
499

AMO - Advanced Modeling and Optimization, Volume 13, Number 3, 2011

Automation of Solid Edge Using External Clients Written in C++

A.C. Putman1*, K. Willmert1

1Mechanical & Aeronautical Engineering Department, Clarkson University,
8 Clarkson Ave, Potsdam, NY, 13699

* Corresponding Author, e-mail: putmanac@clarkson.edu

Abstract

Presented in this paper are methods to write C++ programs to automate certain tasks in Solid

Edge. Application programming interfaces (APIs) exist that allow users to write programs to

automate and customize Solid Edge. In this paper, three sample tasks were chosen to be

automated: creating an L block, a bolt, and a three bar slider assembly. Using Microsoft Visual

C++ Express 2010, a program was written in C++ to accomplish each of these tasks. This paper

shows that it is possible to write a relatively simple program in C++ to quickly automate a

number of tasks in Solid Edge. Several resources are given to aid in the creation of different or

more complex automations.

1. Introduction

Various CAD programs offer support for automation via third party scripts or programs. With

support for third party automation, users can customize and extend the capabilities of their

software packages in a great number of ways. Some examples include: adding support for

importing or exporting additional file types, creating spreadsheets with data extracted from

drawings, or creating parts or assemblies based on dimensions input by the user.

*AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

500

A.C. Putman and K. Willmert

Solid Edge provides a set of component object model (COM) based application programming

interfaces (APIs) that can be used by any COM enabled programming language [Newell, 2009].

The languages commonly used to automate Solid Edge are Visual Basic.NET, C#, and Visual

C++. A Solid Edge automation program can be created as an executable file (EXE) or a

dynamically linked library (DLL). The Solid Edge Version 15 Programmer's Guide specifically

defines the term "add-in" as the DLL type.

"Specifically, Solid Edge defines an add-in as a dynamically linked library (DLL)

containing a COM-based object that implements the ISolidEdgeAddIn interface.

More generally, an add-in is a COM object that is used to provide commands or

other values to Solid Edge," [Electronic Data Services, 2004].

Programs compiled as DLLs can also be called "internal clients" whereas EXEs are referred to as

"external clients."

The focus of this paper is an external client written in C++ to automate Solid Edge. The

program, SE_Project, was written to perform several different tasks in Solid Edge. The main

tasks are as follows:

 Automate the creation of a part with a simple extrusion feature.

 Automate the creation of a more complex part with additional features.

 Automate the creation of an assembly and its associated parts.

 Automate the physical properties analyses of a part.

501

Automation of Solid Edge Using External Clients Written in C++

The objects chosen for these tasks are, respectively, an L-shaped block, a bolt, and a three bar

slider assembly as shown in Figure 1. An external client was chosen over an add-in due to the

relative simplicity of the source code, the user interface, and the installation of the program. A

command line external client is also well suited to perform the type of tasks listed above.

Figure 1: L-shaped block, bolt, and three bar slider rendered in Solid Edge

Examples of Solid Edge automation programs, and a general explanation of how they can be

created and how they work will be provided in the following section. It will be shown,

generally, how the program performs the previously listed individual tasks in Section 3.

Conclusions on the external client program, SE_Project, and recommendations for the creation of

Solid Edge automation programs will be discussed in the final section. The source code for the

SE_Project program discussed in this paper is contained in [Putman, 2011]. Three tutorials on

writing Solid Edge external clients in C++ for Solid Edge are also in [Putman, 2011].

502

A.C. Putman and K. Willmert

2. Background

There are several available add-ins and external clients for Solid Edge. Many are commercial

products. Among them are: InspectionXpert by Extensible CAD Technologies, Border Control

by IngeneaSoft, File Control by IngeneaSoft, Solid Edge Spy by Jason Newell, and several file

importing and exporting programs by SYCODE [Cope, 2010], [IngeneaSoft Border Control,

2010], [IngeneaSoft File Control, 2010], [Newell, n.d.], and [SYCODE, n.d.]. All of these

examples are closed source, meaning the source code is not publicly available. InspectionXpert

and the SYCODE programs are add-ins. The rest connect to Solid Edge as external clients.

Only Border Control and Solid Edge Spy are available free of charge.

Also available are resources for creating Solid Edge add-ins, external clients, and for Solid Edge

programming in general. The Solid Edge ST Addins - Part I article and Solid Edge AddIn

Wizard by Jason Newell are good resources for learning how to create add-ins written in C++

[Newell, 2009] and [Newell, 2006]. Both the article and the wizard are based on the Active

Template Library (ATL), which causes them to require the standard version or greater of

Microsoft Visual Studio to compile. Once a C++ add-in is created it needs to be registered using

regsvr32.exe for it to be recognized by Solid Edge. This process adds entries to the Windows

registry. There are 32bit and 64bit versions of Solid Edge. On a 64bit Windows operating

system, depending on whether Solid Edge is 32bit or 64bit, the Solid Edge installation process

will create registry keys in different locations. This difference between 32bit and 64bit registry

keys also affects where the entries need to be made for Solid Edge to recognize an add-in. As a

result, specific 32bit and 64bit versions of the add-in may need to be compiled. After the add-in

503

Automation of Solid Edge Using External Clients Written in C++

is registered, a running instance of Solid Edge can connect to the add-in either at startup, by user

request, or by an external program. Users typically interact with a Solid Edge add-in via

command buttons, which can be added, along with Solid Edge toolbars, by the add-in.

The Solid Edge Version 15 Programmer's Guide contains several code examples for external

clients [Electronic Data Services, 2004]. Most of the examples are written in Visual Basic, but

one example, in chapter 15, is a C++ command line program. The programs written for this

project and the tutorials (see [Putman, 2011]) are all based on that C++ example program. These

programs are not based on ATL, and can be compiled using Microsoft Visual C++ Express

which is available from Microsoft free of charge. External clients do not need to be registered

like add-ins, and can be started without a running instance of Solid Edge. They can start and

connect to a new instance of Solid Edge or connect to one that already exists. Users typically

interact with an external client by simply running the program.

Other online resources for Solid Edge programming include the www.jasonnewell.net forums

and the Solid Edge newsgroups (available at http://bbsnotes.ugs.com/vbulletin). The

programming forums and newsgroups cover topics relating to VB.NET, C#, and C++, although

most topics are focused on VB.NET. Another resource, the Solid Edge ST Programmer's Guide

included with Solid Edge ST, ST2, and ST3, may not be terribly helpful for writing Solid Edge

automation programs in C++ as it focuses entirely on VB.NET and C# [Siemens Product

Lifecycle Management Software Inc., 2008]. Solid Edge Spy is a great tool for Solid Edge

developers, as it allows the user to view the objects, processes, and events of an active instance

of Solid Edge. The object browser in Microsoft Visual Studio and the Solid Edge SDK provide

504

A.C. Putman and K. Willmert

important information and definitions for all of the various Solid Edge APIs [Siemens Product

Lifecycle Management Software Inc., 2009]. The Solid Edge SDK also contains code examples.

However, all of the examples are written in VB.NET. The SDK can be accessed by going to the

Solid Edge help index and clicking on "Programming With Solid Edge." Lastly, Siemens Global

Technical Access Center (GTAC) can be contacted directly by phone (for details see

http://support.ugs.com/gtac.shtml).

Writing the program as an external client is an attractive option for the tasks presented in this

paper and was selected for a number of reasons:

 The program does not need to be registered on every computer to use it.

 The program can be run without having to open a document in Solid Edge.

 The user interface can be handled entirely by a command line window rather than Solid
Edge toolbars, command buttons, and windows.

 The program can be compiled with the free Microsoft Visual C++ Express.

 The program is compatible with both 32bit and 64bit versions of Solid Edge and
Windows.

To create a C++ external client to automate Solid Edge, Solid Edge needs to be installed and the

directories "\Solid Edge ST2\SDK\include" and "\Solid Edge ST2\Program" must be added as

include directories in the compiler's project properties. The necessary Solid Edge type libraries

must also be imported (e.g. #import "framework.tlb"). Also, objbase.h and comdef.h

header files need to be included. The basic steps the program must perform are as follows:

505

Automation of Solid Edge Using External Clients Written in C++

 Initialize the COM object.

o CoInitialize(NULL);

 Declare a smart pointer for the Solid Edge application object.

o SolidEdgeFramework::ApplicationPtr pSEApp;

 Point the application smart pointer to the application object of a running or new instance
of Solid Edge.

o pSEApp.GetActiveObject("SolidEdge.Application"); or

o pSEApp.CreateInstance("SolidEdge.Application");

 Perform the desired Solid Edge automations.

 Uninitialize the COM object.

o CoUninitialize();

The type libraries each contain information about Solid Edge objects, their methods, and their

properties. Solid Edge automation is performed by creating and manipulating objects. For these

objects to be accessible, their respective type libraries must be imported. The one type library

that must be imported in order to automate Solid Edge is the framework type library,

framewrk.tlb. This type library contains the Application object, which is the gateway to all of

the other Solid Edge objects. A list of all of the Solid Edge type libraries and their respective

namespaces can be found in Table 1. With the release of ST3, the PartSync and AssemblySync

type libraries were removed and their methods and properties merged with the Part and assembly

type libraries.

506

A.C. Putman and K. Willmert

Type Library File Name Type Library Namespace
constant.tlb SolidEdgeConstants
framewrk.tlb SolidEdgeFramework
fwksupp.tlb SolidEdgeFrameworkSupport
geometry.tlb SolidEdgeGeometry
Part.tlb SolidEdgePart
assembly.tlb SolidEdgeAssembly
draft.tlb SolidEdgeDraft
installdata.tlb SEInstallDataLib
revmgr.tlb RevisionManager
PartSync.tlb SolidEdgePartSync
assemblysync.tlb SolidEdgeAssemblySync

Table 1: Solid Edge ST2 Type Libraries

Once an object is made accessible by importing its type library, it can eventually be manipulated

by using smart pointers. The first smart pointer any Solid Edge automation program must use is

the application smart pointer, ApplicationPtr, from the SolidEdgeFramework namespace. In the

example above, the application smart pointer was named pSEApp. To point pSEApp to the

Solid Edge application object, the GetActiveObject or CreateInstance methods from the COM

API can be used. Once pSEApp points to the Solid Edge application object, the rest of the

objects in the Solid Edge API can be accessed. In order to access these objects, the object

hierarchy of the Solid Edge API must be followed. From [Putman, 2011]:

"The Solid Edge object hierarchy can be depicted as a tree diagram, always

starting with the Application object. This tree then branches out into the other

objects such as the Documents collection object, which leads to a Document

object, which leads to the ProfileSets collection object, and so on. There are

often plural and singular forms of objects in this hierarchy, such as Documents

and Document. The plural form is always the parent of the singular form, child

507

Automation of Solid Edge Using External Clients Written in C++

object. The Documents collection object is an indexed collection of Document

objects, just as the ProfileSets collection object is an indexed collection of

ProfileSet objects."

A child object can be accessed or created by using the properties or methods of its parent object.

The properties and methods of an object are accessed using the "->" operator. For example, the

document object can be created and a smart pointer pointing to it can be returned by using the

GetDocuments and Add methods, although those methods are part of the COM API. The

GetDocuments method returns a documents object smart pointer. The Add method creates and

returns a document object smart pointer, to which the smart pointer pPartDocument is then

assigned.

pPartDocument = pSEApp->GetDocuments()->Add("SolidEdge.PartDocument");

The ProfileSets smart pointer, pProfileSets, can then be assigned to the ProfileSets object smart

pointer returned by using the ProfileSets property of the PartDocument object smart pointer,

pPartDocument.

pProfileSets = pPartDocument->ProfileSets;

A ProfileSet object can then be created and pointed to by the smart pointer pProfileSet using the

Add method of the ProfileSets object, pProfileSets.

pProfileSet = pProfileSets->Add();

508

A.C. Putman and K. Willmert

Alternatively, the above two steps could be performed in one line similar to how the

PartDocument object was created.

pProfileSet = pPartDocument->ProfileSets->Add();

In this way, much of what can be accomplished by hand in Solid Edge can be automated.

Detailed information about all of the Solid Edge objects, their associated properties and methods,

and the arguments of those methods can be found in the Solid Edge SDK.

3. SE_Project Program Overview

As previously stated, the SE_Project external client connects to a running instance of Solid Edge,

or creates and connects to a new instance. The program then automates Solid Edge to produce

an L-shaped block, a bolt, or a three bar slider assembly. It also gives the option to run a

physical properties analysis on the L-shaped block or bolt parts. This is accomplished by

running SE_Project.exe and providing the input requested in the command line window. The

SE_Project external client is based on the example C++ program in chapter 15 of the Solid Edge

Version 15 Programmer's Guide [Electronic Data Services, 2004]. This example program is

made up of an error-handling macro, HandleError, and four functions: main, RunSEAutomation,

CreateAssemblyUsingPartFile, and CreateDrawingUsingAssemblyFile.

The main function initializes the COM object, calls the RunSEAutomation function, and then

uninitializes the COM object. RunSEAutomation first tries to connect to an existing instance of

Solid Edge. Failing that, it starts a new instance of Solid Edge. In either case, an application

smart pointer to Solid Edge is created. RunSEAutomation then sets the Solid Edge application to

509

Automation of Solid Edge Using External Clients Written in C++

be visible using the Visible property of the Application object, pSEApp. It then calls the

CreateAssemblyUsingPartFile and CreateDrawingUsingAssemblyFile functions. Those

functions in turn automate Solid Edge. The HandleError macro is used in main and

RunSEAutomation to display error messages and to ensure that any necessary cleanup is

performed before the program exits after an error.

The RunSEAutomation function exists to separate all of the smart pointer declarations from the

main function. Runtime crashes can occur if any COM objects or interfaces are used or

destructed after the COM object is uninitialized. Smart pointers are created on the stack, so if a

smart pointer is declared and a COM object is uninitialized in the same scope the smart pointer is

destructed after CoUninitilize is called.

The programs in the tutorials given in [Putman, 2011] use a slightly updated version of the

example program with new automation functions replacing the CreateAssemblyUsingPartFile

and CreateDrawingUsingAssemblyFile functions. Additional code is also written to provide the

interface for a user to input dimensions and to check the input data for errors. The SE_Project

program expands on this by adding several functions to automate Solid Edge and allowing the

user to select a desired unit of length for the input dimensions. The code for SE_Project is also

separated into various source and header files, whereas the source code for the example and

tutorial programs are each contained in a single source file. The organization of the source code

for SE_Project is shown in Table 2. The complete, commented source code for SE_Project can

be found in [Putman, 2011]. The rest of this section is intended to be read alongside of the

source code.

510

A.C. Putman and K. Willmert

File Name Description

stdafx.h Contains the include(s) and imports the type libraries necessary
for the other files.

SE_Project.cpp Contains HandleError macro and the base functions of the
program: main and RunSEAutomation.

SE_Common.h

SE_Common.cpp

The SE_Common class contains the functions used by multiple
other classes and RunSEAutomation: InputInt, InputDouble,
SelectUnit, and WritePhysicalProperties.

LBlock.h

LBlock.cpp

The LBlock class contains the functions that are specific to the
creation of an L-shaped block part file: CreateLBlock,
LBlockDlg, and MakeLBlock.

Bolt.h
Bolt.cpp

The Bolt class contains the functions that are specific to the
creation of a bolt part file: CreateBolt, BoltDlg, and MakeBolt.

ThreeBarSlider.h

ThreeBarSlider.cpp

The ThreeBarSlider class contains the functions that are specific
to the creation of a three bar slider assembly file and its associated
part files: CreateThreeBarSlider, ThreeBarSliderDlg, MakeLink,
MakePin, and MakeAssy.

Table 2: SE_Project Source Code Files

3.1 stdafx.h

The stdafx.h header file contains the includes and imports the type libraries that are needed for

most of the source files. The partsync.tlb and assemblysync.tlb type libraries from Solid Edge

ST2 are not imported, as they do not exist in ST3 and are not used in this program. This allows

SE_Project to work on both the ST2 and ST3 versions. The draft.tlb, installdata.tlb, and

revmgr.tlb type libraries exist in both ST2 and ST3 versions, but are commented out because

they are not currently used in this program.

3.2 SE_Project.cpp

The SE_Project.cpp source file contains an adapted form of the C++ program example from the

Solid Edge Version 15 Programmer's Guide. The main function initializes the COM object, calls

RunSEAutomation, and uninitializes the COM object. The RunSEAutomation function looks for

an instance of Solid Edge to connect to or, failing that, creates a new one. The SelectUnit

511

Automation of Solid Edge Using External Clients Written in C++

function from the SE_Common class is then called to allow the user to select the desired unit of

length for future data input. Next, the user is asked to select an automation routine to run. The

user input is returned as an integer by the InputInt function from the SE_Common class. The

appropriate function is called based on the user input or, if the user input was erroneous, an error

message is displayed and the user is asked again to select a routine.

3.3 The LBlock

The LBlock.h header file and LBlock.cpp source file make up the LBlock class. This class

contains the CreateLBlock, LBlockDlg, and MakeLBlock functions. The LBlockDlg function

retrieves the dimensions for the L-shaped block from the user, while MakeLBlock uses the input

dimensions to create a part document and draw the L-shaped block object. LBlockDlg and

MakeLBlock are both private functions that cannot be called outside of the LBlock class.

CreateLBlock is the public function that can be called outside of the LBlock class and in turn

calls the LBlockDlg and MakeLBlock functions to run the L-shaped block automation routine, a

result of which is shown in Figure 2.

Figure 2: L-shaped block rendered in Solid Edge

512

A.C. Putman and K. Willmert

3.3.1 LBlockDlg

The LBlockDlg function handles the interaction between the user and the L-shaped block

routine. It begins by displaying a description of what the routine will do. The InputDouble

function from the SE_Common class is then used to return the user input as doubles. These

values are converted to meters using a conversion factor that was previously set by the

SelectUnit function from the SE_Common class when it was called from RunSEAutomation.

The results are assigned to the variables that define the dimensions of the L-shaped block,

illustrated in Figure 3. The dimensions are then checked for any errors. If any errors are

detected, an error message will be displayed and the user will be asked again to input the

dimensions of the L-shaped block. If no errors are detected the function will return. This

process prevents errors in Solid Edge when constructing the objects as well as warning the user

up front about any data entry errors.

Figure 3: Dimensioned drawing of the L-shaped block

513

Automation of Solid Edge Using External Clients Written in C++

3.3.2 MakeLBlock

The MakeLBlock function takes the dimensions assigned by the LBlockDlg function and makes

the L-shaped block in Solid Edge. The L-shaped block, as shown in Figure 2, is simply an

extruded protrusion of an L-shaped profile consisting of six lines as shown in Figure 4.

Figure 4: Labeled profile of the L-shaped block

First a new part document is created using the GetDocuments and Add COM functions. A

Profile object, pProfile, is then created. The profile is added to the third reference plane also

known as the "Front" or x-y plane. The dimensions of the part are used to assign values to

variables representing the x and z coordinates of the six points that define the profile. Six lines

are then created using these values and the AddBy2Points method of the Lines2d object,

pLines2d. After the lines for the profile are drawn, keypoints need to be defined at the

intersections between each of the lines. Once all six keypoints are defined the profile can be

closed using the end method of the Profile object pProfile. Finally, the profile is extruded using

the AddFiniteExtrudedProtrusion method of the Models object pModels. The safearray used for

514

A.C. Putman and K. Willmert

the creation of the extruded protrusion is then destroyed. Safearrays, unlike smart pointers, are

not automatically cleaned up and must be manually destroyed before leaving scope. The

WritePhysicalProperties function from the SE_Common class is then called. Finally the function

returns, leaving the part document for the user to save or discard. Figure 5 shows a command

line window for a completed L-shaped block routine.

Figure 5: A command line window for a completed L-shaped block

After starting SE_Project.exe, the command line window appears and the program attempts to

connect to Solid Edge. If that fails it creates an instance of Solid Edge and connects to it. The

program then prompts the user to select a unit of length by entering an integer. The options are:

1 for inches, 2 for millimeters, and 3 for meters. In Figure 5 "1" was entered for inches. Next,

the user is prompted to choose an object to create by entering an integer. In this case the LBlock

515

Automation of Solid Edge Using External Clients Written in C++

object was selected by entering "1." A description of what the LBlock routine accomplishes is

displayed and the user is asked to input the dimensions for the object. The dimensions of the L-

shaped block created in Figure 5 are as follows: Leg1 is 2 inches, Leg2 is 3 inches, Thickness of

Leg1 = 0.25 inches, Thickness of Leg2 = 0.25 inches, and Depth is 8 inches. A new part file is

then created and the L-shaped block is drawn in Solid Edge. The user is then asked whether or

not to calculate the physical properties of the L-shaped block. In this case "n" is entered and the

physical properties analysis is not performed. The program then disconnects from Solid Edge

and pauses, displaying the "press any key to continue" message. After pressing a key the

program exits and the command line window closes.

3.4 The Bolt

The Bolt.h header file and Bolt.cpp source file make up the Bolt class. This class contains the

CreateBolt, BoltDlg, and MakeBolt functions. The BoltDlg function retrieves the dimensions for

the bolt from the user, while MakeBolt uses the input dimensions to create a part document and

draw the bolt. BoltDlg and MakeBolt are both private functions that cannot be called outside of

the Bolt class. CreateBolt is the public function that can be called outside of the Bolt class and in

turn calls the BoltDlg and MakeBolt functions to run the bolt automation routine. An example of

a bolt created with this routine is shown in Figure 6.

516

A.C. Putman and K. Willmert

Figure 6: Bolt rendered in Solid Edge

3.4.1 BoltDlg

The BoltDlg function handles the interaction between the user and the bolt routine. It begins by

displaying a description of what the routine will do. The InputDouble function from the

SE_Common class is then used to return the user input as doubles. These values are converted to

meters using a conversion factor that was previously set by the SelectUnit function from the

SE_Common class when it was called from RunSEAutomation. The minimum allowable

threads per unit length is calculated and displayed during that process to help prevent the user

from entering an erroneous value. The results are assigned to the variables that define the

dimensions of the bolt, some of which are shown in Figure 7. The dimensions are then checked

for any errors. If any errors are detected, an error message will be displayed and the user will be

asked again to input the dimensions of the bolt. If no errors are detected the function will return.

517

Automation of Solid Edge Using External Clients Written in C++

Figure 7: Dimensioned drawing of the bolt

3.4.2 MakeBolt

The MakeBolt function takes the dimensions assigned by the BoltDlg function and makes the

bolt in Solid Edge. The bolt is made up of multiple extruded protrusions, two revolved cutouts,

and one helical cutout.

First a new part document is created using the GetDocuments and Add COM functions. Several

additional parameters are defined for the bolt that are either predetermined or calculated using

the values assigned by BoltDlg.

The threaded shaft of the bolt is drawn first. The profile, pProfile, is created on the third

reference plane. A Circle2d object is then created on that profile using the AddByCenterRadius

method of the Circles2d object, pCircles2d. Because it is a circle, the profile does not require

any keypoints and does not need to be manually closed. The circle is extruded using the

AddFiniteExtrudedProtrusion method of the Models object, pModels. The safearray aProfiles is

not destroyed, but assigned a NULL value. This is done because the aProfiles safearray will be

assigned new values and used later in the function.

518

A.C. Putman and K. Willmert

Now that the base protrusion for the threaded shaft is complete, the helical cutout for the threads

will be created. First, dimensions and coordinates for the helical cutout's profile are defined.

Next, a new profile, pHelicalCutoutProfile, is created, this time on the second reference plane.

Note that pHelicalCutoutProfile is a child of a new Profiles object that was also created, but not

assigned to a smart pointer. Each feature should have a new Profiles object as well as a new

Profile object to avoid errors. A reference axis, pRefAxis, is then created as an argument for the

helical cutout. The lines and arcs that make up the profile of the helical cutout are created and

the profile is then closed. Two planes are created using the AddParallelByDistance method of

the RefPlanes object, pRefPlanes. These planes mark the beginning and end of the helical

cutout. The helical cutout can then be created using the AddFromTo method of the HelixCutouts

object. Dimensioned and labeled drawings of the profile for the helical cutout are shown in

Figure 8 and Figure 9 respectively.

Figure 8: Dimensioned drawing of the helical cutout profile

519

Automation of Solid Edge Using External Clients Written in C++

Figure 9: Labeled drawing of the helical cutout profile

After the helical cutout is complete the safearray aProfiles is destroyed, as no additional

safearrays will be needed for the duration of the function. If the user inputs a shoulder length

greater than zero, the function will then create that shoulder by extruding another circle. A new

profile, pShoulderProfile, is created on the third reference plane for this extrusion. The

AddFiniteExtrudedProtrusion method of the Models object was used to create the extrusion for

the threaded portion of the bolt shaft as a base feature. For additional extrusions, the AddFinite

method of the ExtrudedProtrusions object can be used, such as this case with the shoulder of the

bolt.

The final extrusion, the hex head of the bolt, is created on the new profile, pHeadProfile, located

again on the third reference. The calculated dimensions and coordinates are used to create the

hexagonal profile as shown in Figure 10. Again, the AddFinite method is used to create the

extrusion for the bolt head.

520

A.C. Putman and K. Willmert

Figure 10: Labeled and dimensioned drawings of the bolt head

After the hexagonal extrusion is created, a chamfer, shown on the right in Figure 10, is needed to

finish the bolt head. This is created using a revolved cutout. A new profile,

pHeadChamferProfile, is created on the second reference plane for this feature. The dimensions

and coordinates for the triangular profile, shown in Figure 11, are calculated and the profile is

drawn and closed. The revolved cutout is created using the AddFinite method of the

RevolvedCutouts object.

Figure 11: Labeled and dimensioned drawings of the bolt head chamfer profile

521

Automation of Solid Edge Using External Clients Written in C++

The final feature is the chamfer on the threaded end of the bolt. Another triangular profile is

drawn on the new profile pEndChamferProfile as shown in Figure 12. The AddFinite method is

once again used to create a revolved cutout feature.

Figure 12: Labeled and dimensioned drawings of the bolt end chamfer profile

The WritePhysicalProperties function from the SE_Common class is then called. Finally the

function returns, leaving the part document for the user to save or discard. Figure 13 shows a

command line window for a completed bolt routine.

522

A.C. Putman and K. Willmert

Figure 13: A command line window for a completed bolt

3.5 The Three Bar Slider Assembly

The ThreeBarSlider.h header file and ThreeBarSlider.cpp source file make up the

ThreeBarSlider class. This class contains the CreateThreeBarSlider, ThreeBarSliderDlg,

MakeLink, MakePin, and MakeAssy functions. The ThreeBarSliderDlg function retrieves the

dimensions for the three bar slider from the user, while MakeLink and MakePin use the input

dimensions to create, draw, and save the links and pins in the assembly. MakeAssy then creates,

assembles, and saves the assembly for the three bar slider. ThreeBarSliderDlg, MakeLink,

MakePin, and MakeAssy are private functions that cannot be called outside of the

ThreeBarSlider class. CreateThreeBarSlider is the public function that can be called outside of

the ThreeBarSlider class and in turn calls the other functions to run the three bar slider

automation routine. Figure 14 shows a three bar slider created using this routine.

523

Automation of Solid Edge Using External Clients Written in C++

Figure 14: Three bar slider rendered in Solid Edge

3.5.1 ThreeBarSliderDlg

The ThreeBarSliderDlg function handles the interaction between the user and the three bar slider

routine. It begins by displaying a description of what the routine will do. The InputDouble

function from the SE_Common class is then used to return the user input as doubles. These

values are converted to meters using a conversion factor that was previously set by the

SelectUnit function from the SE_Common class when it was called from RunSEAutomation.

The results are assigned to the variables that define the dimensions of the parts that make up the

three bar slider assembly. The dimensions are then checked for any errors. If any errors are

detected, an error message will be displayed and the user will be asked again to input the

dimensions of the three bar slider. If no errors are detected the lengths of the pins will be

calculated, the directory for the parts to be saved in will be created, the file paths for each part

and assembly will be assigned, and the function will return. The file and path name section of

the function is set up so that, if desired, the file names and directory path could be input by the

524

A.C. Putman and K. Willmert

user with a few changes to the code. The default names for the six parts of the assembly are

illustrated in Figure 15.

Figure 15: Labeled drawing of the three bar slider assembly

3.5.2 MakePin

The MakePin function takes some of the dimensions and a file path character array assigned by

the ThreeBarSliderDlg function, makes a pin in Solid Edge, and saves the part file. The pin is

simply an extruded circle. The MakePin function is called three times, once for each of the three

pins.

First a new part document is created. A profile, pProfile, is created on the third reference plane,

a circle is drawn and extruded. The dimensions for the pins, shown in Figure 16, that were

calculated by the ThreeBarSliderDlg function are data members of the ThreeBarSlider class and

are used as arguments for this function. Next the WritePhysicalProperties function is called.

The part document is then saved using the SaveAs method of the PartDocument object,

pPartDocument. Finally, the document is closed using the Close method of the PartDocument

object.

525

Automation of Solid Edge Using External Clients Written in C++

Figure16: Dimensioned drawings of the three pins

3.5.3 MakeLink

The MakeLink function also takes some of the dimensions and a file path character array

assigned by the ThreeBarSliderDlg function, makes a link in Solid Edge, and saves the part file.

Each of the links is slightly different in construction. Link1 has a profile consisting of two lines

and two arcs that is extruded with two hole features added. Link2 is similar to Link1 with a

cylindrical extrusion added onto one end prior to the holes. Link3 is similar to Link1 with a slot

shaped cutout replacing one of the holes.

First a new part document is created. Figure 17 shows the dimensions for the links that were

collected by the ThreeBarSliderDlg function. These dimensions are data members of the

ThreeBarSlider class, and are used as arguments for this function. A profile, pProfile, is created

on the third reference plane. The coordinates for the base feature, shown in Figure 18, are

calculated, and the profile of lines and arcs is drawn, closed, and extruded.

526

A.C. Putman and K. Willmert

Figure 17: Dimensioned drawings of the three links

Figure 18: Labeled drawings of the three link profiles

Dimensions for the two holes are assigned. The dimension for Hole1 is used for Link1 and

Link3. The dimension for Hole2 is used for Link1 but not for Link3. The function must then

determine whether or not the link being drawn is Link2. If Link2 is being drawn, the cylindrical

extrusion must be added prior to the holes. The extrusion is created by making a new profile,

527

Automation of Solid Edge Using External Clients Written in C++

pProfile2, drawing a circle, and using the AddFinite method of the ExtrudedProtrusions object.

The dimensions for the holes are then reassigned to be used for Link2.

Next, the first hole, Hole1, needs to be created regardless of which link is being drawn. A new

profile, pHoleProfile, is created as well as Holes2d, Hole2d, HoleDataCollection, and HoleData

objects. The actual hole feature is created using the AddThroughAll method of the Holes object,

pHoles.

Now that Hole1 has been made, the function determines whether or not the link being drawn is

Link3. If Link3 is being drawn, a slot in the link will be made using an extruded cutout. A new

profile, pSlotProfile, is created on the third reference plane. Additional coordinates, shown in

Figure 18, are calculated and the profile of the slot is drawn and closed. The extruded cutout is

created by using the AddThroughAll method of the ExtrudedCutouts object, which is exposed by

using the ExtrudedCutouts property of the Model object, pModel. At this point Link3 is

complete.

If the link being drawn is not Link3, the second hole, Hole2, needs to be created. This hole is

created just like Hole1. Finally, the part document is saved, closed, and the function returns.

3.5.4 MakeAssy

The MakeAssy function is called after all the pin and link documents are created. First a new

assembly document is created. Several safearrays are then created and assigned a NULL value.

This is necessary because Solid Edge API methods will later be used to put elements into the

safearrays. The smart pointer pOcurrences is then defined using the Occurrences property of the

528

A.C. Putman and K. Willmert

AssemblyDocument object. An occurrence object for Link3, pLink3Occurrence, is created using

the AddByFilename method of pOccurrences. An occurrence in an assembly file is a part or a

subassembly. To create an assembly, an occurrence for each part or subassembly must be

created.

Now that the occurrence for Link3 has been created, specific information about this part must be

obtained to create the relationships between it and the parts that it connects with. The

information collected will be smart pointers to faces, and safearrays containing coordinates that

exist on some of those faces. The faces, shown in Figure 19, will be used in the process to create

all of the part relations. The safearrays won't be needed for the axial relations, but they will be

used to make the planar and tangential relations.

Figure 19: Labeled exploded drawing of the three bar slider assembly

The smart pointers pModel and pExtrudedProtrusion are assigned to the Model and

ExtrudedProtrusion objects belonging to Link3. These generically named smart pointers will be

reused for the other five parts. The smart pointer pLink3BottomFace is defined as the bottom

529

Automation of Solid Edge Using External Clients Written in C++

cap of Link3's extruded protrusion. In this case, the top faces of all of the extrusions in these

parts are the faces that have the greatest y value in the x-z plane. The bottom faces are on the

opposite side. The GetParamRange method of the Face object is used to get a parameter range

for Link3's bottom face. The parameter range is written to the aMinParam and aMaxParam

safearrays. The aMinParam safearray is then used for the GetPointAtParam method, which gets

a point at that parameter and then writes the coordinates of that point to the

aLink3BottomFacePoint safearray. Link3's top face is then defined using the TopCap method

and a point on that face is assigned to the aLink3TopFacePoint safearray. The next face needed

is one of the planar faces of the extruded cutout. The Item method of the ExtrudedCutouts object

(which is exposed by the ExtrudedCutouts property of the Model object, pModel) is used to

return a pointer to the extruded cutout feature. The SideFaces property of the ExtrudedCutout

object is used to return a pointer to all four of the side faces of the extruded cutout. The Item

method of the Faces object is then used to return one of the two planar side faces. The index for

this planar side face, in this case 2, was determined using trial and error. The final face required

from Link3 is a side face of its hole feature. A smart pointer to the hole object is obtained using

the Item method of the Holes object returned by the Holes property of the Model object. Next,

the Faces pointer pFaces is returned using the SideFaces property of the hole object, pHole.

Finally, the face pointer pLink3HoleFace is defined by using the Item method of the Faces object

pFaces.

The next parts to be imported are, in order: Pin1, Link1, Pin2, Link2, and Pin3. Smart pointers

are defined for the rest of the faces labeled in Figure. Coordinates are placed in additional

530

A.C. Putman and K. Willmert

safearrays for the top faces of all the remaining parts, the bottom faces of Pin1, Pin2, and Link1,

and the side face of Pin3.

After the faces and coordinates are defined, the references can be created. Each reference is

made using the CreateReference method of the AssemblyDocument object. The second

argument for the CreateReference method is "const _variant_t &Entity." The entity in this case

is a smart pointer to a face. To use the CreateReference method, each face must first be placed

inside a _variant_t object. The following line constructs a _variant_t object named tempFace1

and attaches to it the smart pointer pLink3BottomFace:

_variant_t tempFace1(pLink3BottomFace, true);

The face smart pointer is then detached from the _variant_t object when creating the reference:

pLink3BottomFaceReference = pAssemblyDocument->CreateReference(
Link3Occurrence, &tempFace1.Detach());

This is repeated for all of the remaining surfaces in Figure 19.

Before the relationships between the parts can be created, it is important to note that every part

that was imported programmatically to the assembly was assigned a ground relation. For this

assembly it is only desirable for Link3 to be grounded. The other five ground relations must be

deleted. A smart pointer to the Relations3d object, pRelations3d, is defined. The second

Relation3d object in the document is then defined as the GroundRelation3d smart pointer,

pGroundRelation3d. This relation is then deleted using the Delete method of the

GroundRelation3d object. The last two steps are placed inside a while loop and executed five

times. As the Relation3d objects are indexed as they are imported, the ground relations for Pin1,

Link1, Pin2, Link2, and Pin3 are deleted in that order.

531

Automation of Solid Edge Using External Clients Written in C++

Now the parts can be assembled by creating Relation3d objects. Planar relations are created by

using the AddPlanar method of the Relations3d object, axial relations by the AddAxial method,

and the tangent relation by the AddTangent method. The Pin parts each have their axial relations

locked for one of the links they are connected to. One extra relation (the planar relation between

Link3 and Link1) is created for rotational motion to be applied to it in the motion analysis

environment.

After all of the relations are created, every safearray is destroyed and the assembly document is

saved using the SaveAs member of the AssemblyDocument object. Figure 20 shows a command

line window for a completed three bar linkage routine.

Figure 20: A command line window for a completed three bar linkage

532

A.C. Putman and K. Willmert

3.6 The SE_Common class

The SE_Common.h header file and SE_Common.cpp source file make up the SE_Common

class. This class contains a number of functions that are used by the other classes and the

function RunSEAutomation: InputInt, InputDouble, SelectUnit, and WritePhysicalProperties.

The InputInt and InputDouble functions display the text in the cOutputString argument and

return the user input as an integer or a double respectively. SelectUnit asks the user to select

from inches, millimeters, or meters as the unit of length for the dimensions that will be input

later in the program. As the default unit of length in Solid Edge is the meter, the user input will

need to be converted to meters before any part feature are created. An appropriate conversion

factor is selected based on the user input and used when assigning values to any dimensions of

length. Lastly, WritePhysicalProperties collects the properties of a part file based on a user input

density and writes that data to a user named text file.

3.6.1 Physical Properties

The WritePhysicalProperties function first asks the user whether or not they want the physical

properties of the part to be calculated. If this is not desired the function returns; otherwise the

user is prompted to enter a file name for the output. This file name is then combined with a

predetermined directory path and file extension to form a character array for the complete file

path.

A character array of document type constant names indexed by their value is created. This array

is used to display document type names for an error message. The variables for all of the

physical properties are then declared, the safearrays being set to NULL. Density and accuracy

533

Automation of Solid Edge Using External Clients Written in C++

are inputs to the method that calculates the physical properties. The value for density is input by

the user, while the value for accuracy is set to 0.0001.

The function then determines the document type. If the active document is a PartDocument, the

physical properties of the part are calculated using the ComputePhysicalProperties method of the

Model object. If the active document is not a part file, an error message is displayed and the

function returns. The ComputePhysicalProperties method assigns the following values to the

previously declared variables: volume, area, mass, center of gravity, center of volume, global

moments of inertia, principal moments of inertia, principal axes, radii of gyration, relative

accuracy achieved, and status. Status is "an integer value that indicates the status of the physical

properties of the model" [Siemens Product Lifecycle Management Software Inc., 2009]. It is not

included in the output file, but its value must still be written to a variable for the program to

compile and function properly.

After the physical properties are assigned to their corresponding variables, the text file is created

and the data is written to it, as shown in Figure 21. Three character arrays and several while

loops are used to simplify the process of formatting of the data. After all of the data is written,

the text file is closed, all of the safearrays are destroyed, and the function returns. The command

line window used to create Figure 21 is shown in Figure 22.

534

A.C. Putman and K. Willmert

Figure 21: Physical properties of an L-shaped block output to a text file

535

Automation of Solid Edge Using External Clients Written in C++

Figure 22: The command line window used to create Figure

This concludes the overview of the source files for the SE_Project program. With these files,

anyone who has an installation of Solid Edge ST2 or ST3 can create a project in Microsoft

Visual C++ Express and compile the source code to produce this program.

4. Conclusions

The SE_Project program is able to perform all of the desired tasks as well as allowing the user to

select from a list of unit lengths. The program is small, and only requires its exe and an

installation of Solid Edge to function. The speeds of the automation routines are only limited by

how fast Solid Edge can execute the commands. The source code is relatively simple and can be

easily modified or expanded upon. Alternatively, instead of having one program with the option

536

A.C. Putman and K. Willmert

of running three different automation routines, SE_Project could easily be split into three

different programs.

In addition to physical properties analysis, the automation of both kinematic analysis and finite

element analysis (FEA) were investigated for possible inclusion to the SE_Project. Animation of

an assembly in Solid Edge can be accomplished by using motors or the Intellimotion builder.

There is currently no API for either of these methods, so automating a kinematic analysis was

not possible. However, the constraints in the three bar slider case discussed previously were set

up so that a manual kinematic analysis can easily be done on the assembly.

To perform a finite element analysis, users can use the Simulation Express command in the

Tools toolbar, or the commands in the Simulation toolbar. There is no API for Simulation

Express, but there is an API for the commands in the Simulation toolbar. The first step is to

create an FEA study. This is done by using the AddStudy method of the StudyOwner object,

which is returned by the StudyOwner property of the PartDocument or AssemblyDocument

objects. However, there is no StudyOwner object in a freshly created part or assembly and there

are no methods in the API to create a StudyOwner object. The only way to create a StudyOwner

object is to manually create a new study in Solid Edge. As a result, the creation or modification

of FEA studies can only be automated for parts that already contain a FEA study.

There are several options for creating Solid Edge automation programs. First, programs can be

written as external clients or add-ins. Furthermore, the programs can be written in any COM

enabled language; mainly VB.NET, C#, and C++. Generally, someone new to Solid Edge

537

Automation of Solid Edge Using External Clients Written in C++

programming would find it easiest to learn by using whatever methods they are most familiar

with. Regardless of the chosen method of Solid Edge automation, the Solid Edge SDK and the

object browser in Microsoft Visual Studio are essential for writing Solid Edge programs. The

Solid Edge Spy application can also be very useful for observing the inner workings of Solid

Edge.

The base program code for the external clients presented in this paper and [Putman, 2011] is

objectively less complex than the code presented in Jason Newell’s article, Solid Edge ST

Addins – Part I, and his Solid Edge AddIn Wizard [Newell, 2009] and [Newell, 2006]. The code

for the wizard itself is larger than the code for the entire SE_Project program. Because of this

added complexity, it is easier for someone without much programming experience to write an

external client rather than an add-in for Solid Edge. However, some applications of Solid Edge

automation are much better suited to add-ins rather than external clients, such as the file

importing and exporting performed by the SYCODE add-ins [SYCODE, n.d.].

For someone with no experience in C++ COM programming, the creation of a Solid Edge add-in

or external client can be a daunting task. Documentation, examples, and community support are

much more limited for C++ than for C# and especially for VB.NET. In addition, C++ is

notorious for being more difficult and time-consuming to learn and write than VB.NET and C#.

However, C++ is also known for being a more flexible and powerful language. For these

reasons, a beginner may consider starting off with VB.NET or C# to learn Solid Edge

programming before progressing to C++. Even so, this paper and the tutorials in [Putman, 2011]

should give a beginner a good head start in C++ Solid Edge programming.

538

A.C. Putman and K. Willmert

References

Cope, J. N. (2010), InspectionXpert for Solid Edge [Software], Available from
http://www.inspectionxpert.com/Products/ForSolidEdge/tabid/79/language/en-
US/Default.aspx

Electronic Data Services (2004), Solid Edge Version 15 Programmer's Guide. Available
from http://support.ugs.com/docs/se/v15/ProgGuide.pdf

IngeneaSoft (2010), Border Control [Software], Available from
http://www.ingeneasoft.com/products/solid-edge-control-utilities/border-control/

IngeneaSoft (2010), File Control [Software], Available from
http://www.ingeneasoft.com/products/solid-edge-control-utilities/file-control/

Newell, J. (2009, February 22), Solid Edge ST Addins – Part I, Retrieved from
http://www.codeproject.com/KB/COM/sestaddin1.aspx

Newell, J. (n.d.), Solid Edge Spy v1.0 [Software], Retrieved from
http://www.jasonnewell.net/Products/SolidEdgeSpy.aspx

Newell, J. (2006, August 21), Solid Edge AddIn Wizard for Visual Studio .NET 2005.
Retrieved from http://www.jasonnewell.net/Products/SolidEdgeAddinWizard.aspx

Putman, Aaron Charles (2011), Automation of Solid Edge ST2 Using External Clients
Written in C++, Master of Engineering Report, Mechanical and Aeronautical Engineering
Department, Clarkson University, Potsdam, NY 13699.

Siemens Product Lifecycle Management Software Inc. (2008), Solid Edge ST Programmer's
Guide. Available from http://support.ugs.com/docs/se/v100/mu28000.pdf

Siemens Product Lifecycle Management Software Inc. (2009), Solid Edge ST2 SDK.

SYCODE. (n.d.), Solid Edge Add-ins [Software], Available from
http://www.sycode.com/products/solid_edge/index.htm

