].
Assume

(B1) limn εn = 0;
(B2)

∑∞
n=1 εn = ∞;

(C1) lim infn rn > 0;
(C2) limn |1− rn+1

rn
| = 0;

(D1) limn |1− λj,n+1
λj,n

| = 0, for every j ∈ {1, . . . , N};
(E1) limn |tn,j − tn−1,j | = 0, for every j ∈ {1, . . . , N}.
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Let {xn} and {un} be sequences generated by x1 ∈ H and

(3.1)
F (un, y) +

1
rn
〈y − un, un − xn〉 ≥ 0, y ∈ H,

xn+1 = εnγf(xn) + βxn + ((1− β)I − εnB)SnWnun,

for all n ∈ N. Suppose that
∑∞

n=1 sup {‖Sn+1z − Snz‖, z ∈ K} < ∞ for any bounded subset
K of H. Let S be a mapping of H into itself defined by Sx = limn→∞Snx, for all x ∈ H

and suppose that F (S) =
⋂∞

n=1 F (Sn). Then, {xn}, {un} and {Wnun} converge strongly to z,
where z = PΩ(I −B + γf)(z) is a unique solution of the variational inequalities (1.7).

Proof. Since B is a strongly positive bounded linear operator with coefficient γ̄, B
1−β is a strongly

positive bounded linear operator with coefficient γ̄
1−β . By εn → 0, we may assume, with no loss

of generality, that εn ≤ (1− β)‖B‖−1. From Lemma 2.6, we know that

(3.2) ‖(1− β)I − εnB‖ = (1− β)‖I − εnB

1− β
‖ ≤ (1− β)(1− εnγ̄

1− β
) = 1− β − εnγ̄.

Step 1. The sequence {xn} is bounded.
Put p ∈ Ω. Then, from un = Trn

xn, we have

(3.3) ‖un − p‖ = ‖Trn
xn − Trn

p‖ ≤ ‖xn − p‖.

From Lemma 2.11, it follows Wnp = p. Due to nonexpansivity of Wn and (3.3), we have

(3.4) ‖Wnun − p‖ ≤ ‖un − p‖ ≤ ‖xn − p‖.

Combining (3.1), (3.2) and (3.4), we get

‖xn+1 − p‖ = ‖εn(γf(xn)−Bp) + β(xn − p) + ((1− β)I − εnB)(SnWnun − p)‖
≤ εn(γ‖f(xn)− f(p)‖+ ‖γf(p)−Bp‖) + β‖xn − p‖

+ (1− β − εnγ̄)‖SnWnun − p)‖

≤ (1− εn(γ̄ − αγ))‖xn − p‖+ εn(γ̄ − αγ)
‖γf(p)−Bp‖

γ̄ − αγ

which implies that

‖xn − p‖ ≤ max
{
‖x1 − p‖, ‖γf(p)−Bp‖

γ̄ − αγ

}
, ∀n ≥ 1.

Hence {xn} is bounded and therefore {un}, {f(xn)} and {SnWnun} are also bounded.
Step 2. Let {wn} be a bounded sequence in H. Then

(3.5) lim
n→∞

‖Sn+1Wn+1wn − SnWnwn‖ = 0.

Let j ∈ {0, . . . , N − 2} and set

M : = sup
n∈N

{
‖wn‖+ ‖J1

λ1,n
(I − λ1,nA1)wn‖

+
N∑

j=2

(
‖Jj

λj,n
(I − λj,nAj)Un,j−1wn‖+ ‖Un,j−1wn‖

)}
< ∞.
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It follows from (1.6) and Lemma 2.5 that

‖Un+1,N−jwn − Un,N−jwn‖
= ‖tn+1,N−jJ

N−j
λN−j,n+1

(I − λN−j,n+1AN−j)Un+1,N−j−1wn + (1− tn+1,N−j)wn

− tn,N−jJ
N−j
λN−j,n

(I − λN−j,nAN−j)Un,N−j−1wn − (1− tn,N−j)wn‖
≤ tn+1,N−j‖JN−j

λN−j,n+1
(I − λN−j,n+1AN−j)Un+1,N−j−1wn

− JN−j
λN−j,n+1

(I − λN−j,n+1AN−j)Un,N−j−1wn‖
+ tn+1,N−j‖JN−j

λN−j,n+1
(I − λN−j,n+1AN−j)Un,N−j−1wn

− JN−j
λN−j,n

(I − λN−j,nAN−j)Un,N−j−1wn‖
+ |tn+1,N−j − tn,N−j |‖JN−j

λN−j,n
(I − λN−j,nAN−j)Un,N−j−1wn − wn‖

≤ ‖Un+1,N−j−1wn − Un,N−j−1wn‖+
∣∣∣∣1−

λN−j,n+1

λN−j,n

∣∣∣∣
(
‖JN−j

λN−j,n
(I − λN−j,nAN−j)Un,N−j−1wn‖+ ‖Un,N−j−1wn‖

)

+ |tn+1,N−j − tn,N−j |(‖JN−j
λN−j,n

(I − λN−j,nAN−j)Un,N−j−1wn‖+ ‖wn‖)

≤ ‖Un+1,N−j−1wn − Un,N−j−1wn‖+ M

(∣∣∣∣1−
λN−j,n+1

λN−j,n

∣∣∣∣ + |tn+1,N−j − tn,N−j |
)

.

Thus, repeatedly using the above recursive inequalities, we deduce

(3.6)

‖Wn+1wn −Wnwn‖ = ‖Un+1,Nwn − Un,Nwn‖

≤ M

N∑

j=2

(∣∣∣∣1−
λj,n+1

λj,n

∣∣∣∣ + |tn+1,j − tn,j |
)

+
∣∣∣∣1−

λ1,n+1

λ1,n

∣∣∣∣

(‖J1
λ1,n

(I − λ1,nA1)wn‖+ ‖wn‖) + |tn+1,1 − tn,1|(‖J1
λ1,n

(I − λ1,nA1)wn‖+ ‖wn‖)

≤ M

N∑

j=1

(∣∣∣∣1−
λj,n+1

λj,n

∣∣∣∣ + |tn+1,j − tn,j |
)
→ 0,

by condition (D1), (E1). From (3.6) and property of Sn, it follows that

‖Sn+1Wn+1wn − SnWnwn‖ ≤ ‖Sn+1Wn+1wn − SnWn+1wn‖+ ‖SnWn+1wn − SnWnwn‖
≤ ‖Sn+1Wn+1wn − SnWn+1wn‖+ ‖Wn+1wn −Wnwn‖
→ 0,

and Step 2 is proven.
Step 3. limn→∞ ‖xn+1 − xn‖ = 0.

From Lemma 2.8, we have

(3.7)

‖un+1 − un‖ = ‖Trn+1xn+1 − Trn
xn‖

≤ ‖Trn+1xn+1 − Trn+1xn‖+ ‖Trn+1xn − Trn
xn‖

≤ ‖xn+1 − xn‖+
∣∣1− rn+1

rn

∣∣(‖Trnxn‖+ ‖xn‖).
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Rewrite the iterative process (3.1) as follows:

xn+1 = εnγf(xn) + βxn + (1− βI − εnB)SnWnun

= βxn + (1− β)
εnγf(xn) + (1− βI − εnB)SnWnun

1− β

= βxn + (1− β)yn

where

(3.8) yn =
εnγf(xn) + (1− βI − εnB)SnWnun

1− β
.

Since {xn} is bounded, we have, for some big enough constant M > 0,

(3.9)

‖yn+1 − yn‖ =
∥∥∥εn+1γf(xn+1)− γεnf(xn)

1− β
+ (Sn+1Wn+1un+1 − SnWnun)

− εn+1BSn+1Wn+1un+1 − εnBSnWnun

1− β

∥∥∥

≤ γ

1− β
(εn+1‖f(xn+1)‖+ εn‖f(xn)‖) + ‖Sn+1Wn+1un+1 − SnWnun‖

+
1

1− β
(εn+1‖BSn+1Wn+1un+1‖+ εn‖BSnWnun‖)

≤ ‖Sn+1Wn+1un+1 − Sn+1Wn+1un‖+ ‖Sn+1Wn+1un − SnWnun‖+ M(εn+1 + εn)

≤ ‖un+1 − un‖+ ‖Sn+1Wn+1un − SnWnun‖+ M(εn+1 + εn)

≤ ‖xn+1 − xn‖+
∣∣1− rn+1

rn

∣∣(‖Trn
xn‖+ ‖xn‖) + ‖Sn+1Wn+1un − SnWnun‖

+ M(εn+1 + εn).

By conditions on {εn} and {rn}, and Steps 2, we immediately conclude from (3.9)

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖)

≤ lim sup
n→∞

(∣∣1− rn+1

rn

∣∣(‖Trn
xn‖+ ‖xn‖) + ‖Sn+1Wn+1un − SnWnun‖+ M(εn+1 + εn)

)

= 0.

By Lemma 2.2, we obtain

lim
n→∞

‖xn − yn‖ = 0,

which implies

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(1− β)‖xn − yn‖ = 0.

Step 4. limn→∞ ‖xn − SnWnun‖ = 0.

We have

‖xn − SnWnun‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − SnWnun‖
= ‖xn − xn+1‖+ ‖εn(γf(xn)−BSnWnun) + β(xn − SnWnun)‖
≤ ‖xn − xn+1‖+ εn‖γf(xn)−BSnWnun‖+ β‖xn − SnWnun‖.

It follows from Step 3 and condition (B1) that

‖xn − SnWnun‖ ≤ 1
1− β

(‖xn − xn+1‖+ εn‖γf(xn)−BSnWnun‖) → 0.

Step 5. limn→∞ ‖xn − un‖ = 0.
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Let v ∈ Ω. Since Trn is firmly nonexpansive, we obtain

‖v − Trn
xn‖2 = ‖Trn

v − Trn
xn‖2

≤ 〈Trn
xn − Trn

v, xn − v〉 = 〈Trn
xn − v, xn − v〉

=
1
2

(‖Trnxn − v‖2 + ‖xn − v‖2 − ‖xn − Trnxn‖2
)
,

which implies

(3.10) ‖Trnxn − v‖2 ≤ ‖xn − v‖2 − ‖xn − Trnxn‖2.
Set yn = γf(xn)−BSnWnTrn

xn and let λ > 0 be a constant such that

λ > sup
n,k

{‖yn‖, ‖xk − v‖} .

Using Lemma 2.12 and noting that ‖ · ‖2 is convex, we derive, using (3.10)

‖xn+1 − v‖2 = ‖(1− β)(SnWnTrn
xn − v) + β(xn − v) + εn(γf(xn)−BSnWnTrn

xn)‖2

≤ ‖(1− β)(SnWnTrn
xn − v) + β(xn − v)‖2 + 2εn〈yn, xn+1 − v〉

≤ (1− β)‖SnWnTrn
xn − v‖2 + β‖xn − v‖2 + 2λ2εn

≤ (1− β)‖Trn
xn − v‖2 + β‖xn − v‖2 + 2λ2εn

≤ (1− β)(‖xn − v‖2 − ‖xn − Trn
xn‖2) + β‖xn − v‖2 + 2λ2εn

= ‖xn − v‖2 − (1− β)‖xn − Trnxn‖2 + 2λ2εn.

It follows that

‖xn − Trn
xn‖2 ≤ 1

1− β

(‖xn − v‖2 − ‖xn+1 − v‖2 + 2λ2εn

)

≤ 1
1− β

(‖xn − xn+1‖(‖xn − v‖+ ‖xn+1 − v‖) + 2λ2εn

)

→ 0,

by Step 3 and condition (B1). From un = Trn
xn, it follows ‖xn − un‖ → 0.

Step 6. The weak ω-limit set of {xn}, ω(xn), is a subset of Ω.
Let z ∈ ω(xn) and {xnm} be a subsequence of {xn} weakly converging to z. Noticing Step

5, we have unm
⇀ z. We will show that z ∈ Ω. By (A2), we have

1
rn
〈y − un, un − xn〉 ≥ F (y, un), y ∈ C.

In particular,

(3.11)
〈

y − unm ,
unm

− xnm

rnm

〉
≥ F (y, unm).

Step 5 and condition (C1) imply (unm
− xnm

)/rnm
→ 0 in norm. By condition (A4), F (y, ·) is

lower semicontinuous and convex, and thus weakly semicontinuous. Therefore, letting m →∞
in (3.11) yields

F (y, z) ≤ lim
m→∞

F (y, um) ≤ 0,

for all y ∈ H. Replacing y with yt := ty + (1− t)z with t ∈ (0, 1) and using (A1) and (A4), we
obtain

0 = F (yt, yt) ≤ tF (yt, y) + (1− t)F (yt, z) ≤ tF (yt, y).

Hence F (ty + (1− t)z, y) ≥ 0, for all t ∈ (0, 1) and y ∈ H. Letting t → 0+ and using (A3), we
obtain

F (z, y) ≥ 0,
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for all y ∈ H. Therefore z ∈ EP (F ).
Next, we show that z ∈

(⋂N
n=1 I(An,Mn)

)
∩(

⋂∞
n=1 F (Sn)) . Assume that z /∈

(⋂N
n=1 I(An,Mn)

)
∩

(
⋂∞

n=1 F (Sn)), by Lemma 2.11, then z 6= SWz. Since Step 4 and Step 5, and using Opials prop-
erty of a Hilbert space, we have

lim inf
m

‖xnm
− z‖ < lim inf

m
‖xnm

− SWz‖
≤ lim inf

m

(‖xnm
− Snm

Wnm
unm

‖+ ‖Snm
Wnm

unm
− Snm

Wnm
xnm

‖
+‖Snm

Wnm
xnm

− Snm
Wnm

z‖+ ‖Snm
Wnm

z − SWnm
z‖

+‖SWnm
z − SWz‖)

≤ lim inf
m

(‖xnm
− Snm

Wnm
unm

‖+ ‖unm
− xnm

‖
+‖xnm

− z‖+ ‖Snm
Wnm

z − SWnm
z‖+ ‖Wnm

z −Wz‖)

≤ lim inf
m

‖xnm
− z‖.

This is a contradiction. Therefore, z must belong to
(⋂N

n=1 I(An,Mn)
)
∩ (

⋂∞
n=1 F (Sn)) . Proof

is completed.

Step 7. Let x∗ be the unique solution of the variational inequality (1.7). That is,

(3.12) 〈(B − γf)x∗, x− x∗〉 ≥ 0, x ∈ Ω.

Then

(3.13) lim sup
n

〈(γf −B)x∗, xn − x∗〉 ≤ 0, x ∈ Ω.

Let {xnk
} be a subsequence of {xn} such that

(3.14) lim
k
〈(γf −B)x∗, xnk

− x∗〉 = lim sup
n

〈(γf −B)x∗, xn − x∗〉.

Without loss of generality, we can assume that {xnk
} weakly converges to some z in C. By

Step 6, z ∈ Ω. Thus combining (3.14) and (3.12), we get

lim sup
n

〈(γf −B)x∗, xn − x∗〉 = 〈(γf −B)x∗, z − x∗〉 ≤ 0

as required.
Step 8. The sequences {xn}, {un} and {Wnun} converge strongly to x∗.
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By the definition (3.1) of {xn}, and using Lemma 2.6 and Lemma 2.12, we have

‖xn+1 − x∗‖2 = ‖[((1− β)I − εnB)(SnWnxn − x∗) + β(xn − x∗)] + εn(γf(xn)−Bx∗)‖2
≤ ‖((1− β)I − εnB)(SnWnxn − x∗) + β(xn − x∗)‖2

+2εn〈γf(xn)−Bx∗, xn+1 − x∗〉
= ‖(1− β)

(1− β)I − εnB

1− β
(SnWnxn − x∗) + β(xn − x∗)‖2

+2εnγ〈f(xn)− f(x∗), xn+1 − x∗〉+ 2εn〈γf(x∗)−Bx∗, xn+1 − x∗〉

≤ ‖(1− β)I − εnB‖2
1− β

‖SnWnxn − x∗‖2 + β‖xn − x∗‖2

+εnγα(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + 2εn〈γf(x∗)−Bx∗, xn+1 − x∗〉

≤
(

((1− β)− γ̄εn)2

1− β
+ β + εnγα

)
‖xn − x∗‖2 + εnγα‖xn+1 − x∗‖2

+2εn〈γf(x∗)−Bx∗, xn+1 − x∗〉.

It follows that

‖xn+1 − x∗‖2 ≤
(

1− 2(γ̄ − αγ)εn

1− αγεn

)
‖xn − x∗‖2

+
εn

1− αγεn

(
2〈γf(x∗)−Ax∗, xn+1 − x∗〉+

γ̄2εn

1− β
‖xn − x∗‖2

)
.

Now, from conditions (B1) and (B2), Step 7 and Lemma 2.3, we get ‖xn − x∗‖ → 0. Namely,
xn → x∗ in norm. Finally, noticing ‖un − x∗‖ ≤ ‖xn − x∗‖ and ‖Wnun − x∗‖ ≤ ‖xn − x∗‖, we
also conclude that un → x∗ and Wnun → x∗ in norm.
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