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Abstract: By using a smoothing penalty function, we present a trust region
method for equality constrained optimization problems, the penalty function is
an approximation of the l1 function penalty function and overcomes the nons-
moothness of the l1 function. We design a sequence unconstrained optimization
method which use the trust region method as the inner algorithm and obtain
the global convergence of the proposed method.
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1. Introduction

In this paper, we consider the equality constrained optimization problem:

min f(x),

s.t. c(x) = 0,
(1)

where f(x) : Rn → R, c(x) = (c1(x), c2(x), ......, cm(x))T , ci(x) : Rn → Rm, (i =
1, 2, ......,m), (m ≤ n) are assumed to be twice continuously differentiable.

Trust region method is one of the most well-known method for solving problem
(1). Due to its strong convergence and robustness, trust region methods have
been proved to be efficient for solving problem (1), and there are many research
on trust region methods available for solving such problem, see, for examples,
[1, 5, 7, 8, 10].

To obtain the next iteration point in trust region methods, one often use
a penalty function as the merit function, the following l1 penalty function is
commonly used as the merit function.

Ψ(x, α) = f(x) + α

m∑
i=1

|ci(x)|, (2)

where α > 0 is a penalty parameter.
The nonsmooth of function Ψ(x, α) often bring us some difficulty, for example,

the Matatos effect will occur. This motivates the use of a smoothing penalty
function.
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Recently, [9] introduced a smoothing penalty function for nonlinear optimiza-
tion, which is defined as follows:

Φ(x, α, µ) = f(x) + α

m∑
i=1

1

µ
(ln2 + ln(1 + cosh(µci(x)))) (3)

where µ > 0 is a smoothing parameter.
This function can be seen as an approximation of the function (2), the nu-

merical examples in [9] showed that the sequence unconstrained penalty method
based on this smoothing function behaviors well.

In this paper, we aim to use the smoothing penalty function (3) as the merit
function and combine it with the trust region method to solve the problem (1).
Under some reasonable assumptions, we establish the global convergence of the
proposed algorithm.

This paper is organized as follows: In Section 2, we discussion some properties
of the smoothing penalty function. In Section 3, propose our algorithm and
establish its global convergence. The conclusion is given in Section 4.

2. Smoothing Penalty Function

In this section, we discuss some properties of the smoothing penalty function
(3). For convenience, we set

φ(x, µ) =

m∑
i=1

1

µ
(ln2 + ln(1 + cosh(µci(x)))),

so

Φ(x, α, µ) = f(x) + αφ(x, µ).

In what follows, we discuss some properties of the function (3). The first prop-
erty gives differentiability, first order and second order expressions.

Proposition 2.1 For any stationary µ ∈ R+, if f(x), ci(x), (i = 1, 2, · · · ,m) are
k times continuously differentiable, then Φ(x, α, µ) is continuously differentiable
too. If f(x), ci(x), (i = 1, 2, · · · ,m) is twice continuously differentiable, then

∇xΦ(x, α, µ) = ∇xf(x) + α

m∑
i=1

sinh(µci(x))

1 + cosh(µci(x))
∇xci(x)

and

∇2
xxΦ(x, α, µ) = ∇2

xxf(x) + αµ

m∑
i=1

1

1 + cosh(µci(x))
∇xci(x)∇xci(x)T

+α

m∑
i=1

sinh(µci(x))

1 + cosh(µci(x))
∇2
xxci(x)

Similar to lemma2.2.1 in literature[12], we can get the following properties:
Proposition 2.2 If f(x),ci(x), (i = 1, 2, · · · ,m) is convex, then Φ(x, α, µ) is
convex too.
Proposition 2.3 Φ(x, α, µ) > Ψ(x, α),x ∈ Rn.
Proposition 2.4 sup

x∈Rn

(Φ(x, α, µ)−Ψ(x, α)) ≤ mα
µ ln 4.

Proposition 2.5 lim
µ→∞

Φ(x, α, µ) = Ψ(x, α).
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Proposition 2.6 If µ1 < µ2, then Φ(x, α, µ1) > Φ(x, α, µ2), x ∈ Rn.

3. Algorithm and Global convergence

In this section, we give the smoothing trust region method and the proof of
global convergence. The algorithm consists of three parts: the first part builds
the algorithm framework; the second part presents trust region inner iteration;
the last part gives the main algorithm.

We first give the algorithm framework as follows:
Step 1 Given x0 ∈ Rn, α0 > 0, µ0 > 0, ε > 0, k = 0; Further a fixed parameter
η1 � 1, η2 � 1, η3 � 1.

Step 2 If
m∑
i=1

ci(x(αk, µk)) > ε, turn to step3;

else return xk.
Step 3 With fixed α = αk, µ = µk, using the initial value xj to compute

min Φ(x, α, µ) (4)

and get the solution as xk+1

Step 4 Update αk or µk depending on the infeasibility of xk+1.

If
m∑
i=1

ci(x(αk, µk)) ≤ η1/µk,then update µk:

µk+1 = η2µk, αk+1 = αk.

Else update αk:

αk+1 = η3αk, µk+1 = µk, xk+1 = xk.

Step5 k = k + 1, turn to step 2.

Now, let’s consider the trust region method for solving the problem (4). The
corresponding trust region subproblem for (4) is as follows:

min mk(d) = gTk d+
1

2
dTBkd,

s.t. ‖d‖ ≤ ∆k,
(5)

where gk = ∇xΦ(x, α, µ), Bk = ∇2
xxΦ(x, α, µ). ∆k is the trust region radius.

The method for solving the subproblem was described as followings:

Algorithm 1(Newton-CG-Steihaug)[10]

Step0 Given ε > 0, d0 = 0, r0 = gk, p0 = −r0, j = 0;
Step1 If ‖r0‖ < ε, return d = d0;
Step2 If pTj Bkpj ≤ 0, then find τ such that
d = dj + τpj minimizes mk(d) and satisfies ‖d‖ = ∆k;
Step3 Set αj = rTj rj/(p

T
j Bkpj), dj+1 = dj + αjpj ;

Step4 If ‖dj+1‖ ≥ ∆k,
find τ ≥ 0 such that d = dj + τpj , and ‖d‖ = ∆k, return d;
Step5 Set rj+1 = rj + αjBkpj ;
Step6 If rj+1 < ε‖r0‖, return d = dj+1;
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Step7 Set βj+1 = rTj+1rj + 1/(rTj rj), pj+1 = rj+1 + βj+1pj , j = j + 1,turn to
step2.

The trust-region Newton-CG method has a number of attractive computa-
tional and theoretical properties. First, it is global convergent. Its first step
along the direction −∇Φ(xk, αk, µk) identifies the Cauchy point for the sub-
problem and any subsequent CG iterates only serve to improve the model value.
Second, it requires no matrix factorizations without worrying about fill-in during
a direct factorization.

Main algorithm
Step0 Given a appropriate sequence α0 > 0, ε > 0, 0 < δ < 1, λ ≥ 1,
γ ≥ λ, η1 � 1, η2 � 1, η3 � 1, µ0 > 0, k = 0;

Step1 If
m∑
i=1

ci(x(αk, µk)) > ε, turn to Step2;

else return xk;
Step2 i = 0, set x̃0 = xk;
Step3 If ‖∇Φ(x̃i, αk, µ)‖ ≤ ε, turn to Step9;
Step4 Obtain di by solving min Φ(x, α, µ) by Algorithm 1;
Step5 Compute Ared,i = Φ(x̃i, αk, µk)− Φ(x̃i + di.αk, µk),
Pred,i = mk(0)−mk(di),
ρi = Ared,i/Pred,i;
Step6 If ρi ≥ δ, then set ∆i = max{∆i, γ‖di‖}
else ∆i+1 ∈ [‖di‖, λ‖di‖];
Step7 If ρi ≥ ε, then x̃i+1 = x̃i + di,
else x̃i+1 = x̃i;
Step8 i = i+ 1, turn to step3;
Step9 xk = x̃i+1;
Step10 Update αk or µk depending on the infeasibility of xk+1.

If
m∑
i=1

ci(x(αk, µk)) ≤ η1/µk, then update µk:

µk+1 = η2µk, αk+1 = αk;

Else update αk:

αk+1 = η3αk, µk+1 = µk, xk+1 = xk;

Step11 k = k + 1, turn to Step1.

After limited iterations, we can get a x(αk, µk) meets the
m∑
i=1

ci(x(αk, µk)) < ε,

so x(αk, µk) is the optimal solution of problem (3). Then we can get the solution
of original problem.

We denote the Lagrangian of (1) is given by

L(x, λ) = f(x) + c(x)Tλ

where λ ∈ Rm is a lagrange multiplier.
We recall the second order conditions for (1) and the well-known result [15].
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Theorem 1. Let (x?, λ?) fulfill

∇xL(x?, λ?) = 0,

c(x?) = 0,

dT∇2
xxL(x?, λ?)d > 0

(6)

where d ∈ {y : ∇c(x?)T y = 0}. Then x? is a strict local minimizer of (1).

In what follows, we introduce two theorems to prove the global convergence
of the algorithm.

The following preliminary results can be found in [9].

Theorem 2. Let (x?, λ?, µ?) satisfy the second order conditions for a minimizer
of problem (1). Then for α > ᾱ with

ᾱ =‖ (µ?, λ?) ‖∞

x? is a strict unconstrained local minimizer of Ψ(x, α).

The result shows that Φ indeed is an exact penalty function for (1). A proof
can be found in [13, 14].

Theorem 3. Let (x?, α?) satisfy the second order conditions for a minimizer of
problem (1). Then for µ → ∞ there exists a minimizer x(µ) of Φ(x, α, µ) and
x(µ)→ x? as µ→∞.

This result shows that we can get a local minimizer x(µ) of problem (1) as
increasing the smoothing factor.

Theorem 4. Assume that ε > 0 in algorithm meets the conditions φ(x, µ) ≤ ε,
then the algorithm stops in finite steps.
Proof. Suppose this theorem is false, then there exists a sequence {αk}, and
lim
k→∞

αk =∞,

m∑
i=1

ci(x(αk, µk)) > ε (7)

For every k holds.
On the other side, there exists a vector x? ∈ Rn,

s.t.

m∑
i=1

ci(x
?) < ε (8)

f(x?) + αk

m∑
i=1

ci(x
?) ≥ f(x(αk, µk)) + αk

m∑
i=1

ci(x(αk, µk))

≥ f(x(αo, µ0)) + αk

m∑
i=1

ci(x(αk, µk))
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which means

αk

m∑
i=1

ci(x
?)− αk

m∑
i=1

ci(x(αk, µk)) ≥ f(x(αo, µ0))− f(x?)

Both sides divided by αk,
m∑
i=1

ci(x
?)−

m∑
i=1

ci(x(αk, µk)) ≥ 1

αk
(f(x(αo, µ0))− f(x?))→ 0

So
m∑
i=1

ci(x
?)−

m∑
i=1

ci(x(αk, µk)) ≥ 0.

But, from (7) and (8), we know
m∑
i=1

ci(x
?)−

m∑
i=1

ci(x(αk, µk)) < 0,

Therefore, the hypothesis is not established. The contradiction shows that the
algorithm stops in finite steps.

Theorem 5. If the algorithm stops in finite steps at x(αk, µk), then x(αk, µk)
is the local minimum point of problem min Φ(x, α, µ).
Proof If algorithm stops in finite steps at x(αk, µk), then x(αk, µk)is the local
minimum point of Φ(x, αk, µk).
Suppose this theorem is false, x(αk, µk)is the local minimum point of Φ(x, αk, µk),
satisfying:

φ(x(αk, µk), µk) = 0

Then there exist a sequence {xk}, xk → x(αk, µk), xk 6= x(αk, µk), and f(xk) <
f(x(αk, µk)).
Since φ(x, µ) is continuous, so

φ(xk, µ) = 0

Φ(xk, αk, µk) < Φ(x(αk, µk), µk)

This contradicts to x(αk, µk) is the local minimum point of Φ(x, αk, µk). So
x(αk, µk) is the local minimum point of problem min Φ(x, α, µ).

4. Conclusion

We have developed a penalty trust-region method to solve equality con-
strained problems. With this method, we can transfer the equality constrained
problem into a simple, smoothing, unconstrained problem, and then use trust-
region method to deal with it. The accuracy of the algorithm is also controlled
by the smooth parameter and penalty parameter.
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