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Improved Relaxed CQ Methods for Solving the Split
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Abstract. This paper presents some improved relaxed CQ methods with the

optimal step length to solve the split feasibility problem (SFP). These new meth-

ods are based on the modified relaxed CQ algorithm [Qu and Xiu, A note on

the CQ algorithm for the split feasibility problem, Inverse Problems 21 (2005)

1655-1665]. Global convergence of these new methods is proved under mild as-

sumptions. Preliminary numerical results verify the computational preferences of

the new methods.
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1 Introduction

Let C and Q be nonempty closed convex sets in RN and RM , respectively, and A an

M ×N real matrix. The problem,

to find x ∈ C with Ax ∈ Q, if such x exists, (1.1)

was called the split feasibility problem by Censor and Elfving [2]. The SFP (1.1) is

equivalent to the following variational inequality (see Section 3 in [9])

x∗ ∈ C, 〈F (x∗), x− x∗〉 ≥ 0, ∀ x ∈ C, (1.2)

where

F (x) = AT (I − PQ)Ax, (1.3)

I and PQ denote the identity operator and the orthogonal projections onto Q, respec-

tively. In this paper, we always assume that the solution set of (1.1), denoted by C∗,

is always nonempty.
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To solve the SFP (1.1), Byrne [1] proposed the CQ algorithm, which generates the

new iterate as follows

xk+1 = PC [x
k − γF (xk)], (1.4)

where γ ∈ (0, 2/L), L denotes the largest eigenvalue of the matrix ATA. However,

sometimes the projections onto C and Q are difficult to calculate. If this case appears,

the efficiency of the CQ algorithm, will be seriously affected. In [11], Yang presented

a relaxed CQ algorithm for solving the SFP, where at k-th iteration, the projections

onto C and Q were replaced with the halfspaces Ck and Qk, respectively.

Note that the step length of the CQ algorithm and the relaxed version relies on

the largest eigenvalue of the matrix ATA. In [9], Qu and Xiu proposed a modified

relaxed CQ algorithm

x̃k = PCk
[xk − αkFk(x

k)], (1.5)

where

Fk(x
k) = AT (I − PQk

)Axk, αk‖Fk(x
k)− Fk(x̃

k)‖ ≤ µ‖xk − x̃k‖, 0 < µ < 1,

(1.6)

and the new iterate xk+1 is updated by

xk+1 = PCk
[xk − αkFk(x̃

k)]. (1.7)

This modified algorithm adopted a self-adaptive strategy in (1.6), which was in the

manner of Armijos rule, to determine the step length. Thus, the estimation of the

largest eigenvalue of the matrix ATA is avoided.

As we all know, identifying the optimal step length along the descent direction

usually leads to attractive numerical improvements, such as the algorithms in [6]. This

fact triggers us to investigate the selection of optimal step length along the descent

direction to accelerate convergence.

This paper is to develop some improved relaxed methods with the optimal step

length for solving the SFP (1.1) based on the modified relaxed CQ algorithm in [9].

In particular, let xk be the current iterate of SFP (1.1) and xk
I = x̃k be generated by

(1.5), then add an optimal step length βk to −αkFk(x
k
I ) in (1.7) to produce xk

II . We

may prove that −(xk − xk
II) is a descent direction of ‖x − x∗‖2/2 at x = xk, where

x∗ ∈ C∗. Hence, two iterative methods are motivated to be presented. The first

method sets xk+1 = xk
II . The second method produces the new iterate xk+1 by

xk+1 = PCk
[xk − ρk(x

k − xk
II)],

where ρk is the optimal step length along the direction −(xk−xk
II). Global convergence

of the new methods is proved under the same mild assumptions as in [9].

The rest of this paper is organized as follows. In Section 2, we summarize some

preliminaries. In Section 3, some improved relaxed CQmethods are presented, followed

by some remarks. Then some contractive properties of the new methods are first

analyzed. In particular, the strategy of determining the optimal step length of the

new methods is investigated. Then, in Section 4, the global convergence of the new

methods is proved. In Section 5, we apply the new methods to solve some numerical

problems, and compare it with the algorithm in [9]. The numerical results are therefore

reported. Finally, some conclusions are made in Section 6.
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2 Preliminaries

First, we summarize some basic properties related to variational inequalities. Let Ω

denote the given nonempty closed convex set in Rn and PΩ(x) the projection of x onto

Ω, that is,

PΩ(x) = Argmin{‖x− y‖ | y ∈ Ω}.

From the above definition, it follows that

〈PΩ(x)− x, z − PΩ(x)〉 ≥ 0, ∀x ∈ Rn, ∀z ∈ Ω. (2.1)

Consequently, we have

〈(I − PΩ)x− (I − PΩ)y, x− y〉 ≥ ‖(I − PΩ)x− (I − PΩ)y‖
2, ∀x, y ∈ Rn (2.2)

and

‖PΩ(x)− z‖2 ≤ ‖x− z‖2 − ‖PΩ(x)− x‖2, ∀x ∈ Rn, ∀z ∈ Ω. (2.3)

Let F be a mapping from Rn into Rn. For any x ∈ Rn and α > 0, define

x(α) = PΩ[x− αF (x)], e(x, α) := x− x(α). (2.4)

Note that e(x, α) is a continuous function of x because the projection mapping is

non-expansive. The next lemma states a useful property of ‖e(x, α)‖.

Lemma 2.1. ([9] Lemma 2.2) Let F be a mapping from Rn into Rn. For any x ∈ Rn

and α > 0, we have

min{1, α}‖e(x, 1)‖ ≤ ‖e(x, α)‖ ≤ max{1, α}‖e(x, 1)‖. (2.5)

In this paper, we assume that the projections PC and PQ are not easily calculated.

Carefully speaking, the convex sets C and Q satisfy the following assumptions:

(H1) The set C is given by

C = {x ∈ RN | c(x) ≤ 0},

where c : RN → R is a convex (not necessarily differentiable) function and C is

nonempty. The set Q is given by

Q = {y ∈ RM | q(y) ≤ 0},

where q : RM → R is a convex (not necessarily differentiable) function and Q is

nonempty.

(H2) For any x ∈ RN , at least one subgradient ξ ∈ ∂c(x) can be calculated, where

∂c(x) is a generalized gradient of c(x) at x and is defined as follows:

∂c(x) = {ξ ∈ RN | c(z) ≥ c(x) + 〈ξ, z − x〉 for all z ∈ RN}.

For any y ∈ RM , at least one subgradient η ∈ ∂q(y) can be calculated, where

∂q(y) = {η ∈ RM | q(u) ≥ q(y) + 〈η, u− y〉 for all u ∈ RM}.

The following lemma provides an important boundedness property of the subdifferen-

tial, see, e.g., [10].
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Lemma 2.2. Suppose h : Rn → R is a convex function, then it is subdifferentiable

everywhere and its subdifferentials are uniformly bounded on any bounded subset of

Rn.

Denote

Ck = {x ∈ RN | c(xk) + 〈ξk, x− xk〉 ≤ 0},

where ξk is an element in ∂c(xk), and

Qk = {y ∈ RM | q(Axk) + 〈ηk, y −Axk〉 ≤ 0},

where ηk is an element in ∂q(Axk).

Remark 2.1. By the definition of subgradient, it is clear that the halfspaces Ck and

Qk contain C and Q, respectively. From the expressions of Ck and Qk, the orthogonal

projections onto Ck and Qk may be directly calculated and then we have the following

proposition (see [3, 7]).

Proposition 2.1. For any z ∈ RN ,

PCk
(z) =

{

z − c(xk)+〈ξk,z−xk〉

‖ξk‖2
ξk, if c(xk) + 〈ξk, z − xk〉 > 0;

z, otherwise,

and

PQk
(Az) =

{

Az − q(Axk)+〈ηk,Az−Axk〉

‖ηk‖2
ηk, if q(Axk) + 〈ηk, Az −Axk〉 > 0;

Az, otherwise.

For every k, using Qk we define the function Fk : RN → RN by

Fk(x) = AT (I − PQk
)Ax.

Although the function Fk depends on k, it has nice properties as shown in the following

lemma.

Lemma 2.3. ([9], Lemma 4.2) For all k = 0, 1, 2, · · · , Fk is Lipschitz continuous on

RN with constant L and co-coercive on RN with modulus 1/L, where L is the largest

eigenvalue of the matrix ATA.

3 Improved relaxed CQ methods

In this section, we will propose two improved relaxed CQ methods and show how to

determine the optimal step length. The detailed procedures of the new methods are

presented as below:

Algorithm 1. Initialization: Choose µ ∈ (0, 1), ε > 0, x0 ∈ RN and k = 0.

Step 1. Prediction: Choose an αk > 0, such that

xk
I = PCk

[xk − αkFk(x
k)] (3.1)

and

αk‖Fk(x
k)− Fk(x

k
I )‖ ≤ µ‖xk − xk

I ‖. (3.2)
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Step 2. Stopping Criterion: Compute

ek(x
k, αk) = xk − xk

I .

If ‖ek(x
k, αk)‖ ≤ ε, terminate the iteration with the approximate solution xk. Other-

wise, go to Step 3.

Step 3. Correction: The new iterate xk+1 is updated by

xk+1 = xk
II = PCk

[xk − βkαkFk(x
k
I )], (3.3)

where

βk = δkβ
∗
k , β∗

k =
〈xk − xk

I , dk(x
k, xk

I , αk)〉

‖dk(xk, xk
I
, αk)‖2

, δk ∈ [δ
L
, δ

U
] ⊆ (0, 2), (3.4)

and

dk(x
k, xk

I , αk) = xk − xk
I − αk[Fk(x

k)− Fk(x
k
I )]. (3.5)

Set k := k + 1 and go to Step 1.

Algorithm 2: Initialization: Choose µ ∈ (0, 1), ε > 0, x0 ∈ RN and k = 0.

Step 1. Prediction: Choose an αk > 0, such that

xk
I = PCk

[xk − αkFk(x
k)] (3.6)

and

αk‖Fk(x
k)− Fk(x

k
I )‖ ≤ µ‖xk − xk

I ‖. (3.7)

Step 2. Stopping Criterion: Compute

ek(x
k, αk) = xk − xk

I .

If ‖ek(x
k, αk)‖ ≤ ε, terminate the iteration with the approximate solution xk. Other-

wise, go to Step 3.

Step 3. Correction: The corrector xk
II is given by the following equation

xk
II = PCk

[xk − βkαkFk(x
k
I )], (3.8)

where

βk = δkβ
∗
k , β∗

k =
〈xk − xk

I , dk(x
k, xk

I , αk)〉

‖dk(xk, xk
I
, αk)‖2

, δk ∈ [δ
L
, δ

U
] ⊆ (0, 2), (3.9)

and

dk(x
k, xk

I , αk) = xk − xk
I − αk[Fk(x

k)− Fk(x
k
I )]. (3.10)

Step 4. Extension: The new iterate xk+1 is updated by

xk+1 = PCk
[xk − ρk(x

k − xk
II)], (3.11)

where

ρk = γkρ
∗
k, ρ∗k =

‖xk − xk
II‖

2 + βkαk〈x
k
II − xk

I , Fk(x
k
I )〉

‖xk − xk
II
‖2

, γk ∈ [γ
L
, γ

U
] ⊆ (0, 2).

(3.12)

Set k := k + 1 and go to Step 1.
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Remark 3.2. In the prediction step, if the selected αk satisfies 0 < αk ≤ µ/L (L is

the largest eigenvalue of the matrix ATA), then from Lemma 2.3, we have

αk‖Fk(x
k)− Fk(x

k
I )‖ ≤ αkL‖x

k − xk
I ‖ ≤ µ‖xk − xk

I ‖, (3.13)

and thus Condition (3.2) or (3.7) is satisfied. Without loss of generality, we can

assume that inf{αk} = αmin > 0. Since we do not know the value of L > 0 but it

exists, in practice, a self-adaptive scheme is adopted to find such a suitable αk > 0.

For given xk and a trial αk > 0, along with the value of Fk(x
k), we set the trial xk

I

as follows:

xk
I = PCk

[xk − αkFk(x
k)].

Then calculate

rk :=
αk‖Fk(x

k)− Fk(x
k
I )‖

‖xk − xk
I
‖

,

if rk ≤ µ, the trial xk
I is accepted as predictor; Otherwise, reduce αk by αk := 0.9µαk ∗

min(1, 1/rk) to get a new smaller trial αk and repeat this procedure. In the case that

the predictor has been accepted, a good initial trial αk+1 for next iteration is prepared

by the following strategy:

αk+1 =

{

0.9µ
rk

αk if rk ≤ ν,

αk otherwise,
(usually ν ∈ [0.4, 0.5]). (3.14)

Condition (3.2) or (3.7) ensures that αk‖Fk(x
k)−Fk(x

k
I )‖ is smaller than ‖xk −xk

I ‖,

however, too small αk‖Fk(x
k)− Fk(x

k
I )‖ leads to slow convergence. The proposed ad-

justing strategy (3.14) is intended to avoid such a case as indicated in [4, 5]. Actually,

it is very important to balance the quantity of αk‖Fk(x
k) − Fk(x

k
I )‖ and ‖xk − xk

I ‖

in practical computation. Note that there are at least two times to utilize the value

of function in the prediction step: one is Fk(x
k), and the other is Fk(x

k
I ) for testing

whether the Condition (3.2) or (3.7) holds. When αk is selected well enough, xk
I will

be accepted after only one trial and in this case, the prediction step exactly utilizing

the value of concerned function twice in one iteration.

Remark 3.3. As xk
I (and resulted Fk(x

k
I )) is determined by xk and αk, the vector

dk(x
k, xk

I , αk) = xk − xk
I − αk[Fk(x

k) − Fk(x
k
I )] in (3.10) is a function of xk and αk

at all. In addition, the correction step does not require any new function evaluations.

Remark 3.4. In the extension step, we only use the function value Fk(x
k
I ) which is

obtained in the prediction step. Therefore, the extension step also does not require any

new function evaluations.

For analysis, we consider the following general forms of correction step and exten-

sion step:

xk
II(β) = PCk

[xk − βαkFk(x
k
I )] and xk+1(ρ) = PCk

[xk − ρ(xk − xk
II)]. (3.15)

Lemma 3.1. Given xk, x∗ ∈ C∗ and αk > 0, let xk
I ∈ Ck be the predictor and xk

II(β)

be given by the general form of the corrector. Then for any β > 0 we have

Θk(β) = ‖xk − x∗‖2 − ‖xk
II(β)− x∗‖2 ≥ Φk(β) ≥ Qk(β), (3.16)
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where

Φk(β) = ‖xk − xk
II(β)‖

2 + 2βαk〈x
k
II(β)− xk

I , Fk(x
k
I )〉 (3.17)

and

Qk(β) = 2β〈xk − xk
I , dk(x

k, xk
I , αk)〉 − β2‖dk(x

k, xk
I , αk)‖

2. (3.18)

Proof: Since x∗ ∈ C ⊆ Ck and xk
II(β) = PCk

[xk − βαkFk(x
k
I )], it follows from (2.3)

that

‖xk
II(β)− x∗‖2 ≤ ‖xk − βαkFk(x

k
I )− x∗‖2 − ‖xk − βαkFk(x

k
I )− xk

II(β)‖
2. (3.19)

Consequently, using the definition of Θk(β), we get

Θk(β) ≥ ‖xk − x∗‖2 + ‖xk − xk
II(β)− βαkFk(x

k
I )‖

2 − ‖xk − x∗ − βαkFk(x
k
I )‖

2

= ‖xk − xk
II(β)‖

2 + 2βαk〈x
k
II(β)− x∗, Fk(x

k
I )〉. (3.20)

It follows from Ax∗ ∈ Q ⊆ Qk that

Fk(x
∗) = 0.

Since xk
I ∈ Ck, using the monotonicity of Fk and the above equality, we have

〈xk
I − x∗, Fk(x

k
I )〉 ≥ 〈xk

I − x∗, Fk(x
∗)〉 ≥ 0,

and consequently

〈xk
II(β)− x∗, Fk(x

k
I )〉 ≥ 〈xk

II(β)− xk
I , Fk(x

k
I )〉. (3.21)

Applying (3.21) to the last term in the right hand side of (3.20), we obtain

Θk(β) ≥ ‖xk − xk
II(β)‖

2 + 2βαk〈x
k
II(β)− xk

I , Fk(x
k
I )〉. (3.22)

The first assertion follows immediately. Since xk
I = PCk

[xk − αkFk(x
k)] and xk

II(β) ∈

Ck, it follows from (2.1) that for any β > 0,

0 ≥ 2β〈xk
II(β)− xk

I , [x
k − αkFk(x

k)]− xk
I 〉. (3.23)

Adding (3.17) and (3.23) together and using the notation of dk(x
k, xk

I , αk) in (3.10),

we obtain

Φk(β) ≥ ‖xk − xk
II(β)‖

2 + 2β〈xk
II(β)− xk

I , x
k − xk

I − αk[Fk(x
k)− Fk(x

k
I )]〉

= ‖xk − xk
II(β)‖

2 + 2β〈xk
II(β)− xk

I , dk(x
k, xk

I , αk)〉. (3.24)

Regrouping the first two terms of the right hand side of (3.24), we get

‖xk − xk
II(β)‖

2 + 2β〈xk
II(β)− xk

I , dk(x
k, xk

I , αk)〉

= ‖xk − xk
II(β)‖

2 + 2β〈(xk
II(β)− xk) + (xk − xk

I ), dk(x
k, xk

I , αk)〉

= ‖xk − xk
II(β)‖

2 + 2β〈xk
II(β)− xk, dk(x

k, xk
I , αk)〉+ 2β〈xk − xk

I , dk(x
k, xk

I , αk)〉

= ‖xk − xk
II(β)− βdk(x

k, xk
I , αk)‖

2 + 2β〈xk − xk
I , dk(x

k, xk
I , αk)〉 − β2‖dk(x

k, xk
I , αk)‖

2.

Substituting this into (3.24), we obtain

Φk(β) ≥ 2β〈xk − xk
I , dk(x

k, xk
I , αk)〉 − β2‖dk(x

k, xk
I , αk)‖

2

and the second assertion is proved.
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Note that Qk(β) is a quadratic function of β and it reaches its maximum at

β∗
k =

〈xk − xk
I , dk(x

k, xk
I , αk)〉

‖dk(xk, xk
I
, αk)‖2

, (3.25)

with

Qk(β
∗
k) = β∗

k〈x
k − xk

I , dk(x
k, xk

I , αk)〉. (3.26)

We set the step length βk by βk = δkβ
∗
k , where δk ∈ [δ

L
, δ

U
] ⊆ (0, 2) is a relaxation

factor.

Lemma 3.2. The step length βk in the prediction step satisfies:

Qk(βk) ≥
δ
L
(2− δ

U
)(1− µ)

2
‖xk − xk

I ‖
2, (3.27)

for all k ≥ 0.

Proof: See (2.15), (5.5) and Theorem 2 in [5].

By simple manipulations we obtain

Qk(δkβ
∗
k)

(3.18)
= 2δkβ

∗
k〈x

k − xk
I , dk(x

k, xk
I , αk)〉 − (δ2kβ

∗
k)(β

∗
k‖dk(x

k, xk
I , αk)‖

2)

(3.25)
= (2δkβ

∗
k − δ2kβ

∗
k)〈x

k − xk
I , dk(x

k, xk
I , αk)〉

(3.26)
= δk(2− δk)Qk(β

∗
k). (3.28)

Lemma 3.3. Given xk and x∗ ∈ C∗, let the corrector xk
II be given by (3.8), then we

have

2〈xk − x∗, xk − xk
II〉 ≥ Φk(βk) + ‖xk − xk

II‖
2 (3.29)

Proof: Note that

xk
II − x∗ = (xk − x∗)− (xk − xk

II).

Substituting this into (3.16), we have

2〈xk − x∗, xk − xk
II)〉 − ‖xk − xk

II‖
2 ≥ Φk(βk)

and the proof is complete.

Remark 3.5. Since Φk(βk) ≥ Qk(βk) ≥ 0, −(xk − xk
II) is a descent direction of

‖x− x∗‖2/2 at xk, where x∗ is any solution point.

Theorem 3.1. Given xk and x∗ ∈ C∗, let the corrector xk
II be generated by (3.8), and

the new iterate xk+1(ρ) be given by the general form (3.15). Then for any ρ > 0, we

have

Λk(ρ) = ‖xk − x∗‖2 − ‖xk+1(ρ)− x∗‖2 ≥ Ψk(ρ), (3.30)

where

Ψk(ρ) = ρ{Φk(βk) + ‖xk − xk
II‖

2} − ρ2‖xk − xk
II‖

2, (3.31)

βk and Φk(βk) are defined in (3.9) and (3.17), respectively.

Proof: Since

‖xk − x∗ − ρ(xk − xk
II)‖ ≥ ‖xk+1(ρ)− x∗‖, (3.32)
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it follows that

Λk(ρ) ≥ ‖xk − x∗‖2 − ‖xk − x∗ − ρ(xk − xk
II)‖

2

= 2ρ〈xk − x∗, xk − xk
II〉 − ρ2‖xk − xk

II‖
2. (3.33)

Inequality (3.30) follows from Lemma 3.3 and (3.31) directly and the proof is complete.

Since Ψk(ρ) is a quadratic function of ρ, it reaches its maximum at

ρ∗k =
Φk(βk) + ‖xk − xk

II‖
2

2‖xk − xk
II
‖2

(3.17)
=

‖xk − xk
II‖

2 + βkαk〈x
k
II − xk

I , Fk(x
k
I )〉

‖xk − xk
II
‖2

(3.34)

with

Ψk(ρ
∗
k) =

1

2
ρ∗k{Φk(βk) + ‖xk − xk

II‖
2} ≥ Ψk(1). (3.35)

It follows from Lemma 3.1, Lemma 3.2 and (3.34) that

ρ∗k >
1

2
and Ψk(ρ

∗
k) ≥

1

4
{τ0‖x

k − xk
I ‖

2 + ‖xk − xk
II‖

2}, (3.36)

for some constant τ0 > 0. For fast convergence, we propose a relaxation factor γk ∈

[γ
L
, γ

U
] ⊆ (0, 2) and set the step length ρk by ρk = γkρ

∗
k. By simple manipulations

we obtain

Ψk(γkρ
∗
k)

(3.31)
= γkρ

∗
k{Φk(βk) + ‖xk − xk

II‖
2} − (γ2

kρ
∗
k)(ρ

∗
k‖x

k − xk
II‖

2)

(3.34)
= (γkρ

∗
k −

1

2
γ2
kρ

∗
k){Φk(βk) + ‖xk − xk

II‖
2}

(3.35)
= γk(2− γk)Ψk(ρ

∗
k). (3.37)

It follows from Theorem 3.1 that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −
γ
L
(2− γ

U
)

4
{τ0‖x

k − xk
I ‖

2 + ‖xk − xk
II‖

2}. (3.38)

4 Convergence

It follows from (3.16) and (3.27) that for Algorithm 1, there exists a constant τ1 > 0,

such that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − τ1 · ‖x
k − xk

I ‖
2. (4.1)

From (3.38), we have for Algorithm 2, there exists a constant τ2 > 0, such that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − τ2 · {‖x
k − xk

I ‖
2 + ‖xk − xk

II‖
2}. (4.2)

The convergence result of the proposed methods in this paper is based on the following

theorem.

Theorem 4.1. Let {xk} be a sequence generated by the proposed methods (Algorithms

1 and 2), {αk} be a positive sequence and inf{αk} = αmin > 0. If the solution set of

the SFP is nonempty, then {xk} converges to a solution point of the SFP.
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Proof: First, from (4.1) or (4.2) we get

lim
k→∞

‖xk − xk
I ‖ = 0. (4.3)

Again, it follows from (4.1) or (4.2) that the sequence {xk} is bounded. Let x∞ be

a cluster point of {xk} and the subsequence {xki} converges to x∞. We are ready to

show that x∞ is a solution point of the SFP.

First, we show that x∞ ∈ C. Since xk
I ∈ Cki

, then by the definition of Cki
, we

have

c(xki) + 〈ξki , xki

I
− xki〉 ≤ 0, ∀i = 1, 2, · · · .

Passing onto the limit in this inequality and taking into account (4.3) and Lemma 2.2,

we obtain that

c(x∞) ≤ 0.

Hence, we conclude x∞ ∈ C.

Next, we need to show Ax∞ ∈ Q. Note that

ek(x, α) = x− PCk
[x− αFk(x)], k = 0, 1, 2, · · · .

Then from Lemma 2.1, Remark 3.2 and (4.3), we have

lim
ki→∞

‖eki
(xki

I
, 1)‖ ≤ lim

ki→∞

‖xki − xki

I
‖

min{1, αki
}

≤ lim
ki→∞

‖xki − xki

I
‖

min{1, αmin}

= 0. (4.4)

Using (2.1) and x∗ ∈ Cki
, we have for all i = 1, 2, · · · ,

〈xki − Fki
(xki)− PCki

(xki − Fki
(xki)), x∗ − PCki

(xki − Fki
(xki))〉 ≤ 0,

that is,

〈eki
(xki

I
, 1)− Fki

(xki), xki − x∗ − eki
(xki

I
, 1)〉 ≥ 0. (4.5)

It follows from (2.2) and Ax∗ ∈ Qki
that

〈Fki
(xki), xki − x∗〉 = 〈Fki

(xki)− Fki
(x∗), xki − x∗〉

= 〈AT (I − PQki
)Axki −AT (I − PQki

)Ax∗, xki − x∗〉

= 〈(I − PQki
)Axki − (I − PQki

)Ax∗, Axki −Ax∗〉

≥ ‖(I − PQki
)Axki − (I − PQki

)Ax∗‖2

= ‖(I − PQki
)Axki‖2.

From (4.5) and the above inequality we know for all i = 1, 2, · · · ,

〈xki − x∗, eki
(xki

I
, 1)〉 ≥ ‖eki

(xki

I
, 1)‖2 − 〈Fki

(xki), eki
(xki

I
, 1)〉+ 〈Fki

(xki), xki − x∗〉

≥ ‖eki
(xki

I
, 1)‖2 − 〈Fki

(xki), eki
(xki

I
, 1)〉+ ‖(I − PQki

)Axki‖2.(4.6)

Since

‖Fki
(xki)‖ = ‖Fki

(xki)− Fki
(x∗)‖ ≤ L‖xki − x∗‖, ∀i = 1, 2, · · · ,
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and {xki} is bounded, the sequence {Fki
(xki)} is also bounded. Therefore, from (4.4)

and (4.6) we get

lim
ki→∞

‖(I − PQki
)Axki‖ = 0,

that is,

lim
ki→∞

PQki
(Axki)−Axki = 0. (4.7)

Since PQki
(Axki) ∈ Qki

, we have

q(Axki) + 〈ηki , PQki
(Axki)−Axki〉 ≤ 0.

Letting ki → ∞, from Lemma 2.2 and (4.7), we deduce that

q(Ax∞) ≤ 0,

that is, Ax∞ ∈ Q. Therefore, x∞ is a solution of the SFP. Because the subsequence

{xki} converges to x∞, for an arbitrary scalar ε > 0, there exists a kl > 0 such that

‖xkl − x∞‖ ≤ ε.

On the other hand, since x∞ is a solution point, it follows from (4.1) or (4.2) that

‖xk − x∞‖ ≤ ‖xkl − x∞‖ ≤ ε ∀k ≥ kl,

and thus the sequence {xk} converges to x∞, which is a solution point of the SFP.

5 Numerical results

In this section, we apply the proposed methods to solve the following split feasibility

problems (Examples 1 and 2), which were tested in [8], to verify the effectiveness and

computational superiority compared to the modified relaxed CQ algorithm in [9].

All the codes were written in Matlab and run on an HP Compaq 6910p notebook.

For the CQ algorithm in [9], Algorithms 1 and 2, we take ε = 10−10, α0 = 1, µ = 0.9,

ν = 0.4, δk ≡ 1.8, and γk ≡ 1.8. Since the test problems are from [8], we also list the

original results by the halfspace-relaxation projection method in [8]. The numerical

results for Examples 1 and 2 are reported in Tables 1-8.

Example 1 (A convex feasibility problem). Let C = {x ∈ R3 | x2
2 + x2

3 − 4 ≤ 0},

Q = {x ∈ R3 | x3 − 1− x2
1 ≤ 0}. Find some point x in C

⋂

Q.

Table 1. Results for Example 1 using Qu and Xiu method in [8]

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3, 0, 0, 0)T 43 0.0500 (0.3213, 0.2815, 0.1425)T

(1, 1, 1, 1, 1, 1)T 67 0.0910 (0.8577, 0.8577, 1.3097)T

(1, 2, 3, 4, 5, 6)T 85 0.1210 (1.1548, 0.8518, 1.8095)T

Table 2. Results for Example 1 using Qu and Xiu method in [9]

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3)T 5 0.1250 (1.0000, 1.1094, 1.6641)T

(1, 1, 1)T 0 0.0320 (1.0000, 1.0000, 1.0000)T

rand(3, 1) ∗ 10 130 0.0780 (0.8665, 0.6369, 1.7508)T
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Table 3. Results for Example 1 using Algorithm 1

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3)T 5 0.1870 (1.0000, 1.1094, 1.6641)T

(1, 1, 1)T 0 0.0310 (1.0000, 1.0000, 1.0000)T

rand(3, 1) ∗ 10 2 0.0940 (1.0748, 0.6630, 1.6190)T

Table 4. Results for Example 1 using Algorithm 2

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3)T 1 0.1560 (1.0000, 0.7538, 1.1308)T

(1, 1, 1)T 0 0.0310 (1.0000, 1.0000, 1.0000)T

rand(3, 1) ∗ 10 2 0.1100 (0.6778, 0.4818, 1.3998)T

Example 2 (A split feasibility problem). Let A =







2 −1 3

4 2 5

2 0 2






, C = {x ∈

R3 | x1 + x2
2 + 2x3 ≤ 0}, Q = {x ∈ R3 | x2

1 + x2 − x3 ≤ 0}. Find some point x ∈ C

with Ax ∈ Q.

Table 5. Results for Example 2 using Qu and Xiu method in [8]

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3, 0, 0, 0)T 1890 2.7740 (−0.1203, 0.0285, 0.0582)T

(1, 1, 1, 1, 1, 1)T 2978 4.2860 (0.8603,−0.1658,−0.5073)T

(1, 2, 3, 4, 5, 6)T 3317 4.8570 (3.6522,−0.1526,−2.3719)T

Table 6. Results for Example 2 using Qu and Xiu method in [9]

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3)T 64 0.1570 (−0.4019, 0.0674, 0.1967)T

(1, 1, 1)T 81 0.0940 (0.3568, 0.0343,−0.2652)T

rand(3, 1) ∗ 10 105 0.0940 (0.8747, 0.0795,−0.6876)T

Table 7. Results for Example 2 using Algorithm 1

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3)T 4 0.1410 (−0.4024, 0.0658, 0.1958)T

(1, 1, 1)T 5 0.0940 (0.3532, 0.0392,−0.2707)T

rand(3, 1) ∗ 10 8 0.0940 (0.8768, 0.0604,−0.6844)T

Table 8. Results for Example 2 using Algorithm 2

Starting points Number of iterations CPU(s) Approximate solution

(1, 2, 3)T 6 0.1720 (−0.4305, 0.0774, 0.1048)T

(1, 1, 1)T 1 0.1090 (0.2000,−0.6000,−0.6000)T

rand(3, 1) ∗ 10 7 0.1090 (0.7984,−0.0384,−0.9042)T

These numerical data justify the computational superiority of the proposed meth-

ods over the modified relaxed CQ algorithm in [9] and the halfspace-relaxation pro-

jection method in [8].
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6 Conclusions

Based on the modified relaxed CQ algorithm in [9], this paper presents some improved

relaxed CQ methods with the optimal step length to solve the split feasibility problem.

The additional computational load resulted by the new methods is negligible, compared

to the algorithm in [9]. The preliminary numerical tests show that the proposed

methods are attractive in practice.
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