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Complementarity Problems and General Equilibrium

1 Introduction

The† paper proposes a new method to study complementarity problems (CP)

and nonlinear complementarity problems (NCP) and states existence results for

a class of such problems. The CP(K,F ) consists of finding a vector x in a given

cone K ⊂ Rn such that its image by a given function F belongs to the dual cone

and is orthogonal to x. When K = Rn
+, the NCP(F ) = CP(Rn

+, F ) amounts to

finding a pair (x, F (x)) of nonnegative and orthogonal vectors. Our existence

argument is non algorithmic but relies on the search of a fixed point which can

be implemented by means of an algorithm.

Research on the bimatrix game is at the origin of algorithmic methods [6, 7]

which are now widely used to find solutions of linear and nonlinear complemen-

tarity problems. Many of them start from nonnegative variables and proceed

to make them orthogonal [2]. One may imagine an alternative approach which

starts from orthogonal variables and adjusts them in order that they become

nonnegative. The problem is then similar to that of the existence of a general

equilibrium in economics: the excess supply vector is always orthogonal to the

price vector (Walras identity) and an equilibrium is reached when the excess

supply is nonnegative. Since the existence result follows from the Gale-Nikaido-

Debreu Lemma [3, 5, 8], the parallel suggests that it is possible to adapt it to

complementarity problems. Section 3 proposes a way to implement the idea and

states the basic result for the CP(K,F ). Section 4 examines some applications

and explains why more precise results are obtained for the NCP(F ).

2 Notations

R+ is the set of nonnegative scalars, R++ that of positive scalars. Notation x ≥ 0

means that the column vector x is nonnegative, x > 0 that it is nonnegative

and nonzero, and xT denotes its transpose. xT y is the inner product of vectors

x and y. Given a set C ⊂ Rm, a function f : C → Rm is copositive on

C if xT f(x) ≥ 0 for any x ∈ C, and strictly copositive if the inequality is

strict for any nonzero vector x ∈ C. The dual of a cone C ⊂ Rm is the cone

C∗ =
{

x; ∀y ∈ C xT y ≥ 0
}

⊂ Rm.

In this paper, K is a closed, convex and pointed cone in Rn, F : K → Rn is

a given continuous function and we consider the CP(K,F )

x ∈ K,F (x) ∈ K∗, xTF (x) = 0 (1)

K admits a compact and convex basis S, i.e. S is the intersection of K with

an adequate affine hyperplane and every nonzero vector x in K is written in a

†With acknowledgements to Monique Florenzano for detailed comments and critiques on

a previous version.
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unique way as x = λx0, with λ > 0 and x0 ∈ S. λ is denoted by ‖x‖. With that

definition, S is the subset of K made of vectors x with ‖x‖ = 1. Let Σ be the

subset of Rn+1 defined by Σ = {(x, t);x ∈ K, t ∈ [0, 1] , ‖x‖+ t = 1}, and Σ+ be

the subset of Σ with a positive last component t.

When K is the positive orthant of Rn, the CP(K,F ) reduces to the NCP(F )

x ≥ 0, F (x) ≥ 0, xTF (x) = 0 (2)

If the chosen basis S is the unit simplex of Rn, ‖x‖ is the norm ‖x‖ =
∑

i

|xi|

and Σ is the unit simplex of Rn+1.

3 Main result

Lemma 1 (GND Lemma). Let C be a compact and convex set in Rm and

s : p ∈ C → s = s(p) ∈ Rm a continuous function satisfying the Walras

inequality: ∀p ∈ C pT s(p) ≥ 0. There exists p ∈ C such that s = s(p) belongs

to the dual cone C∗.

Proof. The image of the set C by s is included in a convex compact set

C ′. Let us consider the set-valued mapping ϕ from C ′ to C defined by ϕ(x) =
{

p; p ∈ C pTx = min
y∈C

yTx

}

. The correspondence s×ϕ from C ×C ′ into C ′×C

being upper semicontinuous with compact convex values, the existence of a fixed

point (p, s) follows from the Kakutani theorem. Then s = s(p) and min
y∈C

yT s =

ϕ(s)
T
s = pT s(p) ≥ 0.

In general equilibrium theory, the usual version of the Lemma assumes that

C is the unit simplex of Rm, vector p is interpreted as a normalized price vector

for m commodities, and s(p) is the corresponding excess supply vector (or set-

valued mapping, in a more general framework). By construction of s(p), the

Walras identity pT s(p) = 0 holds. The conclusion of the Lemma is that s is

nonnegative. In connection with equality pT s = 0, that condition characterizes

a general equilibrium. The excess supply function s is also homogenous of degree

zero (‘absence of monetary illusion’), but that important economic property is

inessential for our purpose.

In order to find solutions to the CP(K,F ), we introduce an additional scalar

t to enforce the Walras identity. It is then possible to apply the Lemma for

m = n + 1, a strategy used in [1] for the study of prices of production. It is

assumed that F obeys the basic assumption (H) below, which is made of two

parts. Part (i) associates a function Φ with F and substitutes the search of

a critical point of Φ for that of a solution to (1): a simple illustration of the

condition is given by the functions defined on Σ+ by Φ(x, t) = F (t−1x) ∈ Rn

and E(x, t) = t−1x ∈ K. Part (ii) assumes that some function derived from Φ

is bounded: that condition refers indirectly to the behavior of F at infinity.
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(H) Assume the existence of continuous functions Φ : Σ+ → Rn and e :

Σ+ → R++ such that:

(i)
{

(x, t) ∈ Σ+,Φ(x, t) ∈ K∗, xTΦ(x, t) = 0
}

⇒ E(x, t) = e(x, t)x is a solu-

tion to the CP(K,F ).

(ii) The function tΦ(x, t) is bounded on Σ+.

For x ∈ S, let l(x) ⊂ Rn be the set made of all the cluster points of tεΦ(xε, tε)

when (xε, tε) ∈ Σ+ tends to (x, 0) ∈ Σ, and let L be the set

L =
{

x∈S; ∃l ∈ l(x), l ∈ K∗, xT l = 0
}

(3)

Theorem 1 Let F : K → Rn be a continuous function satisfying assumption

(H). If the following two conditions hold:

−∞ < inf
(x,t)∈Σ+

xTΦ(x, t) (4)

x∗ ∈ L ⇒ 0 < lim inf
(x,t)∈Σ+→(x∗,0)

xTΦ(x, t) (5)

the CP(K,F ) has a solution.

Proof. For ε > 0, let Σε be the subset of Σ made of the vectors (x, t)

with t ≥ ε > 0. Since the continuous function defined on Σε by s(x, t) =

(tΦ(x, t),−xTΦ(x, t)) satisfies the Walras identity (x, t)T s(x, t) = 0, the GND

Lemma asserts the existence of a point (xε, tε) ∈ Σε such that:

∀(x, t) ∈ Σε xT tεΦ(xε, tε)− tx
T

ε Φ(xε, tε) ≥ 0 (6)

Let ε tend to zero. Assume first that the sequence (xε, tε) admits a cluster point

(x, t) with t > 0. Inequality (6) still holds at the limit, when (xε, tε) is replaced

by (x, t) and (x, t) ∈ Σε by any point (x, t) ∈ Σ :

∀(x, t) ∈ Σ xT tΦ(x, t)− txTΦ(x, t) ≥ 0

For t = 0, this shows that Φ(x, t) ∈ K∗; for (x = 0, t = 1), one obtains

xTΦ(x, t) ≤ 0, therefore xTΦ(x, t) = 0. According to assumption (H), E(x, t) is

a solution to the CP(K,F ).

Assume on the contrary that lim tε = 0. By assumption (H), the function

tΦ(x, t) is bounded; by condition (4), the function xTΦ(x, t) is lower bounded

and, according to inequality (6) applied at point (x = 0, t = 1), negative or zero

at point (xε, tε). Therefore there exists a subsequence (xε, tε) which tends to

(x∗, 0)∈Σ and such that lim tεΦ(xε, tε) = l ∈ l(x∗) and limx
T

ε Φ(xε, tε) = λ ≤ 0.

Going to the limit in relation (6), we obtain that

∀(x, t) ∈ Σ+ xT l + t(−λ) ≥ 0

The inequality still holds at t = 0, therefore l ∈ K∗. Moreover, we have

xT
∗ l = (limx

T

ε )(lim tεΦ(xε, tε)) = (lim tε)(limx
T

ε Φ(xε, tε)) = 0
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To sum up, x∗ belongs to L and the sequence (xε, tε) violates condition (5). This

case is therefore excluded.

Condition (4) imposes a significant restriction on function Φ: assume that

xT l = −α < 0 for some x∈S and some l ∈ l(x). Then x
T

t tΦ(xt, t) < −α/2 for

a sequence (xt, t) ∈ Σ+ with t > 0 small enough, and condition (4) is violated.

Therefore xT l ≥ 0 for any x∈S and any l ∈ l(x). In other words, the extension

l of function tΦ to the frontier t = 0 is copositive on S:

x∈S⇒xT l(x) ≥ 0 (7)

4 Applications

We have already given an example of a pair of functions Φ and E satisfy-

ing the condition (i) of assumption (H). A more general example is Φ(x, t) =

d(x, t)F (e(x, t)x), where the real functions d and e are defined on Σ+, continu-

ous and positive. Thanks to the leeway provided by these parameters, condition

(ii) is not that restrictive. Of course, the extension l(x) of tΦ(x, t), the definition

of L and conditions (4) and (5) depend on the choice of functions d and e.

In the following applications we stress the role of the cone K. In order to

ease comparisons between results, the functions F we consider are all of the

same type: F is the sum of two functions m and q such that m is copositive

and has some type of homogeneity property (conditions (i) and (ii) of Corollary

1 below) and q(x) becomes negligible at infinity with regard to m(x) (condition

(iii) of Corollary 1 covers the case m(x) = 0 and is a more precise expression of

the idea). For that reason, and for an adequate choice of Φ and e, the limit set

l(x) in Corollaries 1 and 2 is reduced to the point m(x) and the set L defined

by (3) becomes L′

L′ =
{

x∈S;m(x) ∈ K∗, xTm(x) = 0
}

(8)

Corollaries 1 and 3 deal with different cones, whereas Corollary 2 allows for a

comparison with a classical result.

Corollary 1 Let K ⊂ Rn be a pointed cone with a compact convex basis and

let F : K → Rn be written F = m+ q, where the continuous functions m and q

are such that:

(i) m is copositive;

(ii) For x > 0 we have m(x) = g(x)m( x
‖x‖ ), where the continuous function

g : Rn
+ → R+ is positive for x > 0 and g(0) = 0;

(iii) lim
‖x‖→∞

g(x)−1q(x) = 0;

(iv) −∞ < inf
‖x‖>1

g(x)−1xT q(x);

(v) x∗∈L
′ ⇒ 0 < lim inf

‖x‖→∞,x/‖x‖→x∗

g(x)−1xT q(x).

Then the CP(K,F ) has a solution.
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Proof. For (x, t) ∈ Σ+ and 0 < t < 0.5, let us set d(x, t) = t−1g(t−1x)−1 and

e(x, t) = t−1. Both functions admit a continuous and positive extension to Σ+.
‡

For 0 < t < 0.5 we have tΦ(x, t) = g(t−1x)−1m(t−1x) + g(t−1x)−1q(t−1x) =

m( x
‖x‖ ) + g(t−1x)−1q(t−1x). When (x, t) tends to (x∗, 0), condition (iii) implies

that tΦ(x, t) tends to m(x∗). Since m is copositive, we have

xTΦ(x, t) = t−1xTm(
x

‖x‖
) + t−1g(t−1x)−1xT q(t−1x)

≥ g(t−1x)−1(t−1x)T q(t−1x)

therefore assumptions (iv) and (v) of the Corollary ensure that conditions (4)

and (5) of Theorem 1 are met. Hence, the existence result.

Condition (ii) of Corollary 1 holds if m is homogenous of degree k (k >

0), with g(x) = ‖x‖
k
; when function q is bounded, condition (iii) holds if

lim
x→∞

g(x) = +∞ and condition (iv) if g(x)−1 ‖x‖ is bounded for ‖x‖ > 1. To il-

lustrate Corollary 1 and show its connection with classical results, let us consider

a very specific case:

Corollary 2 Let K be a pointed cone with a compact convex basis and let

F (x) = m(x) + q, where m is continuous, copositive on K and homogenous

of degree one, and q is a given vector. If

x ∈ L′ ⇒ xT q > 0 (9)

the CP(K,F ) has a solution.

Proof. In this case we have g(x) = ‖x‖ and the result follows immediately from

Corollary 1 and the compactness of L′.

Condition (9) can be compared with a well known result relative to the

linear complementarity problem LCP(q,M): when K = Rn
+ and m(x) = Mx

with M copositive matrix, that result ensures the existence of a solution under

the weaker condition that x ∈ L′ implies xT q ≥ 0 (Theorem 3.8.6 in [2]). With a

nonlinear function m, however, that condition must be reinforced: let n = 2 and

K = R2
+, and consider the NCP(q,m) associated with F (x) = m(x) + q, with

q = (0,−1)T and m defined by m(0) = 0 and m(x1, x2) =
x2

x1+x2
(−x2, x1)

T for

x > 0. As {x ≥ 0,m(x) ≥ 0} requires x2 = 0, the condition x ∈ L′ does imply

xT q ≥ 0. However, the NCP(q,m) has no solution since there is no x ≥ 0 such

that m(x) + q ≥ 0.

When K = Rn
+, the specific structure of the cone Rn

+ allows for a more

precise application of Theorem 1 and more results relative to the NCP(F ). Let

us first state a property which can be viewed as a nonlinear version of a Theorem

of the Alternative:

‡The construction avoids considering the quantity g(t−1x)−1 for (x = 0, t = 1).
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Lemma 2 Let C be a compact metric space and consider m continuous func-

tions fi : C → Rn. Exactly one of the following two properties holds:

- either there is some x ∈ C with fi(x) ≤ 0 for i = 1, ...,m,

- or there exist m continuous and positive functions δi : C → R++ such that
∑

i

δifi is positive on C.

Proof. It is clear that the second condition excludes the first. Conversely,

assume that the first condition does not hold. Given ε > 0, we define the set

Ciε = {x; fi(x) ≤ ε}

Without loss of generality, Ciε is non void, otherwise function fi would be

greater than ε and the second condition would hold by choosing δi(x) = 1 for

that function and δj(x) positive and small enough for the others. Since Ciε is

compact and ∩
ε
Ciε = {x; fi(x) ≤ 0}, the assumption that ∩

ε,i
Ciε is void implies

the existence of some ε > 0 such that ∩
i
Ciε is void. Let us choose such a

value of ε. For any x ∈ C, we consider the distance d(x,Ciε) of x to Ciε. Since

the continuous function max
i

d(x,Ciε) does not reach value 0 on C, it admits a

positive minimum α: we thus have found values ε > 0 and α such that, for any

x ∈ C, we have d(x,Ciε) ≥ α for some Ciε. For a given scalar δ > 0, let the

function fδ
i be defined on C for i = 1, ...,m by

fδ
i (x) = fi(x) if x ∈ Ciε

fδ
i (x) = ε+ δd(x,Ciε) if x /∈ Ciε

Function fδ
i is continuous (its value is ε on the boundary of Ciε) and, for any

x ∈ C, we have
∑

i

fδ
i (x) ≥ ε+ δα+(m− 1)min

i
fi. Let us choose a great enough

value of δ, such that the right-hand side of that expression is positive. Let the

real function δi be defined on C for i = 1, ...,m by

δi(x) = 1 if x ∈ Ciε

δi(x) = fδ
i (x)/fi(x) if x /∈ Ciε

Function δi is positive and continuous (its value is 1 on the boundary of Ciε).

As δifi = fδ
i , the function

∑

i

δifi =
∑

i

fδ
i is positive on C.

The proof of the following statement makes use of the fact that, when the

cone K is the positive orthant, condition (i) of assumption (H) is met by the

function Φ(x, t) = D(x, t)F (t−1x) where D(x, t) is a diagonal matrix with pos-

itive diagonal entries.

Corollary 3 Let F : Rn
+ → Rn admit a decomposition F = m + q where the

continuous functions m and q are such that:

(i) ∀x ∈ S ∃i ximi(x) > 0,
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(ii) For x > 0 we have mi(x) = gi(x)mi(
x

‖x‖ ), where the continuous function

gi : R
n
+ → R+ is positive for x > 0 and gi(0) = 0,

(iii) lim
‖x‖→∞

gi(x)
−1qi(x) = 0.

Then the NCP(F ) has a solution.

Proof. According to condition (i) and Lemma 2 applied to the compact set

S and the n functions ximi(x), there exist n continuous functions δi such that
∑

i

xiδi(x)mi(x) > 0 for any x ∈ S. Thus the function ∆0m : S → Rn, where

∆0 is the matrix with entries δi(x) on the diagonal, is strictly copositive. Let

us write δi(x, 0) for δi(x). δi(x, 0) admits a continuous and positive extension

δi(x, t) to Σlow, i.e. to the subset of Σ corresponding to 0 ≤ t ≤ 0.5. For

(x, t) ∈ Σlow, let us choose di(x, t) = δi(x, t)[tgi(t
−1x)]−1 > 0 and e(x, t) = t−1.

Then

tdi(x, t)mi(t
−1x) = δi(x, t)[gi(t

−1x)]−1[gi(t
−1x)mi(

t−1x

‖t−1x‖
)]

= δi(x, t)mi(
x

‖x‖
)

tdi(x, t)qi(t
−1x) = δi(x, t)[gi(t

−1x)]−1qi(t
−1x)

Let D(x, t) be the diagonal matrix with the positive diagonal entries di(x, t).

D(x, t), which is defined for (x, t) ∈ Σlow, can be extended by continuity to the

whole simplex Σ, as a matrix with the same characteristics. From the above

calculations and hypothesis (iii) of the Corollary, it turns out that tΦ(x, t) =

tD(x, t)F (t−1x) tends to ∆0m(x∗) when (x, t) ∈ Σ+ tends to (x∗, 0). As ∆0m

is strictly copositive, the set L is void and condition (5) holds. Moreover, since

the continuous function txTΦ(x, t) admits the positive extension xT∆0m(x) for

t = 0, it is positive on a range 0 ≤ t ≤ ε, therefore the function xTΦ(x, t) admits

a positive lower bound on Σε and a finite lower bound on Σ+: condition (4)

holds and Theorem 1 applies.

Condition (i) implies that function mi is positive on the ray generated by

the ith unit vector and condition (ii) that mi(x) holds the same sign along a

ray (the origin excepted). These properties do not prevent mi(x) from being

negative on some rays: for instance, Corollary 3 applies to n = 2 and F (x) =

(x1 − x2 + q1(x), 2x
2
2 − x2

1 + q2(x)), where q1(x)/ ‖x‖ and q2(x)/ ‖x‖
2
tend to

zero when ‖x‖ tends to infinity.

This example points at a significant difference between Corollary 1, which

deals with a general cone, and Corollary 3, which assumes K = Rn
+: condition

(ii) in Corollary 1 holds for a homogenous function, whereas its more general

counterpart in Corollary 3 allows for a componentwise homogenous function.

Returning to the initial condition (H), it turns out that a difference between the

CPs and the NCPs stems from the existence, in the second case, of a large family

of transformations D : Rn → Rn (the class of diagonal matrices with positive
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and continuous diagonal entries) such that the NCP(F ) and the NCP(DF ) have

the same solutions. This suggests that the identification of a class of transforma-

tions with similar properties for a given cone K may be a clue to the existence

of a solution to the CP(K,F ).
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