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Abstract

In this paper, we propose an improved projection method, where the

profitable direction and the step-size are constructed from those in Han

and Lo (2002). Thus, it is an “improvement” of the method in Han and

Lo (2002). To enhance the numerical efficiency of the algorithm, the

self-adaptive strategy for choosing the parameter is adopted. Under mild

assumptions, we prove the global convergence of the proposed algorithm.

Moreover, some preliminary numerical results are reported, demonstrating

that the new algorithm is efficient and reliable.

Key words: Variational inequality problems, projection methods, profitable

directions, self-adaptive.

1 Introduction

In this paper, we consider the classical variational inequality problem, denoted

by VIP(F,Ω), which is to find a vector u∗ ∈ Ω, such that

F (u∗)T (v − u∗) ≥ 0, ∀v ∈ Ω, (1)

where Ω is a nonempty closed convex subset of Rn, and F is a continuous

mapping from Rn into Rn. Variational inequality problems arise from many

important applications in network economics, transportation equilibrium prob-

lems, and engineering sciences, etc., see [1,2,4,17]. In past decades, many novel

iterative numerical methods, such as projection methods, Newton-type meth-

ods, alternating direction methods and proximal point algorithms, have been

proposed; see for example, [4–7,10,11,16], and the references therein.

Among all the iterative methods, one of the simplest methods is projection-

type method. This type of method is attractive because of its little storage

requirement and its easy implementation, especially when the feasible sets are
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simple, such as balls, boxes and nonnegative orthant. On the other hand, pro-

jection methods can readily exploit any separable structure in the corresponding

mapping or the constrained set of the problem, i.e., they can perform in a par-

allel way. Generally, in projection methods, the new iterate uk+1 is generated

from an arbitrary starting point u0 ∈ Rn via the following procedure:

uk+1 = PΩ [uk − βkg̃(uk)] , (2)

where PΩ[·] denotes the orthogonal projection from Rn onto Ω, g̃(uk) is a prof-

itable direction, i.e., it satisfies

g̃(uk)
T (uk − u∗) ≥ ϕ(uk) ≥ 0,

and ϕ(uk) ≥ 0 is called a measure function, satisfying

ϕ(uk) = 0 ⇐⇒ uk is a solution of VIP(F,Ω).

By constructing different profitable directions and measure functions, various

projection-type methods were proposed. For example, for variational inequality

problems with strongly monotone and Lipschitz continuous mappings, Gold-

stein [3], Levitin and Polyak [15] adopted the mapping g = F as the profitable

direction, and proves that if the positive step size βk is judiciously chosen, the

generated sequence {uk} converges globally. The strong monotonicity and Lips-

chitz continuity are quite strict assumptions, which precludes many applications

of the methods of Goldstein, and Levitin and Polyak. To relax these strong con-

ditions, Korpelevich [14] first proposed the following extra-gradient method:

uk+ 1

2

= PΩ [uk − βF (uk)] ,

uk+1 = PΩ

[

uk − βF (uk+ 1

2

)
]

.

When F is monotone and Lipschitz continuous, and 0 < β < 1/LF (where LF >

0 is the Lipschitz constant of F ), the method converges globally. Many variant

forms of the extra-gradient method were introduced, for example [9, 12,18,19].

In [6], Han and Lo proposed a new self-adaptive projection method for solv-

ing variational inequality problems with the following recursion:

uk+1 = PΩ

[

uk − γρ̄(uk, βk)d̄(uk, βk)
]

, (3)

where

d̄(u, β) = αe(u, β) + βF (u− αe(u, β)),

ρ̄(x, β) = αe(u, β)T {e(u, β)− β[F (u)− F (u− αe(u, β))]} /‖d̄(u, β)‖2,

and

e(u, β) = u− PΩ [u− βF (u)] (4)
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is the residual function. Under the mild conditions, that the underlying map-

ping F is continuous and monotone, their method is globally convergent for

suitable parameter βk. In addition, Han and Lo’s algorithm reduced amount of

time to compute the projection PΩ[·] at each line search procedure, and the re-

ported numerical results demonstrated the new algorithm is efficient for solving

variational inequality.

Adopted the similar self-adaptive strategy, in this paper we construct a new

search direction of VIP(F,Ω). Based on the new direction, many profitable

properties can be obtained and the global convergence is established under some

mild assumptions. Furthermore, our preliminary computational experiments

show that the new algorithm is efficient and reliable for variational inequality

problems.

Our paper is divided into 5 sections. In the next section, we give some useful

preliminaries, which play the central roles in the convergence analysis. In section

3, we describe the improved self-adaptive projection algorithm formally and the

global convergence is established. Some preliminary compared numerical results

are reported in section 4. Finally, we give some conclusion remarks to complete

our paper.

2 Preliminaries

In this section, we summarize some basic properties, which play significant roles

in the following analysis.

Throughout this paper, the projection operator PΩ[·] from Rn onto Ω is

defined by

PΩ[u] := argmin {‖v − u‖ | v ∈ Ω} ,

where ‖ · ‖ denotes the Euclidean norm. For any closed convex set Ω ⊆ Rn,

the projection operator PΩ[·] has the following well-known properties; see for

example [2], and the references therein.

Lemma 2.1. Let Ω ⊆ Rn be a closed convex set, Then

(v − PΩ[v])
⊤(w − PΩ[v]) ≤ 0, ∀u ∈ Rn, ∀w ∈ Ω, (5)

consequently, we obtain,

‖PΩ[u]− PΩ[v]‖ ≤ ‖u− v‖, ∀u, v ∈ Rn (6)

and

‖PΩ[v]− u‖2 ≤ ‖v − u‖2, ∀u ∈ Ω. �

The following lemma states that ‖e(u, β)‖ defined by (4) is nondecreasing

and ‖e(u, β)‖/β is nonincreasing with respect to β. It will play an important

role in the following convergence analysis.
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Lemma 2.2. For any u ∈ Ω and β2 ≥ β1 > 0, the following two inequalities

hold:

‖e(u, β2)‖ ≥ ‖e(u, β1)‖,

and
‖e(u, β2)‖

β2

≤
‖e(u, β1)‖

β1

.

Proof. See a simple proof in [21]. �

Lemma 2.3. ( [2]) Let β > 0, then u∗ is a solution of the VIP(F,Ω) if and

only if

u∗ = PΩ[u
∗ − βF (u∗)],

i.e.,

e(u∗, β) = 0. �

The lemma shows that solving variational inequality VIP(F,Ω) is equivalent

to finding a zero point of the residual function e(u, β), and it also provides us a

stopping criterion in designing a solution method.

In the following analysis, we assume that:

(a) The underlying mapping F is monotone on Ω, i.e.,

(u− v)T [F (u)− F (v)] ≥ 0, ∀u, v ∈ Ω;

(b) The the solution set of VIP(F,Ω), denoted by Ω∗, is nonempty.

3 The algorithm and convergence analysis

In this section, we first describe our improved self-adaptive algorithm formally.

Then some related properties are presented. Finally, we prove the global con-

vergence of the proposed algorithm.

Algorithm 3.1. An improved self-adaptive projection method.

Step0. Given l ∈ (0, 1), η ∈ (0, 1), γ ∈ (0, 2), θ1 > 1, θ2 > 1, α−1 = 1 and

ε > 0.

Choose an arbitrarily starting point x0 ∈ Ω. Set k := 0.

Step1. Set βk = min{1, θ1αk−1} and compute ‖e(uk, βk)‖ via (4). If ‖e(uk, βk)‖ ≤

ε then stop;

Otherwise, go to Step2.
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Step2. Find the smallest nonnegative integer mk, such that αk = βkl
mk sat-

isfying

βk‖F (uk)− F (uk − αke(uk, βk))‖ ≤ η‖e(uk, βk)‖. (7)

Step3. Update the iterate via

uk+1 = PΩ [uk − γρ(uk, βk)d(uk, βk)] , (8)

where ρ(uk, βk) is given by

ρ(uk, βk) :=
e(uk, βk)

T g(uk, βk)

‖d(uk, βk)‖2
(9)

and

d(uk, βk) := αk [e(uk, βk)− βkF (uk)] + βkF (uk − αke(uk, βk)), (10)

g(uk, βk) := αk {e(uk, βk)− βk [F (uk)− F (uk − αke(uk, βk))]} . (11)

Step4. If

βk‖F (uk)− F (uk − αke(uk, βk))‖ ≤ 0.3‖e(uk, βk)‖,

αk = θ2αk; else αk = αk. Set k := k + 1, and go to Step1.

Remark 3.1. Note that if the self-adaptive parameter αk ≡ 1, then the ascent

direction d(uk, βk) defined by (10) is reduced to the profitable direction proposed

in [9, 19, 20]. The more details are referred to [9, 19, 20] and references cited

therein.

Remark 3.2. The main purpose of introducing two different parameters θ1

and θ2 is to accelerate the convergence at each iteration with a larger initial

parameter βk. Certainly, θ1 and θ2 can be equivalent, but the computational

experience in [6] demonstrates that the self-adaptive methods perform well with

different θ1 and θ2, and we preserve this strategy in this paper.

Lemma 3.1. ( [6, Lemma 3.2]) If ‖e(x, 1)‖ 6= 0, then there exist 0 < η < 1

and α̂ > 0, such that for all 0 < α < α̂

β‖F (u)− F (u− αe(u, β))‖ ≤ η‖e(u, β)‖. (12)

As pointed out in [6], the sequence {αk} generated by Algorithm 3.1 is

bounded away from zero; that is

αk ≥ αmin := min{α−1, lα̂} > 0. (13)

The following theorem means that for any α satisfying (12), d(u, β) defined

by (10) is a profitable direction of 1

2
‖u− u∗‖2, where u∗ ∈ Ω∗.
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Theorem 3.2. If the parameter α satisfies (12) and β > 0, then for any u∗ ∈ Ω∗

and u 6= u∗,

(u− u∗)T d(u, β) ≥ e(u, β)T g(u, β) ≥ α(1− η)‖e(u, β)‖2 > 0,

and

‖d(u, β)‖ 6= 0.

Proof. From the definition of variational inequality, for any v ∈ Ω, it follows

that

F (u∗)T (v − u∗) ≥ 0.

Combining the above inequality and the monotonicity of F , we have

F (v)T (v − u∗) ≥ 0. (14)

Setting v := u− αe(u, β) in (14), we obtain

βF (u− αe(u, β))T (u− u∗ − αe(u, β)) ≥ 0. (15)

On the other hand, setting v := u − βF (u) and w := u∗ in (5), we get the

following inequality

α(e(u, β)− βF (u))T (u− u∗ − e(u, β)) ≥ 0. (16)

Adding (15) and (16), we get

(u− u∗)T d(u, β) ≥ e(u, β)T g(u, β). (17)

By using (12) and (17), we finally conclude that

(u− u∗)T d(u, β) ≥ e(u, β)T g(u, β) ≥ α(1− η)‖e(u, β)‖2 > 0.

According to the assumption and Cauchy-Schwarz inequality, ‖d(u, β)‖ 6= 0 can

be obtained directly. The proof is completed. �

Based on the above properties, we analyze the convergence of Algorithm

3.1 in the rest of this section. First, we present the bounded property of the

generated sequence {uk} in the following theorem.

Theorem 3.3. Let {uk} ⊂ Rn be the sequence generated by Algorithm 3.1, then

‖uk+1−u∗‖2 ≤ ‖uk −u∗‖2−α2(1− η)2γ(2− γ)‖e(uk, βk)‖
4/‖d(uk, βk)‖

2 (18)

and the sequence {uk} is bounded.
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Proof. Let u∗ be an arbitrary element of the set Ω∗. According to the equation

(6) and (8), and Theorem 3.2, we have

‖uk+1 − u∗‖2

= ‖PΩ [uk − γρ(uk, βk)d(uk, βk)]− u∗‖2

≤ ‖uk − γρ(uk, βk)d(uk, βk)− u∗‖2

= ‖uk − u∗‖2 − 2γρ(uk, βk)(uk − u∗)T d(uk, βk) + γ2ρ(uk, βk)
2‖d(uk, βk)‖

2

≤ ‖uk − u∗‖2 − 2γρ(uk, βk)e(uk, βk)
T g(uk, βk) + γ2ρ(uk, βk)

2‖d(uk, βk)‖
2

≤ ‖uk − u∗‖2 − α2(1− η)2γ(2− γ)‖e(uk, βk)‖
4/‖d(uk, βk)‖

2,

where the last inequality follows from Theorem 3.2 and the equation (9). It

follows from (18) that

‖uk+1 − u∗‖2 ≤ ‖uk − u∗‖2 ≤ · · · ≤ ‖u0 − u∗‖2, (19)

which implies the {uk} is bounded. This completes the proof. �

Theorem 3.4. The sequence {uk} ⊂ Rn generated by Algorithm 3.1 converges

to a solution of VIP(F,Ω).

Proof. From Theorem 3.3, the inequalities (19) implies that the sequence {‖uk−

u∗‖} is monotonically decreasing. Hence the sequence {‖uk−u∗‖} is convergent,

which means

lim
k→+∞

‖e(uk, βk)‖
4/‖d(uk, βk)‖

2 = 0. (20)

According to the definition of d(uk, βk), it follows easily that

‖d(uk, βk)‖ = ‖αk [e(uk, βk)− βkF (uk)] + βkF (uk − αke(uk, βk))‖

≤ αk‖e(uk, βk)‖+ αkβk‖F (uk)‖+ βk‖F (uk − αke(uk, βk))‖.(21)

Since the underlying mapping F is continuous, so is e(uk, βk). Therefore, it

follows from the boundedness of {uk} and (21) that ‖d(uk, βk)‖ is also bounded.

Then it follows from (20) that

lim
k→+∞

‖e(uk, βk)‖ = 0. (22)

From (13), we get βk ≥ βmin ≡ min{1, θ1αmin} > 0, ∀k > 0. It follows from

Lemma 2.2 that

lim
k→+∞

‖e(uk, βmin)‖ = 0.

Since {uk} is bounded, it has at least one cluster point. Let ū be a cluster

point of {uk} and {ukj
}kj∈N be the corresponding subsequence converging to

ū, where N ⊆ {0, 1, · · · }. Then,

‖e(ū, βmin)‖ = lim
kj∈N ,j→+∞

‖e(ukj
, βmin)‖ = 0.

That is ū is a solution of VIP(F,Ω). Setting u∗ = ū in (19), we get {uk}

converges to a solution of VIP(F,Ω). This completes the proof. �
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4 Numerical Example

In this section, we report some numerical experiments of two examples and

present comparisons between the proposed algorithm and Han and Lo’s Algo-

rithm 3.2 in [6], denoted by SPVI and HLM for short respectively. All the

codes were written in Matlab and run on a HP personal computer with Intel

Pentium Dual-Core processor 2.6GHz, 2GB memory.

Example 4.1. The first experimental problem that we considered is a nonlinear

complementarity problem as follows:

u ≥ 0, F (u) ≥ 0, uTF (u) = 0,

where

F (u) = Mu+D(u) + q,

Mu+q and D(u) are the linear part and the nonlinear part of F (u), respectively.

We construct the test problems as similar as in He et al. [11]. The matrix M

of the linear part is M = ATA+ B, where A is an n× n matrix whose entries

are randomly generated in the interval (−5, 5) and the skew-symmetric matrix

B is generated in the same way. The vector q is generated from a uniform

distribution in the interval (−500, 0). In practice, the case of q ∈ (−500, 500)

is easier to solve than the above case. The components of nonlinear part D(u)

are Dj(u) = dj × arctan(uj − 2), where dj is a random variable in (0, 1). We

test the problems with dimension n = 10, 50, 100 200, 500 and 800, and the

corresponding numerical results are reported in Table 1.

Example 4.2. This example is a modification of the Example 6.1 discussed

in [20]. The problem is a linear complementarity problem, i.e.,

F (u) = Mu+ q,

where M is a tridiagonal matrix as follows:

M =















4 −2

1 4
. . .

. . .
. . . −2

1 4















,

and the vector q is randomly generated in the interval [−1, 0]. We test the

problems with dimension n = 50, 100, 200, 500, 1000 and 2000, and the

corresponding numerical results are reported in Table 2.

In all our tests, we set the stopping criterion utilized in the test as

‖e(uk, βk)‖ ≤ 10−6.

The values of some parameters in the Han and Lo’s method are specified as

µ = 0.5, L = 0.8, θ1 = 2.9 and θ2 = 2.0, while these parameters are specified
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as η = 0.5, l = 0.9, θ1 = 3.1 and θ2 = 2.5 in the proposed algorithm. And the

rest parameters in the two algorithms are set as γ = 1.9, and α−1 = 1.

Because of the test problems are generated randomly, all the number of

iteration and CPU time are the average of 20 trials. In Table 1, we present four

groups of numerical results for different starting points. Subtable (a) and (b) are

corresponding to the starting point u0 = (0, 0, · · · , 0)T and u0 = (1, 1, · · · , 1)T

respectively, and (c) and (d) are corresponding to two different starting vectors,

which are randomly generated in the interval (0, 1), respectively. Differ with

Table 1(c) and (d), Table 2(b) is obtained by different initial points randomly

generated in each trial, that is 20 trials with 20 different starting points. Note

that in our implementation of the algorithms, if the i-th component of the vector

uk and d(uk, βk) satisfies [uk]i < 10−6 and [d(uk, βk)]i > 10−4 respectively, we

set [d(uk, βk)]i = 0. In addition, we can see that the proposed direction is

the combination of −F (uk) and the direction of Han and Lo’s method. So

in our practical computation, if the cosine between Han and Lo’s direction

and −F (uk) is greater than 0.999999, we shrink the stepsize in the direction

−F (uk), i.e. αk+1 = 0.7αk, otherwise we set the proposed direction as Han and

Lo’s direction.

From the Table 1 and Table 2, we can see that the average iteration and

CPU time of the proposed algorithm is less than Han and Lo’s method. The

numerical results demonstrate the new method is efficient and reliable.

5 Conclusions

In this paper, we construct a new search direction and then present an improved

self-adaptive projection method for solving variational inequalities. Further-

more, we analyze the global convergence under the mild conditions that the

underlying mapping F is continuous and monotone. Some preliminary numeri-

cal results demonstrate the new method is efficient and reliable.
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Table 1: Comparison of (HLM) and (SPVI) for Example 4.1.

(a) Starting point u0 = (0, 0, · · · , 0)T .

Dim.
HLM SPVI

Iter. CPU(s) Iter. CPU(s)

n= 10 257.40 0.0062 144.55 0.0040

n= 50 291.05 0.0117 222.95 0.0096

n= 100 265.20 0.0182 222.95 0.0156

n= 200 277.15 0.0413 244.45 0.0360

n= 500 308.60 0.3370 255.55 0.2743

n= 800 355.20 1.8850 297.60 1.4939

(b) Starting point u0 = (1, 1, · · · , 1)T .

Dim.
HLM SPVI

Iter. CPU(s) Iter. CPU(s)

n= 10 223.95 0.0055 121.30 0.0034

n= 50 317.70 0.0129 214.95 0.0094

n= 100 273.30 0.0190 229.20 0.0163

n= 200 304.80 0.0454 261.65 0.0388

n= 500 504.25 0.5490 449.05 0.4931

n= 800 777.65 4.1805 725.45 3.8959

(c) Starting point u0 = rand(n,1).

Dim.
HLM SPVI

Iter. CPU(s) Iter. CPU(s)

n= 10 246.30 0.0060 150.70 0.0042

n= 50 265.40 0.0108 191.65 0.0084

n= 100 264.15 0.0185 235.95 0.0168

n= 200 313.10 0.0471 240.50 0.0360

n= 500 306.15 0.3471 268.90 0.2963

n= 800 340.60 1.8972 320.90 1.7236

(d) Starting point u0 = rand(n,1).

Dim.
HLM SPVI

Iter. CPU(s) Iter. CPU(s)

n= 10 203.25 0.0051 154.30 0.0040

n= 50 237.55 0.0098 181.45 0.0079

n= 100 279.85 0.0196 229.45 0.0164

n= 200 297.70 0.0450 246.95 0.0369

n= 500 297.20 0.3393 275.00 0.3071

n= 800 342.40 1.8826 318.15 1.6762
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Table 2: Comparison of (HLM) and (SPVI) for Example 4.2.

(a) Starting point u0 = (1, 1, · · · , 1)T .

Dim.
HLM SPVI

Iter. CPU(s) Iter. CPU(s)

n= 50 24.60 0.0010 22.70 0.0009

n= 100 25.40 0.0016 22.95 0.0015

n= 200 25.60 0.0037 23.35 0.0033

n= 500 26.40 0.0335 23.45 0.0299

n= 1000 26.75 0.2285 23.45 0.1961

n= 2000 27.80 0.9024 24.50 0.7681

(b) Starting point u
ith
0

= rand(n, 1)T .

Dim.
HLM SPVI

Iter. CPU(s) Iter. CPU(s)

n= 50 21.80 0.0009 19.55 0.0008

n= 100 21.90 0.0015 19.75 0.0014

n= 200 23.20 0.0035 19.85 0.0029

n= 500 24.50 0.0342 20.15 0.0248

n= 1000 24.40 0.2274 20.40 0.1719

n= 2000 24.75 0.8734 21.05 0.6633
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