
AMO - Advanced Modeling and Optimization, Volume 13, Number 3, 2011

The 2-Neighbourhood Covering Problem
on Permutation Graphs

Akul Rana∗, Anita Pal‡ and Madhumangal Pal†

∗ Department of Mathematics, Narajole Raj College

Narajole, Paschim Medinipur- 721 211, INDIA.

e-mail: rana akul@rediffmail.com
‡ Department of Mathematics,

National Institute of Technology Durgapur,

Durgapur-713209, INDIA.

e-mail: anita.buie@gmail.com
† Department of Applied Mathematics with Oceanology and Computer Programming,

Vidyasagar University,

Midnapore-721 102, INDIA.

e-mail: mmpalvu@gmail.com

Abstract

Given a simple graph G = (V, E) and a fixed positive integer k. A vertex w is said to be k-

neighbourhood covers an edge (u, v) if d(u, w) ≤ k and d(v, w) ≤ k, where d(u, v) denotes the

shortest distance between the vertices u and v. A set D ⊆ V is called a k-neighbourhood covering

set if every edge in E is k-neighbourhood covered by some vertices of D. The k-neighbourhood

covering problem is to find a k-neighbourhood covering set of minimum cardinality in G. This

problem is NP-complete for general graphs, even it remains NP-complete for chordal graphs.

Here, O(n + m) time algorithm is presented to solve the 2-neighbourhood covering problem on

permutation graphs, where n is the number of vertices in G and m is the number of edges in the

complement of G. A dynamic programming approach is used to solve the problem.

*AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

463

464 Akul Rana, Anita Pal and Madhumangal Pal

Keywords: Design of algorithms, analysis of algorithms, permutation graph, k-neighbourhood

covering.

1 Introduction

A dominating set of a graph G = (V, E) is a subset D of V such that every vertex not in D is ad-

jacent to some vertex in D. The concept of domination in graph theory arises naturally from the

facility location problem in operations research. Depending on the different requirements of var-

ious location problems, domination has many variants, e.g., independent domination, connected

domination, total domination, edge domination, k-domination, etc. The k-neighbourhood cover-

ing problem is a variation of well studied domination problem. A vertex x, k-dominates another

vertex y if d(x, y) ≤ k where d(x, y) is the shortest distance between the vertices x and y. A

vertex z, k-neighbourhood covers (k-NCs, for short) an edge (x, y) if d(x, z) ≤ k and d(y, z) ≤ k,

i.e., the vertex z, k-dominates both x and y. Conversely, if d(x, z) ≤ k and d(y, z) ≤ k, the

edge (x, y) is said to be k-neighbourhood covered by the vertex z. A k-neighbourhood covering

set of the graph G = (V, E) is a subset D of the vertex set V , so that every edge in E is

k-neighbourhood covered (k-NC) by at least one vertex of D. The k-neighbourhood covering

problem is the problem of selecting a k-neighbourhood covering set of a graph G with the mini-

mum cardinality. The minimum cardinality of a k-neighbourhood covering set of G is called the

k-neighbourhood covering number and is denoted by ρ(G, k). Finding a k-neighbourhood cover-

ing number of an arbitrary graph is known to be NP-complete [10]. Polynomial time algorithms

are, however, available for some restricted classes such as interval graphs [3, 18], block graphs

[13].

A class of perfect graphs which is practically important and mathematically interesting is

the class of permutation graphs. Permutation graphs are perfect since they are cocomparability

graphs. In this paper, a special case of k-neighbourhood covering problem on permutation graphs

is considered. For the case, we take k = 2 i.e., 2-neighbourhood covering problem is solved on

permutation graphs. A formal description of the problem is as follows. Let G = (V, E) be a

permutation graph with V = {1, 2, . . . , n} and |E| = m. A vertex z, 2-NCs an edge (x, y) ∈ E if

d(x, z) ≤ 2 and d(y, z) ≤ 2. The problem is to find a set of vertices D with minimum cardinality

such that every edge in E is 2-neighbourhood covered by at least one member in D.

The permutation graph is defined below.

The 2-Neighbourhood Covering Problem on Permutation Graphs 465

Definition 1 Let G = (V, E) be an undirected graph with vertices V = {1, 2, . . . , n} and their

exists a permutation π = {π(1), π(2), . . . , π(n)} on the set {1, 2, . . . , n}. The graph G is said to

be a permutation graph if for all i, j ∈ V , (i, j) ∈ E if and only if

(i − j)(π−1(i) − π−1(j)) < 0,

where π−1(i) denotes the position of the number i in π = {π(1), π(2), . . . , π(n)}, for each i ∈ V .

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�
�

���

2

3
16

1

4

6
7

8
5

10 9

13

11

12
15

14

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�1 2 3 4 5 6 7 9 10 11 12 13 14 15 168

13 2 6 8 7 4 10 13 5 11 9 15 16 12 14

Figure 1: A permutation graph G and its corresponding matching diagram.

A permutation graph can also be visualized by its corresponding matching diagram. The

matching diagram consists of two horizontal parallel lines, called the top channel and the bottom

channel. The numbers 1, 2, . . . , n are assigned on the top channel, in their order, from left

to right, and for each i = 1, 2, . . . , n the number π(i) on the bottom channel are assigned

just below the number i on the top channel. Then, for each i ∈ V , a straight line is drawn

joining two i’s, one on the top channel and other on the bottom channel. The same number

i is used to label the resulting line segment. Note that, the line segment i intersect the line

466 Akul Rana, Anita Pal and Madhumangal Pal

segment j if and only if i and j appear in reversed order in π. That is, the line segments i

and j intersect if and only if the vertices i and j of the corresponding permutation graph are

adjacent. This is the same as the criterion for the vertices i and j of the permutation graph to

be adjacent. Therefore, an intersection graph of the lines of a matching diagram is exactly the

corresponding permutation graph. Figure 1 shows a permutation graph and its corresponding

matching diagram. Throughout the paper we refer to this example whenever necessary for

illustration.

For a given permutation graph in the form of an adjacency matrix or an adjacency list, one can

construct the matching diagram in O(n2) time [21]. Henceforth, it is assumed that a matching

diagram is given for the input graph, the permutation is stored in the array π(i), i = 1, 2, . . . , n

and the inverse permutation of π is stored in array π−1(i), i = 1, 2, . . . , n. The array π−1(i)

can be computed in O(n) time from the array π(i). In the matching diagram π−1(i) gives the

position of i on the bottom channel. In Figure 1, π−1(7) gives the position of 7 on the bottom

channel which is 6.

For better illustration of the proposed approach, the matching diagram of the permutation

graph is used. The words ’line’ and ’vertex’ are used interchangeably throughout this paper to

refer a member of V . Two dummy vertices 0 and n + 1 are added to V such that π(0) = 0

and π(n + 1) = n + 1, for convenience. Throughout this paper it is assumed that all graphs are

connected, finite, simple and undirected.

1.1 Review of previous work

Permutation graphs have been a favorite graph class for researchers designing polynomial time

domination algorithms since early eighties. Many researchers [1-2, 4-8, 15-17, 19-21] have been

devoted to the study of permutation graphs. Pnueli et al. [19] described an O(n3) time algorithm

for testing if a given undirected graph G is a permutation graph. Spinrad [21] improved the

above result by deriving an O(n2) algorithm for orienting comparability graphs.

There has been a growing interest in the development of efficient sequential algorithm for

domination problems in graphs. An entire issue was dedicated to domination problems on

graphs containing a wealth of results and references; see [12]. It is known that dominating set

problem on arbitrary graphs is NP-complete [10]. The k-neighbourhood domination problem

was first introduced in [9]. Hwang and Chang [13] gave a linear time sequential algorithm for

k-domination problem on block graphs. For k = 1, Lehel et al. [15] have presented a linear time

The 2-Neighbourhood Covering Problem on Permutation Graphs 467

algorithm for computing ρ(G, 1) for an interval graph G. Hwang and Chang [14] have presented

a linear time algorithm to compute ρ(G, 1) for a strongly chordal graph G provided that strong

elimination ordering is given. Hwang et al. [14] also proved that k-neighbourhood covering

problem is NP-complete for chordal graphs. For k = 2, Mondal et al. [18] have presented a

linear time algorithm for computing ρ(G, 1) for an interval graph G. Recently, Barman et al.

[3] solved k-neighbourhood covering problem on interval graphs. Many algorithms are available

for solving several dominating set problems on permutation graphs [1-2, 4-8, 15-17, 19-20].

1.2 Application

Permutation graph have many applications in scheduling problem. See for example [6] where

permutation graphs are used to describe the memory requirements of a number of programs

at a certain time. See [11] for other practical applications of permutation graphs. The k-

neighbourhood covering problem is an important problem in graph theory and it has many

applications in real life problems. The domination is a natural model for location problems in

operations research, networking, etc. The k-neighbourhood covering problem is a variant of the

domination problem.

1.3 Main result

To the best of our knowledge, k-neighbourhood covering problem is not solved for k ≥ 2 on per-

mutation graphs. Using structural properties of the matching diagram of permutation graph, an

O(n+m) time algorithm is designed to solve 2-neighbourhood covering problem on permutation

graphs.

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2, some useful notations and observations

are introduced. In Section 3, some important properties related to 2-neighbourhood covering

set are provided for understanding the algorithm. In Section 4, an O(n + m) time algorithm

is designed for solving 2-neighbourhood covering problem on a permutation graph. The time

complexity is also calculated in this section. Finally, in Section 5, a concluding remarks is given.

468 Akul Rana, Anita Pal and Madhumangal Pal

2 Notations and preliminaries

In this section, some notations are introduced which are used in the rest of the paper.

For each i ∈ V , we define left span of i, denoted by ls(i), to be the line segment with lowest

number on the top channel, say k1, such that all edges (x, y) ∈ E, k1 ≤ x, y ≤ i are 2-NC by i,

i.e., ls(i) = k1, if k1 is the lowest vertex covered by i and there is no vertex j, k1 ≤ j ≤ i such

that d(i, j) > 2. For example, ls(8) = 1, ls(4) = 4, etc.

Likewise, the right span of the vertex i is the line segment with highest number on the top

channel, say k2, such that all edges (x, y) ∈ E, i ≤ x, y ≤ k2 are 2-NC by i and is denoted by

rs(i), i.e., rs(i) = k2, if k2 is the highest vertex covered by i and there is no vertex j, i ≤ j ≤ k2

such that d(i, j) > 2. For example, rs(8) = 8, rs(4) = 8, etc.

A line i is left to the line j if i < j and π−1(i) < π−1(j). Similarly, a line i is right to the

line j if i > j and π−1(i) > π−1(j). Right(i) is the set of lines right to the line segment i and

Left(i) is the set of lines left to the line segment i.

Define two arrays T (i) and B(i) as follows.

T (i) is the highest vertex on the top channel intersecting the line segment i such that T (i) > i.

If there is no such vertex then T (i) = i. For example, T (1) = 8, T (2) = 3, T (5) = 13 and

T (10) = 10.

B(i) is the vertex with highest position on the bottom channel intersecting i such that

π−1(B(i)) > π−1(i). If there is no such vertex then B(i) = i. For example, B(1) = 1, B(3) = 1

and B(13) = 12.

T (i) and B(i) plays an important role regarding the solution procedure of our problem. From

above definitions, it is observed that T (i) ≥ i and π−1(B(i)) ≥ i.

L(i) is defined to be the set of lines between the vertices i and T (i) on top channel not

intersecting the line segment T (i). For example, L(1) = {2, 3, 6}. R(i) denotes the set of lines

between the vertices T (i) and T (B(T (i))) on top channel not intersecting the line segment

B(T (i)). For example, R(1) = {9} and R(2) = {4}.
From above definitions, it is clear that L(i) and R(i) are subsets of Left(i) and Right(i)

respectively.

Using Right(i) and Left(i), one can compute L(i) and R(i).

Define, ri as the smallest line of R(i) and li is the smallest line of L(i).

For each i, let mi be the line segment with smallest position on bottom channel to the right of

T (i) i.e., mi = {k : k ∈ Right(T (i)) and π−1(k) is minimum}. For example, m1 = 10, m3 = 6,

The 2-Neighbourhood Covering Problem on Permutation Graphs 469

etc.

The symbol x ∼ y is used to denote the adjacency between the vertices x and y, i.e., there is

an edge between x and y. It should be noted that x ∼ y implies y ∼ x.

To compute all T (i), the lines on top and bottom channels of the matching diagram are

scanned, using x and y for index of the top and bottom channels respectively. The following

algorithm computes all T (i).

Algorithm TOP

Input: The permutation graph G = (V, E) with its permutation representation.

Output: All T (i), i = 1, 2, . . . , n.

Initially x = y = n.

Step 1: While π−1(x) ≤ y and y ≥ 1 then

T (π(y)) = x, y = y − 1

endwhile

Step 2: While π−1(x) > y do

x = x − 1

endwhile

goto step 1.

end TOP

Clearly, algorithm TOP takes O(n) time to compute all T (i), i = 1, 2, . . . , n.

A similar algorithm can be designed to compute all B(i), i = 1, 2, . . . , n.

Lemma 1 All Right(i), i = 1, 2, . . . , n can be computed in O(n + m) time.

Proof: To compute Right(i) for all i ∈ V , line segments on the top channel are scanned from

0 to n and maintain a list L of scanned lines in increasing order of their positions on bottom

channel. When the line j ∈ V is scanned, find the first line in L with position greater than that

of j on the bottom channel. Let this line be k (if exists). For each line i in L before k, add j to

Right(i) and insert j before k in L. This procedure takes O(
n∑

i=0
|Right(i)|) = O(n + m) time to

compute all Right(i). �

For example, let π = {0, 3, 1, 4, 2}. Initially, L = ∅. First add 0 to L. Next, add 1 to L,

after 0, since there exists no line in L with position > 3 (position of 1 on bottom channel). For

j = 3, add 3 to L before 1 in L as π−1(1) > π−1(3). Similarly, for j = 4, add 4 to L before 2

470 Akul Rana, Anita Pal and Madhumangal Pal

in L as π−1(2) > π−1(4). Finally, L = {0, 3, 1, 4, 2}, Right(0) = {1, 2, 3, 4}, Right(1) = {2, 4},
Right(2) = ∅, Right(3) = {4} and Right(4) = ∅.

Lemma 2 All Left(i), i = 1, 2, . . . , n can be computed in O(n + m) time.

Proof: Scan all the lines in the permutation diagram from n + 1 down to 1 on the top channel

and maintain a list K of scanned lines in descending order of their position on the bottom

channel. When scan the line j ∈ V , find the first line in K with position less than that of j on

bottom channel. Let this line be m (if exists). For each line i in K before m, add j to Left(i)

and insert j before m in K. This procedure takes O(
n∑

i=0
|Left(i)|) = O(n + m) time to compute

all Left(i). �

For example, let π = {3, 1, 4, 2, 5}. Initially K = ∅. In this case first add 5 to K. Since

there is no line in K with position less than that of 4, K becomes {5, 4} and 4 is a member

of Left(5). Continuing this process, finally we get K = {5, 2, 4, 1, 3}, Left(5) = {4, 3, 2, 1},
Left(4) = {3, 1}, Left(3) = ∅, Left(2) = {1}, Left(1) = ∅.

From the above lemmas, it is clear that the lines in Right(i) obtained from Lemma 1 are in

increasing order, i.e., if Right(i) = {i1, i2, · · · , ir} then i1 < i2 < · · · < ir.

Also, the lines in Left(i) obtained from Lemma 2 are in descending order, i.e., if Left(i) =

{j1, j2, · · · , jr} then j1 > j2 > · · · > jr.

3 Some results

Before presenting the proposed algorithm for finding 2-neighbourhood covering set of a permuta-

tion graph, some important results relating to 2-neighbourhood covering set of the permutation

graph are proved.

Observe that, a vertex z ∈ V , 2-NCs an edge (x, y) ∈ E, if z intersects at least one of the line

segments x and y or if both the line segments x and y intersects a line segment which intersects

the line z. So, the aim is to find a set of lines D with minimum cardinality such that for every

(x, y) ∈ E, there exists at least one member of D that intersects at least one of the lines x and

y or both x and y intersects a line which intersects the line z.

The following result due to Folklore is true for any permutation graph.

Lemma 3 Let G be a permutation graph and u, v and w be three vertices of G such that

u < v < w. If u is adjacent to w, then v is adjacent to at least one of u or w.

The 2-Neighbourhood Covering Problem on Permutation Graphs 471

Based on the above result, the following lemmas are proved that are the foundation of our

algorithm.

Lemma 4 The vertex B(i), 2-NCs all the edges (x, y) ∈ E, where B(i) ≤ x, y ≤ T (B(i)).

Proof: To prove this lemma, it is suffices to prove that d(B(i), x) ≤ 2 for all B(i) ≤ x ≤ T (B(i)).

Let B(i) ≤ x ≤ T (B(i)). Then, x is adjacent to at least one of B(i) and T (B(i)). Recall that,

B(i) is the line with highest position on bottom channel intersecting i. Also, T (B(i)) is the

highest line on the top channel intersecting B(i). Now, if x is adjacent to B(i) then d(B(i), x) =

1 < 2. Again, if x is adjacent to T (B(i)) then, also d(B(i), x) ≤ 2 as B(i) ∼ T (B(i)) ∼ x. Hence

the lemma holds. �

From the above lemma, it is observed that the vertex B(i), 2-NCs all the edges (x, y) ∈ E

such that B(i) ≤ x, y ≤ T (B(i)). But, since the graph is connected, if T (B(i)) < n then there

exists at least one edge (x, y) ∈ E such that B(i) ≤ x ≤ T (B(i)) and y > T (B(i)). These edges

are not covered by B(i). To cover these edges, we select the vertex B(mB(i)) as another member

of D.

Lemma 5 The vertex B(mB(i)), 2-NCs all the edges (x, y) ∈ E such that B(i) ≤ x ≤ T (B(i))

and y > T (B(i)).

Proof: From definition, it follows that mB(i) is the line segment with smallest position on the

bottom channel that lies to the right of T (B(i)), i.e., T (B(i)) < mB(i) and π−1(T (B(i))) <

π−1(mB(i)). Since, (x, y) ∈ E such that B(i) ≤ x ≤ T (B(i)), y > T (B(i)) and x ≤ B(mB(i)) <

y, y must intersects B(mB(i)). Therefore, the vertex B(mB(i)), 2-NCs all edges (x, y) ∈ E such

that B(i) ≤ x ≤ T (B(i)) and y > T (B(i)) as B(mB(i)) ∼ y ∼ x. �

Lemma 6 If R(i) = ∅, then the vertex T (i), 2-NCs all the edges (x, y) ∈ E, where i ≤ x, y ≤
T (B(T (i))).

Proof: Clearly, (i, T (i)) ∈ E. Let (x, y) ∈ E such that i ≤ x, y ≤ T (B(T (i))). There are three

cases may arise.

Case 1: i ≤ x, y ≤ T (i). Then x and y are adjacent to at least one of i and T (i). Therefore,

T (i), 2-NCs the edge (x, y), since, T (i) ∼ i ∼ x or T (i) ∼ x.

Case 2: T (i) ≤ x, y ≤ T (B(T (i)). Since (T (i), B(T (i))) ∈ E and R(i) = ∅, T (i), 2-NCs the

edge (x, y), since, T (i) ∼ B(T (i)) ∼ x and T (i) ∼ B(T (i)) ∼ y.

472 Akul Rana, Anita Pal and Madhumangal Pal

Case 3: i ≤ x ≤ T (i) and T (i) < y ≤ T (B(T (i)). In this case the line x must intersects the

line T (i). Therefore, T (i), 2-NCs the edge (x, y), as T (i) ∼ x ∼ y.

Hence the lemma holds. �

It is easy to verify that, if R(i) �= ∅ and T (B(T (i))) = n then also the vertex T (i), 2-NCs all

the edges (x, y) ∈ E, where i ≤ x, y ≤ T (B(T (i))).

Lemma 7 If R(i) �= ∅ and T (B(T (i))) < n, then the vertex T (i), 2-NCs all edges in between

the lines i and ri − 1.

Proof: Recall that, ri is the smallest line of R(i), that is, ri is the smallest line in between the

vertices T (i) and T (B(T (i)) on the top channel that does not intersect the line B(T (i)). Since

(ri, B(T (i))) /∈ E, (ri, T (i)) /∈ E. Therefore T (i) does not 2-NC the vertex ri.

Now, T (i) covers all the edges (x, y) ∈ E, i ≤ x, y ≤ T (i) as i ∼ x or i ∼ T (i) ∼ x.

Also, T (i) covers all the edges (x, y) ∈ E, T (i) ≤ x, y ≤ ri − 1 as T (i) ∼ B(T (i)) ∼ x and

T (i) ∼ B(T (i)) ∼ y. Lastly, if (x, y) ∈ E such that i ≤ x ≤ T (i) and T (i) ≤ y ≤ ri − 1 then

T (i) intersects at least one of x and y since (x, y) ∈ E. Hence the lemma holds. �

From the above lemmas, it is observed that the right span of B(i) is T (B(i)). If R(i) �= ∅ and

T (B(T (i))) < n, the right span of T (i) is ri − 1. If R(i) = ∅ or R(i) �= ∅ and T (B(T (i))) = n

then the right span of T (i) is T (B(T (i))).

Lemma 8 If L(i) = ∅, then the line B(T (i)) has the maximum span among all the lines those

have left span i.

Proof: The span of the vertex B(T (i)) is T (B(T (i)))− i. Observe that no line right to T (i) on

the top channel can have left span i. Let j be a line other than B(T (i)) such that j ≤ T (i) and

has left span i. To prove the lemma, it is suffices to prove that T (B(T (i))) ≥ rs(j). There are

two cases may arise:

Case 1: j intersects B(T (i)) and Case 2: j does not intersect B(T (i)).

If j intersects B(T (i)) then B(T (i)) < j ≤ T (i). Therefore, π−1(B(T (i))) ≥ π−1(j) and hence

T (B(T (i))) ≥ T (j). But in this case rs(j) = T (j). Hence the result follows.

If j does not intersect B(T (i)) then j < B(T (i)), since, otherwise j = B(T (i)) which contra-

dicts our assumption. Therefore T (j) < T (B(T (i))). There are two subcases may occur:

Subcase 1: j intersects T (i). In this case, rs(j) = T (j) and since T (j) < T (B(T (i)),

T (B(T (i))) > rs(j).

The 2-Neighbourhood Covering Problem on Permutation Graphs 473

Subcase 2: j does not intersect T (i). In this case, right span of j is π−1(B(j)), if R(j) = ∅
(by Lemma 6). Since j does not intersect B(T (i)) and T (i), clearly, T (B(T (i))) > rs(j). Hence

the lemma holds. �

� �� �� �� �� �� �� �� �� �� �

� �� �� �� �� �� �� �� �� �� �

1 12 23 34 45 56 67 78 89 910 10

6 62 21 18 87 710 1054 3 9 9

�
�

�
�

��
3 54

�
�
�
�
�

B(l1) has maximum span T (1) has maximum span

Figure 2: Illustration of Lemma 9

Lemma 9 If L(i) �= ∅, then either T (i) or B(li) has the maximum span among all the lines

those have left span i.

Proof: Similar to the previous lemma. �

4 The algorithm

The main basic idea of Algorithm 2-NC is described below. The proposed algorithm proceeds

by covering edges from left to right as on permutation diagram.

Let D be the 2-neighbourhood covering set of the given permutation graph G. If L(1) = ∅
then select B(T (1)) as the first member of D, otherwise, T (1) or B(l1) will be the first member

of D. Let the first member of D be t. If rs(t) = n then stop. Otherwise, replace 1 by rs(t) + 1

or mt. This selection is continued till right span of newly selected vertex of D, becomes greater

than or equal to n.

A formal description of the algorithm is given in Algorithm 2-NC.

Algorithm 2-NC

474 Akul Rana, Anita Pal and Madhumangal Pal

Input: A permutation graph G = (V, E) and its permutation representation.

Output: A minimum cardinality 2-neighbourhood covering set D in G.

Initially D = ∅ (empty set) and i = 1.

Step 1: Compute the arrays T (i), B(i) for each vertex i ∈ V .

Step 2: Compute the sets L(i), R(i) for each vertex i ∈ V .

Step 3: If L(i) = ∅ then

t = B(T (i)), D = D ∪ {t} and goto Step 5. (Lemma 8)

elseif T (B(li)) > rs(T (i)) then

t = B(li), D = D ∪ {t} and goto Step 5. (Lemma 9)

else

t = T (i), D = D ∪ {t}, goto Step 4. (Lemma 6)

endif

Step 4: If rs(t) = n then

stop

else

i = rs(t) + 1, goto Step 3.

endif.

Step 5: If rs(t) = n then

stop

else

i = mt, goto Step 3.

endif.

end 2-NC

The proof of the correctness of the algorithm directly follows from the Lemmas 8 and 9.

Theorem 1 Algorithm 2-NC finds a minimum cardinality 2-neighbourhood covering set on per-

mutation graphs in O(n + m) time.

Proof: Each of T (i) and B(i) can be computed in O(n) time. Computation of Right(i) and

Left(i) requires O(n + m) steps (Lemma 1). Using the sets Right(i) and Left(i), the sets L(i)

and R(i) can be computed in constant time. From the set Right(i), mi can be computed in

constant time. Therefore, overall time complexity is O(n + m). �

The 2-Neighbourhood Covering Problem on Permutation Graphs 475

5 Concluding remarks

Although many domination algorithms have been proposed for permutation graphs, to date, no

algorithm is available for solving k-domination problem on permutation graphs for k ≥ 2. In this

paper, an O(n + m) time sequential algorithm is presented to solve 2-neighbourhood covering

problem on permutation graphs. This approach can be extended to solve 2-neighbourhood

covering problem on trapezoid graphs which properly contain both permutation graphs and

interval graphs.

References

[1] Arvind, K. and Pandu Regan, C., Connected domination and steiner set on weighted per-

mutation graphs, Information Processing Letters, 41 (1992), 215-220.

[2] Atallah, M. J., Manacher, G. K. and Urrutia, J., Finding a minimum independent domi-

nating set in a permutation graph, Discrete Appl. Math., 21 (1988), 177-183.

[3] Barman, S., Pal, M. and Mondal, S., The k-neighbourhood-covering problem on interval

graphs, Intern. J. of Computer Math., (2010), DOI: 10.1080/00207160802676570.

[4] Corneil, D. G. and Stewart, L. K., Dominating sets in perfect gaphs, Discrete Math., 86

(1990), 145-164.

[5] Brandstadt, A. and Kratsch, D., On domination problems on permutation and other graphs,

Theoret. Comput. Sci., 54 (1987), 181-198.

[6] Even, S., Pnueli, A. and Lampel, A., Permutation graphs and transitive graphs, J. Assoc.

Comput. Mach., 19 (1972), 400-410.

[7] Corneil, D. G. and Stewart, L. K., Dominating sets in perfect gaphs, Discrete Math., 86

(1990), 145-164.

[8] Farber, M. and Keil, J., M., Domination in permutation garphs, J. Algorithms, 6 (1985),

309-321.

[9] Fink, J. F. and Jacobson, M. S., On n-domination and n dependence and forbidden sub-

graphs, in Procedings of the 5th international conference, Wiley, New York (1984), 301-311.

476 Akul Rana, Anita Pal and Madhumangal Pal

[10] Garey, M. R. and Jhonson, D. S., Computers and Interactibility: A guide to the theory of

NP completeness, W. H. Freeman and Company, San Fransisco, 1979.

[11] Golumbic, M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New

York, 1980.

[12] Hedetniemi, S. T. and Laskar, R. C., Special volume: Topics on domination, Discrete Math.,

86(1-3)(1990).

[13] Hwang, S., F. and Chang, G., J., The k-neighbor domination problem, Europian J. Oper.

Res., 52(1991), 373-377.

[14] Hwang, S., F. and Chang, G., J., k-neighbourhood covering and independence problem for

chordal graphs, SIAM J. Discrete Math., 11(4)(1998), 633-643.

[15] Lahel, J. and Tuza, Z., Neighborhood perfect graphs, Discrete Math., 61 (1986), 93-101.

[16] Liang, Y., Rhee, C., Dhall, S., K. and Lakshmivarahan, S., A new approach for domination

problem on permutation graphs, Information Processing Letters, 37 (1991), 219-224.

[17] Liang, Y. D., Lu, C. L. and Tang, C. Y., Efficient domination on permutation graphs and

Trapezoid graphs, LNCS , 1276 (1997), 232-241.

[18] Mondal, S., Pal M. and Pal T. K., An optimal algorithm to solve 2-neighbourhood covering

problem on interval graphs, Intern. J. Computer Math., 79 (2002), 189-204.

[19] Pnueli, A., Lampel, A. and Even, S., Transitive orientation of graphs and identification of

permutation graphs, Canadian J. Math., 23 (1971), 160-175.

[20] Rhee, C., Liang, Y. D., Dhall, S. K. and Lakshmivarahan, S., An O(n +m)-time algorithm

for finding a minimum-weight dominating set in a permutation graph, SIAM J. Comput.,

25(2) (1996), 404-419.

[21] Spinrad, J. R., On comparability and permutation graphs, SIAM J. Comput., 14 (1985),

658-670.

