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Abstract. To solve a class of variational inequalities(VI) with linear equality constraint,

this paper presents two new descent methods to improve the decomposition method proposed

by Gabay and Mercier[4,5] in the following senses: the sub-VI in the improved decomposition

methods is strongly monotone; the iterate generated by the original decomposition method

is utilized to generate descent direction, and the new iterate is generated along the descent

direction. Under mild conditions, the global convergence of the improved methods is proved.

Preliminary numerical experiments illustrate that the improved methods are efficient.
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1 Introduction

The variational inequalities, denoted by VI(f, S), is to find a vector x∗ ∈ S, such that

(x− x∗)⊤f(x∗) ≥ 0, ∀x ∈ S, (1)

where S is a nonempty, closed convex subset of Rn, f(·) is a continuous mapping from S ⊂ Rn to

itself. VI(f, S) reduces to nonlinear complementarity problems when S is nonnegative orthant Rn
+ and

nonlinear equations when S is the Euclidean space Rn. Variational inequality problems have important

applications in many fields such as elasticity, optimization, economics, transportation and structural

analysis, and various numerical methods have been studied by many researchers.

In this paper, we are concerned with the variational inequality problem that S has the following

structure

S = {x ∈ Rn|Ax = b, x ∈ X}, (2)
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where A ∈ Rm×n, b ∈ Rm and X is a simple closed convex subset of Rn. This problem has several impor-

tant applications in many fields, such as the capacitated transportation problem[1], the capacitated traffic

assignment problem[2] and the packet routing in telecommunication with path and flow restrictions[3].

By appending a Lagrangian multiplier vector y ∈ Rm to the linear equality constraint Ax = b, an

equivalent form of VI(f, S) can be expressed as follows, denoted by VI(F,U): Find a vector u∗ ∈ U , such
that

(u− u∗)⊤F (u∗) ≥ 0 ∀u ∈ U , (3)

where

u =

 x

y

 , F (u) =

 f(x)−A⊤y

Ax− b

 ,U = X ×Rm.

For solving VI(F,U) problem, Gabay[4] and Gabay and Mercier[5] proposed the following decomposi-

tion method. In their method, the new iterate ũk = (x̃k, ỹk) ∈ X ×Rm is generated from a given vector

uk = (xk, yk) ∈ X ×Rm via the following procedure:

Given (xk, yk) ∈ X ×Rm, find x̃k ∈ X , such that

(x′ − x̃k)⊤{f(x̃k)−A⊤[yk − β(Ax̃k − b)]} ≥ 0, ∀x′ ∈ X , (4)

then update yk via

ỹk = yk − β(Ax̃k − b).

Here β > 0 is a given penalty parameter for the linear constraint Ax = b.

Note that the involved auxiliary VI(4) may not be well-conditioned, without strongly monotone

assumption on f . Motivated by proximal-based alternating direction method[9,10], in this paper, the

new iterate is generated via:

(x′ − x̃k)⊤{f(x̃k)−A⊤[yk −H(Axk − b)] +R(x̃k − xk)} ≥ 0, ∀x′ ∈ X , (5)

and

ỹk = yk −H(Ax̃k − b), (6)

where the symmetric positive definite matrix R ∈ Rn×n is the proximal parameter, and H ∈ Rm×m is

a given symmetric positive definite matrix that can be regarded as the penalty parameter for the linear

constraint Ax = b. Compared with the original monotone VI(f, S) (1)-(2), (5) is strongly monotone VI

with lower dimension.

Of course, if we set uk+1 = ũk, a new decomposition method is generated. However, are there other

kind of uk+1 be more beneficial for the next iteration? To enhance the efficiency of the iterative method

generated by (5)-(6), motivated by Tao’s idea[8], this paper updates the new iterate by

uk+1
I (α) = PU [u

k − αd1(u
k, ũk)], (7)
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and

uk+1
II (α) = PU [u

k − αd2(u
k, ũk)], (8)

where

d1(u
k, ũk) =

 R(xk − x̃k)

H−1(yk − ỹk)

 , (9)

and

d2(u
k, ũk) = F (ũk) +

 A⊤HA(xk − x̃k)

0

 . (10)

In the following, the method generated by (5)(6)(7)(9) is referred to as IDM-I, and the method generated

by (5)(6)(8)(10) is referred to as IDM-II.

The rest of this paper is organized as follows. In the next section, we summarize some basic concepts

we will use in the following nanlysis. In Section 3, we describe the IDM-I and IDM-II in details, and

their global convergence is also analyzed. We report some preliminary computational results in Section

4 and some conclusions are given in Section 5.

2 Preliminaries

In this section, we summarize some definitions and related properties which will be used in the following

discussions. The projection of a point x ∈ Rn onto the closed convex set K, denoted by PK[x], is defined

as the unique solution of the problem

min ∥x− y∥, subject to y ∈ K.

A basic property of the projection operator PK[·] is

(x− PK[x])
⊤(z − PK[x]) ≤ 0, ∀x ∈ Rn, z ∈ K. (11)

It follows from (11) that

∥PK[x]− PK[y]∥2 ≤ ∥x− y∥2 − ∥PK[x]− x+ y − PK[y]∥2, ∀x, y ∈ Rn, (12)

and

∥PK [x]− PK [y]∥ ≤ ∥x− y∥, ∀x, y ∈ Rn. (13)

For any β > 0, it is well-known[6] that the problem VI(F,U) is equivalent to the projection equation

u = PU [u− βF (u)].
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Let

e(u, β) := u− PU [u− βF (u)], (14)

denote the residual error of the projection equation, then solving VI(F,U) is equivalent to finding zero

points of the residual function e(u, β).

Let G ∈ Rn×n be a symmetric positive definite, then the G-norm of a vector z ∈ Rn is denoted by

∥z∥G, i.e., ∥z∥2G = z⊤Gz.

Definition. Let g be a mapping from Rl into itself and Ω ⊂ Rl. Then,

a) g is said to be monotone if

(s− t)⊤(g(s)− g(t)) ≥ 0, ∀s, t ∈ Ω.

b) g is strongly monotone if there exists a constant µ > 0 such that

(s− t)⊤(g(s)− g(t)) ≥ µ∥s− t∥2, ∀s, t ∈ Ω.

We make the following standard assumptions throughout this paper:

Assumptions.

• f is a monotone mapping on X .

• The solution set of problem VI(F,U), denoted by U∗, is nonempty.

• X is a simple closed convex set. That is, the projection onto the set is simple to carry out(e.g., X
is the nonnegative orthant Rn

+, or more generally, a box).

Note that F is monotone on U whenever f is monotone on X . In fact, for any u1 = (x1, y1), u2 =

(x2, y2) ∈ U , we have

(u1 − u2)
⊤(F (u1)− F (u2))

= (x1 − x2)
⊤(f(x1)−A⊤y1 − f(x2) +A⊤y2) + (y1 − y2)

⊤(Ax1 −Ax2)

= (x1 − x2)
⊤(f(x1)− f(x2)) ≥ 0.

Because f is monotone and X is closed convex, the solution set U∗ of VI(F,U) is closed and convex.

3 Algorithm and global convergence

In this section, we present two new decomposition methods for solving VI(F,U) and show their global

convergence. For convenience, we denote

M(n+m)×(n+m) =

 R 0

0 H−1

 . (15)
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Since R and H is positive definite, we have that the matrix M defined in (15) is also positive definite.

Note that the search direction d1(u
k, ũk) can be rewritten as M(uk − ũk).

The Proposed IDM-I

Step 0. Given ε > 0, choose u0 = (x0, y0)⊤ ∈ U , γ ∈ [1, 2) and set k:=0.

Step 1. Produced ũk = (x̃k, ỹk) by (5)-(6).

Step 2. If ∥uk − ũk∥ < ε, then stop; otherwise, go to Step 3.

Step 3. Update the next iterate uk+1 = (xk+1, yk+1) via

uk+1 = PU [u
k − γα1

kd1(u
k, ũk)], (16)

where

α1
k =

Φ(uk, ũk)

∥d1(uk, ũk)∥2
, (17)

and

Φ(uk, ũk) = ∥uk − ũk∥2M + (yk − ỹk)⊤A(xk − x̃k). (18)

Set k := k + 1 and goto Step 1.

The Proposed IDM-II

Step 0. Given ε > 0, choose u0 = (x0, y0)⊤ ∈ U , γ ∈ [1, 2), and choose R such that R − A⊤A/2 is

positive definite, H such that H−1 − E/2 is positive definite,and set k:=0.

Step 1. Produced ũk = (x̃k, ỹk) by (5)-(6).

Step 2. If ∥uk − ũk∥ < ε, then stop; otherwise, go to Step 3.

Step 3. Update the next iterate uk+1 = (xk+1, yk+1) via

uk+1 = PU [u
k − γα2

kd2(u
k, ũk)], (19)

where

α2
k =

Φ(uk, ũk)

∥uk − ũk∥2M
. (20)

Set k := k + 1 and goto Step 1.

Note that ∥uk − ũk∥ = 0 if and only if xk = x̃k, yk = ỹk. Then, from (5)-(6), uk = ũk implies that

uk is actually a solution, which means the iteration will be terminated. Thus, the stopping condition in

Step 2 is reasonable.

Remark 3.1. The variational inequality (5)-(6) is equivalent to the following variational inequality: x′ − x̃k

y′ − ỹk

⊤

{F (ũk) +

 A⊤HA(xk − x̃k)

0

−M(uk − ũk)} ≥ 0, ∀u′ ∈ U . (21)

From the definition of d1(u
k, ũk) and d2(u

k, ũk), inequality (21) can be written as

(u′ − ũk)⊤{d2(uk, ũk)− d1(u
k, ũk)} ≥ 0, ∀u′ ∈ U . (22)
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The following lemma shows that Φ(uk, ũk) is lower bounded away from zero whenever uk ̸= ũk.

Lemma 3.1. Let ũk = (x̃k, ỹk) be generated by (4)-(5). Then, there exists a constant λ2 > 0, such that

Φ(uk, ũk) ≥ λ2∥uk − ũk∥2M , (23)

Proof. From the definition (18), we have

Φ(uk, ũk)

= ∥xk − x̃k∥2R + ∥ỹk − yk∥2H−1 + (yk − ỹk)⊤A(xk − x̃k)

≥ ∥xk − x̃k∥2R + ∥ỹk − yk∥2H−1 −
1

2
(∥A(xk − x̃k)∥2 + ∥ỹk − yk∥2)

= (xk − x̃k)⊤(R− 1

2
A⊤A)(xk − x̃k) + (yk − ỹk)⊤(H−1 − 1

2
E)(yk − ỹk)

= λ2∥uk − ũk∥2M ,

where the first inequality follows from the Cauchy-Schwartz Inequality and the last inequality follows

from the equivalence of the matrix norm. This completes the proof.

Remark 3.2. Since all vector norms are equivalent, from the definition of d1(u
k, ũk) and (23), there

exists a constant λ1 > 0, such that

α1
k ≥ λ1, ∀k ≥ 0. (24)

Remark 3.3. From (20) and (23), it follows that

α2
k ≥ λ2, ∀k ≥ 0. (25)

Now, we are ready to prove that −d1(u
k, ũk) defined in (9) and −d2(u

k, ũk) defined in (10) are two

descent directions of ∥uk − u∗∥2 at u = uk.

Lemma 3.2. Let ũk = (x̃k, ỹk) be generated by (4)-(5). Then, for any u∗ = (x∗, y∗) ∈ U∗, we have

(uk − u∗)⊤d1(u
k, ũk) ≥ Φ(uk, ũk). (26)

Proof. From u∗ = (x∗, y∗) ∈ U∗ and x̃k ∈ X , we have

(x̃k − x∗)⊤(f(x∗)−A⊤y∗) ≥ 0, (27)

and

Ax∗ = b. (28)

On the other hand, from (5) (6) and x∗ ∈ X , it follows that

(x∗ − x̃k)⊤{f(x̃k)−A⊤ỹk +A⊤HA(xk − x̃k) +R(x̃k − xk)} ≥ 0, (29)

Adding (27) and (29), and using (28) and the monotonicity of f , we get
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(Ax̃k − b)⊤(ỹk − y∗) + (x̃k − x∗)⊤R(xk − x̃k) ≥ (yk − ỹk)⊤A(xk − x̃k).

From (5) again, we obtain

(ỹk − y∗)⊤H−1(yk − ỹk) + (x̃k − x∗)⊤R(xk − x̃k) ≥ (yk − ỹk)⊤A(xk − x̃k). (30)

Therefore, we have

(uk − u∗)⊤d1(u
k, ũk)

= (uk − ũk + ũk − u∗)⊤M(uk − ũk)

≥ ∥uk − ũk∥2M + (yk − ỹk)⊤A(xk − x̃k)(using (30))

= Φ(uk, ũk).

The proof is completed.

Lemma 3.3. Let ũk = (x̃k, ỹk) be generated by (4)-(5). Then, for any u∗ = (x∗, y∗) ∈ U∗, we have

(uk − u∗)⊤d2(u
k, ũk) ≥ Φ(uk, ũk). (31)

Proof. From the monotonicity of F and u∗ ∈ U∗, we have

(ũk − u∗)⊤F (ũk) ≥ (ũk − u∗)⊤F (u∗) ≥ 0. (32)

From (22) and uk ∈ U , we have

(uk − ũk)⊤{d2(uk, ũk)− d1(u
k, ũk)} ≥ 0. (33)

Therefore, we have

(uk − u∗)⊤d2(u
k, ũk)

= (uk − ũk)⊤d2(u
k, ũk) + (ũk − u∗)⊤F (ũk)

+(ũk − u∗)⊤

 A⊤HA(xk − x̃k)

0


≥ (uk − ũk)⊤d2(u

k, ũk) + 0 + (yk − ỹk)⊤A(xk − x̃k)(using (32))

≥ (uk − ũk)⊤d1(u
k, ũk) + (yk − ỹk)⊤A(xk − x̃k)(using (33))

≥ ∥uk − ũk∥2M + (yk − ỹk)⊤A(xk − x̃k)(using (26))

= Φ(uk, ũk).

(34)

The proof is completed.

Note that, from the first inequality of (34), we have

(ũk − u∗)⊤d2(u
k, ũk) ≥ (yk − ỹk)⊤A(xk − x̃k). (35)
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In the following, we analyze why α1
k defined by (17) is the optimal step length along the descent

direction −d1(u
k, ũk) and why α2

k defined by (20) is the optimal step length along the descent direction

−d2(u
k, ũk). For this purpose, we denote the new iterate with the step length α along the two descent

directions by

uk+1
I (α) = PU [u

k − αd1(u
k, ũk)],

and

uk+1
II (α) = PU [u

k − αd2(u
k, ũk)],

respectively. Then

Θk
I (α) := ∥uk − u∗∥2 − ∥uk+1

I (α)− u∗∥2 (36)

measures the progress of the iterate uk+1
I (α), and

Θk
II(α) := ∥uk − u∗∥2 − ∥uk+1

II (α)− u∗∥2 (37)

measures the progress of the iterate uk+1
II (α). Since u∗ is unknown, we can not maximize Θk

I (α) (or

Θk
II(α)) directly. In the following, we will provide a lower bound function of Θk

I (α) (or Θk
II(α)) which

does not contain u∗.

Theorem 3.1. Let u∗ be an arbitrary point in U∗. For given uk, let ũk be generated by (4)-(5), Φ(uk, ũk)

be defined by (15) and Θk
I (α) be defined by (36). Then, we have

Θk
I (α) ≥ Υk

I (α) + ∥uk − αd1(u
k, ũk)− uk+1

I (α)∥2, (38)

where

Υk
I (α) = 2αΦ(uk, ũk)− α2∥d1(uk, ũk)∥2.

Proof. Since u∗ ∈ U∗, it follows from (12) that

∥uk+1
I (α)− u∗∥2 ≤ ∥uk − αd1(u

k, ũk)− u∗∥2 − ∥uk − αd1(u
k, ũk)− uk+1

I (α)∥2.

Therefore, from (36), we have

Θk
I (α)

≥ ∥uk − u∗∥2 − ∥uk − αd1(u
k, ũk)− u∗∥2 + ∥uk − αd1(u

k, ũk)− uk+1
I (α)∥2

= 2α(uk − u∗)⊤d1(u
k, ũk)− α2∥d1(uk, ũk)∥2

+∥uk − αd1(u
k, ũk)− uk+1

I (α)∥2

≥ 2αΦ(uk, ũk)− α2∥d1(uk, ũk)∥2 + ∥uk − αd1(u
k, ũk)− uk+1

I (α)∥2.

This completes the proof.
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Theorem 3.1 tells us that Υk
I (α) is a lower bound of Θk

I (α) for any α. Note that Υk
I (α) is a quadratic

function of α, and it reaches its maximus at α1
k.

Theorem 3.2. Let u∗ be an arbitrary point in U∗. For given uk, let ũk be generated by (4)-(5), Φ(uk, ũk)

be defined by (15) and Θk
II(α) be defined by (37). Then, we have

Θk
II(α) ≥ Υk

II(α) + ∥uk − αM(uk − ũk)− uk+1
II (α)∥2, (39)

where

Υk
II(α) = 2αΦ(uk, ũk)− α2∥uk − ũk∥2M .

Proof. Note that d2(u
k, ũk) can be written as

d2(u
k, ũk)

=

 f(x̃k)−A⊤[yk −H(Axk − b)] +R(x̃k − xk)

0

+

 R(xk − x̃k)

H−1(yk − ỹk)

 .

Therefore, from uk+1
II (α) ∈ U , we have

(uk+1
II (α)− ũk)⊤d2(u

k, ũk)

= (xk+1
II (α)− x̃k)⊤{f(x̃k)−A⊤[yk −H(Axk − b)]

+R(x̃k − xk)}+ (uk+1
II (α)− ũk)⊤M(uk − ũk)

≥ (uk+1
II (α)− ũk)⊤M(uk − ũk)(using (4) and (5)).

(40)

Since u∗ ∈ U∗, it follows from (12) that

∥uk+1
II (α)− u∗∥2 ≤ ∥uk − αd2(u

k, ũk)− u∗∥2 − ∥uk − αd2(u
k, ũk)− uk+1

II (α)∥2. (41)

Substitute (41) into (37), we have

Θk
II(α)

≥ ∥uk − u∗∥2 − ∥uk − αd2(u
k, ũk)− u∗∥2

+∥uk − αd2(u
k, ũk)− uk+1

II (α)∥2

= ∥uk − uk+1
II (α)∥2 + 2α(uk − ũk + ũk − u∗)⊤d2(u

k, ũk)

+2α(uk+1
II (α)− uk)⊤d2(u

k, ũk)

≥ ∥uk − uk+1
II (α)∥2 + 2α(uk − ũk)⊤d2(u

k, ũk)

+2α(yk − ỹk)⊤A(xk − x̃k) + 2α(uk+1
II (α)− uk)⊤d2(u

k, ũk)(using (35))

= ∥uk − uk+1
II (α)∥2 + 2α(uk+1

II (α)− ũk)⊤d2(u
k, ũk)

+2α(yk − ỹk)⊤A(xk − x̃k)

≥ ∥uk − uk+1
II (α)∥2 + 2α(uk+1

II (α)− ũk)⊤M(uk − ũk)

+2α(yk − ỹk)⊤A(xk − x̃k)(using (40))

= ∥uk − uk+1
II (α)∥2 + 2α(uk+1

II (α)− uk)⊤M(uk − ũk) + 2αΦ(uk, ũk)

= ∥uk − αM(uk − ũk)− uk+1
II (α)∥2 + 2αΦ(uk, ũk)− α2∥uk − ũk∥2M .

(42)
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Then the assertion of the theorem is proved. This completes the proof.

Theorem 3.2 shows that Υk
II(α) is a lower bound of Θk

II(α) for any α ≥ 0. Note that Θk
II(α) is a

quadratic function of α and it reaches its maximum at α2
k.

In the following, we assume that the proposed IDM-I or IDM-II method generates an infinite sequence

{uk}, otherwise, an approximate solution uk ∈ U is obtained. We are now in the position to prove the

global convergence of the proposed methods.

Theorem 3.3. Suppose that the function f is monotone on X , and let the sequence {uk} be generated

by the IDM-I method. Then, we have

(1). The sequence {uk} is bounded.

(2). The sequence {uk} converges to some u∗ ∈ U∗.

Proof. (1) Using (36) and (38), we obtain

∥uk+1 − u∗∥2

≤ ∥uk − u∗∥2 −Υk
I (γα

1
k)

= ∥uk − u∗∥2 − 2γα1
kΦ(u

k, ũk) + γ2(α1
k)

2∥d1(uk, ũk)∥2

= ∥uk − u∗∥2 − γ(2− γ)α1
kΦ(u

k, ũk)(using (17))

≤ ∥uk − u∗∥2 − γ(2− γ)λ1λ2∥uk − ũk∥2M (using (23)(24)).

(43)

Thus {uk} is bounded.

(2) Since {uk} is bounded, it has at least one cluster point, denoted as u∗ = (x∗, y∗). It follows from

(43) that

lim
k→∞

∥uk − ũk∥M = 0. (44)

Thus {ũk} is also bounded and u∗ = (x∗, y∗) is also a cluster point of {ũk} and the subsequence {ũkj}
converges to u∗. Moreover, (4)-(5) and (44) imply that limj→∞(x− x̃kj )⊤{f(x̃kj )−A⊤ỹkj} ≥ 0, ∀x ∈ X ;

limj→∞ Ax̃kj − b = 0
(45)

and consequently  (x− x∗)⊤{f(x∗)−A⊤y∗} ≥ 0, ∀x ∈ X ;

Ax∗ − b = 0

which implies that u∗ ∈ U∗. Since (44) and {ukj} → u∞, for any given ε > 0, there is an integer l, such

that

∥ukj − ũkj∥ <
ε

2
, and ∥ũkj − u∗∥ <

ε

2
.

Therefore, for any k ≥ kl, it follows from (43) that

∥uk − u∗∥ ≤ ∥ukj − u∗∥ ≤ ∥ukj − ũkj∥+ ∥ũkj − u∗∥ < ε.
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Thus, the sequence {uk} converges to u∗, which is a solution of VI(F,U). This completes the proof.

Theorem 3.4. Suppose that the function f is monotone on X , and let the sequence {uk} be generated

by the IDM-II method. Then, we have

(1). The sequence {uk} is bounded.

(2). The sequence {uk} converges to some u∗ ∈ U∗.

Proof. Its proof is similar to that of Theorem 3.3, so is omitted.

4 Preliminary Computational Results

In this section, we illustrate the efficiency of our method. The example used here is the test problem in

paper[10], which constraint set S and the mapping f are taken, respectively, as

S = {x ∈ R5
+|

5∑
i=1

xi = 10},

and

f(x) = Mx+ ρC(x) + q,

whereM is an R5×5 asymmetric positive matrix and Ci(x) = arctan(xi−2), i = 1, 2, · · · , 5. The parameter

ρ is used to vary the degree of asymmetry and nonlinearity. The data of example are illustrate as follows:

M =



0.726 −0.949 0.266 −1.193 −0.504

1.645 0.678 0.333 −0.217 −1.443

−1.016 −0.225 0.769 0.943 1.007

1.063 0.587 −1.144 0.550 −0.548

−0.256 1.453 −1.073 0.509 1.026


and

q = (5.308, 0.008 ,−0.938, 1.024, − 1.312)⊤.

In the experiment, we take the stopping criterion ε = 10−6 as the initial point. All programs are coded in

Matlab 7.1. ‘IN’ denotes the number of iterations and ‘CPU’ denotes the CPU time in seconds. ‘ODM’

denotes the decomposition method proposed by Gabay and Mercier.

The results in the Table 1 and Table 2 indicate that the performance of the improved methods are

better than the original decomposition method.
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Table 1: Numerical results for ρ = 10.

Starting point Method IN CPU Error

(0 2.5 2.5 2.5 2.5) ODM 97 0.02 8.4920×10−7

IDM-I 51 0.02 8.5978×10−7

IDM-II 32 0.02 8.4052×10−7

(10 0 0 0 0) ODM 95 0.02 9.2592×10−7

IDM-I 51 0.02 9.1903×10−7

IDM-II 30 0.01 9.1051×10−7

(25 0 0 0 0) ODM 83 0.03 9.5720×10−7

IDM-I 58 0.02 8.5539×10−7

IDM-II 40 0.02 8.9207×10−7

(10 0 10 0 10) ODM 93 0.03 7.6515×10−7

IDM-I 69 0.03 8.6384×10−7

IDM-II 41 0.01 8.5981×10−7

5 Conclusions

In this paper, we observe two new descent directions at each iteration, and present two descent decom-

position methods for monotone variational inequalities with linear equality constraint. Under some mild

conditions, we proved the global convergence of the two new methods. Some preliminary computational

results illustrated the efficiency of the proposed methods.
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