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A Duality Algorithm for Solving General Variational
Inclusions 1

Abdellatif Moudafi2

Abstract. To solve general variational inequalities considered in Robinson [9],

we propose a generalized version of an algorithm introduced by Bermudez and

Moreno [3]. Our results extend, improve and develop some known results in this

field.
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1 Introduction and preliminaries

Recently in [2], J.-F. Aujol considered an algorithm introduced by Bermudez

and Moreno based on the celebrated work of Rockafellar [10] on the Proximal

Point Algorithm and apply it to many image processing problems. The general

minimization problem he considered is the following:

inf
z∈V

{
1

2
〈Az, z〉 − 〈g, z〉+ φ ◦B∗(z)} (1.1)

with V and E two Hilbert spaces, φ : E → IR a proper convex lower semi

continuous function, B : E → V a bounded linear operator, B∗ : V → E the

adjoint of B and A : V → V a linear symmetric coercive operator.

Problem (1.1) is related, see [5], to the subdifferential inclusion

g ∈ A(u) +B∂(φ(B∗u). (1.2)

Based on the work by Bermudez and Moreno [3] and motivated by its potential

applications in constrained boundary value problems [1], [3] and [7], transporta-

tion network [6] and total variation based image restoration [2], we will consider
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the general case where A is no longer a linear operator and we replace the sub-

differential by a general maximal monotone operator. More precisely, given two

maximal monotone operators A, T and a bounded linear operator B : E → V ,

our interest is in finding a point that solves the general variational inclusion

g ∈ A(u) +BT (B∗u). (1.3)

This problem subsumes a wide spectrum of problems in applied nonlinear anal-

ysis. Some important special cases are:

i) By taking T = ∂φ, we recover the mixed variational inequalities considered

by Alduncin in [1]. If in addition A is a linear operator, we recover the general

minimization problem (1.1) via a qualification condition, see [5].

ii) By setting A = NC the normal cone to a closed convex set C, g = 0 and

T = I − PQ, where PQ stands for the metric projection onto Q and using the

fact that (I + NC)
−1 = PC we obtain u = PC(u − γB(I − PQ)B

∗u) and we

recover the split feasibility problem (see [4]):

find u ∈ C such B∗u ∈ Q. (1.4)

It is worth mentioning that the convex feasibility formalism is at the core of the

modeling of many inverse problems and has been used to model significant real-

world problems, for instance, in sensor networks, in radiation therapy treatment

planning, in computerized tomography and data compression.

iii) By taking A a single-valued operator and T := TF , with F a monotone

equilibrium function and TF the associated maximal monotone operator, namely

v ∈ TF (x) ⇔ F (x, y) + 〈v, x − y〉 ≥ 0, ∀v ∈ H (see [12]), we immediately get

that (1.3) is related to the following mixed equilibrium problem

F (B∗u,B∗z) + 〈g −Au, u− z〉 ≥ 0 ∀z.

iv) In the particular case in which E = V , B = I, T = NC the normal cone to

some closed convex subset C and A single-valued, (1.3) is the classical variational

inequality of finding u ∈ C such that 〈A(u), x− u〉 ≥ 0 for each x ∈ C.

To solve (1.3), we usually use a splitting method i.e., an algorithm that uses

only the resolvent mappings of A and BTB∗, rather than the resolvent mapping

of their sum. In order to apply such method, we have to evaluate the resolvent

of BTB∗. To this end D. Gabay [7] and more recently M. Fukushima [6] proved

that if B∗ ◦ B is an isomorphism, the operator BTB∗ is maximal monotone.

However the formula they proposed, for the associated resolvent, is difficult to

evaluate in the practice. Furthermore the assumption is quite restrictive and

excludes many cases in which the duality setup can be useful. To overcome this

difficulty, we propose a generalization of the Uzawa type algorithm introduced

in [3]. It is worth mentioning that in [2], Aujol proved that such algorithm is
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very efficient for image restoration. It is also the case for initial and boundary-

value constrained problems, see [3] and [7].

Throughout, E, V are real Hilbert spaces, 〈·, ·〉 denotes the associated scalar

products and ‖ · ‖ stands for the corresponding norms. To begin with, let us

recall that an operator with domainD(A) and rangeR(A) is said to be monotone

if 〈u − v, x − y〉 ≥ 0 whenever u ∈ A(x), v ∈ A(y). It is said to be maximal

monotone if, in addition, its graph, gphA := {(x, y) ∈ E × E : y ∈ A(x)},

is not properly contained in the graph of any other monotone operator. It

is well-known that for each x ∈ E and λ > 0 there is a unique z ∈ E such

that x ∈ (I + λA)z. The single-valued operator JA
λ := (I + λA)−1 is called the

resolvent of A of parameter λ. It is a nonexpansive mapping which is everywhere

defined and is related to its Yosida approximate, namely Aλ(x) :=
x−JA

λ (x)
λ

, by

the relation Aλ(x) ∈ A(JA
λ (x)). Recall also that the inverse A−1 of A is the

operator defined by x ∈ A−1(y) ⇔ y ∈ A(x), that the graph of a maximal

monotone operator is is weakly-strongly closed and finally that an operator A

is said to be α-strongly monotone, if there exists constants α > 0 such that

〈A(x1)−A(x2), x1 − x2〉 ≥ α‖x1 − x2‖
2 ∀x1, x2 ∈ E.

2 The main result

To begin with let us notice that the dual problem associated to (1.3) is given by

0 ∈ (−B∗)A−1(g −B(·))(v) + T−1(v), (2.5)

see [9]. To solve problem (1.3), we propose to apply the following algorithm: y0

being arbitrary, we consider the iterative scheme

{

un ∈ A−1(g −Byn),

yn+1 = Tλ(B
∗un + λyn).

(2.6)

Algorithm (2.6) corresponds to the Uzawa algorithm associated to (2.5). In the

special case with B = I, T = NC and g = 0, λ = 1, (2.6) reduces to

{

un +A(yn) = 0,

yn+1 = (I − PC)(un + yn),

which is the dual projection algorithm considered in [7]. In the setting of split

feasibility problem (1.4) with λ = 1 our algorithm takes the following from

{

un ∈ ∂σC(−Byn) = 0,

yn+1 = 1
2 (I − PQ)(B

∗un + yn),

∂σC being the subdifferential of the support function of the convex C.

The key of the convergence proof is the following lemma (see, for instance [10]).
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Lemma 2.1 Let T a maximal monotone operator and λ a positif real parameter,

then one has

‖JT
λ (x1)− JT

λ (x1)‖
2 + λ2‖Tλ(x1)− Tλ(x1)‖

2 ≤ ‖x1 − x2‖
2.

This follows immediately from definitions of the resolvent and Yosida operator.

Now we are in a position to state our main result.

Theorem 2.1 Let A, T be two maximal monotone operators, B a bounded lin-

ear operator. Assume that A is α-strongly monotone and that 0 < 1
λ
< 2α

‖B∗‖2 .

Then, the sequence (un) strongly converges to a solution u of problem (1.3).

Furthermore, (yn) converges weakly to y satisfying y ∈ T (B∗u).

Proof. Let us first observe that u solves (1.3) if and only if there exists y ∈

T (B∗u) with g −By ∈ Ay. In view of

y ∈ T (B∗u) ⇔ λy +B∗u ∈ (λI + T−1)y ⇔ y = Tλ(B
∗u+ λy),

we obtain that u solves (1.3) if and only if (u, y) is a solution of:

{

g −By ∈ A(u),

y = Tλ(B
∗u+ λy).

(2.7)

On the other hand, we successively have

‖JT
λ (B∗u+ λy)− JT

λ (B∗un + λyn)‖
2 + λ2‖y − yn+1‖

2

≤ ‖B∗(u− un) + λ(y − ym)‖2

= λ2‖y − yn‖
2 + ‖B∗(u− um)‖2

+ 2λ〈B∗(u− un), y − ym〉.

The first line of (2.6), the first line of (2.7) and strong monotonicity of A imply

〈y − yn, B
∗(u− un)〉 ≤ −α‖u− un‖

2

= −
α

‖B∗‖2
‖B∗(u− un)‖

2, (⋆)

which combined with the inequality before yields

‖JT
λ (B∗u+ λy)− JT

λ (B∗un + λyn)‖
2 + λ2‖y − yn+1‖

2

≤ (1−
2αλ

‖B∗‖2
)‖B∗(u− un)‖

2 (⋆⋆)

+ λ2‖y − yn‖
2.

From which we deduce that (‖y−yn‖
2) is nodecreasing and thus is a convergent

sequence in IR to some positive real l(y). Passing to the limit in (⋆⋆), we obtain

limn→+∞ ‖B∗(u − u∗)‖ = 0. In the light of (⋆), we infer that (un) strongly
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converges to u.

Furthermore, from (⋆⋆) we also have

lim
n→+∞

JT
λ (B∗un + λyn) = JT

λ (B∗u+ λy).

By virtue of the fact that JT
λ = I−λTλ, we obtain from the second line of (2.7)

that

JT
λ (B∗u+ λy) = B∗u.

Using the second line of (2.6), we infer

yn+1 = Tλ(B
∗un + λyn) = yn +

1

λ
(B∗un − JT

λ (B∗un + λyn)).

Passing to the limit in the last equality, we obtain that the sequence (yn) is

asymptotically regular, namely limn ‖yn+1 − yn‖ = 0.

Let us rewrite (2.6) as

B∗(un) + λ(yn − yn+1) ∈ T−1(yn) ⇔ yn ∈ T (B∗(un) + λ(yn − yn+1)),

and let y be a weak cluster point of (yn). By passing to the limit (on a subse-

quence) in the last inclusion and by using the fact that the graph of the max-

imal monotone operator T is weakly-strongly closed, we obtain y ∈ T (B∗u).

It remains to prove that there is no more than one cluster point for (yn), our

argument follows that given in Rockafellar [10] and is presented here for com-

pleteness.

Let ȳ be another cluster of {yn}, we will show that ȳ = y. This is a consequence

of (⋆⋆). Indeed,

l(y) = lim
n→+∞

‖yn − y‖2 and l(ȳ) = lim
n→+∞

‖yn − ȳ‖2,

from

‖yn − ȳ‖2 = ‖yn − y‖2 + ‖y − ȳ‖2 + 2〈yn − y, y − ȳ〉,

we see that the limit of 〈yn − y, y − ȳ〉 as n → +∞ must exists. This limit has

to be zero, because ȳ is a cluster point of {yn}. Hence at the limit, we obtain

l(ȳ) = l(y) + ‖y − ȳ‖2.

Reversing the role of ȳ and y, we also have l(y) = l(ȳ)+‖y− ȳ‖2. That is ȳ = y,

which completes the proof.

3 Application to discrete image denoising

Having in mind that the resolvent of the subdifferential of a proper convex lower

semicontinuous function φ is nothing else than the so-called proximal mapping

given by proxλφ(g) = argminu{φ(u)+
1
2λ‖u−g‖2}, let us consider digital images
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defined on {1, · · ·, n}×{1, · · ·, n}, reshape them columnwise into vectors g ∈ IRN

with N = n2 and apply our algorithm to the following problem

min
u∈IRN

{φi(Bu) +
1

2
‖u− g‖22}, B ∈ IRM,N with M ≥ N, (3.8)

where for i = 1, φ1(u) = ‖Λu‖1 with Λ = diag(βj)
M
j=1, βj ≥ 0 and for i = 2,

φ2(u) = ‖Λ̃|u|‖1 with

Λ̃ = diag(β̃j)
N
j=1, β̃j ≥ 0, |u| = (‖uj‖2)

N
j=1 for uj = (uj+kN )p−1

k=0 and M = pN.

The corresponding proximal mappings with λ = 1, see for instance [11], are

given by

proxφ1
(g) = SΛ(g) and proxφ2

(g) = S̃Λ̃(g),

where SΛ stands for the soft shrinkage function given componentwise by

Sβj
(gj) =

{

0 if |gj | ≤ βj ,

gj − βjsgn(gj) if |gj | > βj ,

and S̃Λ̃ denotes the coupled shrinkage function given by

S̃β̃j
(gj) =

{

0 if ‖gj‖2 ≤ β̃j ,

gj − β̃j
gj

‖gj‖2

if ‖gj‖2 > β̃j .

Now, the optimality condition for (3.8) is given by

g ∈ u+ ∂(φi ◦B)u,

thus our algorithm for soft shrinkage takes the following form

{

un = g −BT yn,

yn+1 = 1
λ
(I − SλΛ)(B(g −BT yn) + λyn).

(3.9)

For coupled shrinkage we have to replace SλΛ by S̃λΛ̃.

According to theorem 2.1, if 0 < 1
λ
< 2

‖B‖2 , then the sequence (un) converges

to a solution of (3.8) and (yn) converges in turn to y satisfying y ∈ ∂φ(Bu)

or equivalently Bu ∈ (∂φi)
−1(y) = ∂φ∗

i (y), where φ∗
i stands for the conjugate

function of φi. Since by (2.7) we have that u = g −BT y, we obtain

0 ∈ −B(g −BT y) + ∂φ∗
i (y) ⇔ 0 ∈ ∂(

1

2
‖g −BT (·)‖22 + φ∗

i (·))(y).

In others words y solves the dual problem associated to (3.8), namely

min
y∈IRM

{
1

2
‖g −BT (y)‖22 + φ∗

i (y)}, (3.10)

which is in fact a constrained least-squares problem, since φ∗
1 and φ∗

2 are respec-

tively the indicator functions of C = {v ∈ IRM ; |vi| ≤ βj , j = 1, · · ·,M} and
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C̃ = {v ∈ IRM ; ‖vj‖2 ≤ β̃j , j = 1, · · ·, N}, see for example [11].

Our work is related to significant real-world applications, see for instance [1], [2]

and [7], where such methods were applied to some relevant mechanical models,

many image processing problems and several problems of continuum mechanics.

Based on the work by Bermudez-Moreno [3], we give an extension of their uni-

fied framework and obtain a convergence result of our algorithm in the context

of general variational inequalities and state an application to discrete image

denoising problems.

Remark 3.1 For a study of algorithms for more general variational inclusions

including comments about their applications see, for example, M. A. Noor [8].
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