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Abstract

The nonzero sum n person game has been considered. We show
that the game can be reduced to global optimization problem. We
derive necessary and sufficient conditions for a point to be Nash point.
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1 Introduction

Game theory plays an important role in applied mathematics, eco-
nomics and decision theory. There are many works devoted to game
theory[2-7]. Most of them deals with zero sum two person games or
nonzero sum two person games. Also, two person non zero sum game
was studied in [5] by reducing it to D.C programming. This paper
considers nonzero sum n person game. The paper is organized as fol-
lows. In Section 2, we formulate non zero sum n person game and
show that it can be formulated as a global optimization problem with
polynom constraints. We formulate the problem of finding a Nash
equilibrium for non zero sum n-person games as a nonlinear program-
ming problem.
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2 Nonzero Sum n-person Game

Consider the n-person game in mixed strategies with matrices (Aq, q =
1, 2, . . . , n) for players 1, 2, . . . , n.

Aq =
(
aq

i1i2...in

)
, q = 1, 2, . . . , n

i1 = 1, 2, . . . , k1, . . . , in = 1, 2, . . . , kn,

Denote by Dq the set

Dp = {u ∈ Rp |
p∑

i=1

ui = 1, ui ≥ 0, i = 1, . . . , p}

p = k1, k2, . . . , kn

A mixed strategy for player 1 is a vector x1 = (x1
i1

, x1
i2

, . . . , x1
ik1

) ∈ Dk1

representing the probability that player 1 uses a strategy i. Simi-
larly, the mixed strategies for q-th player is xq = (xq

i1
, xq

i2
, . . . , xq

ik1
) ∈

Dkq , q = 1, 2, . . . , n. Their expected payoffs are given by for 1-th
person :

f1(x1, x2, . . . , xn) =
k1∑

i1=1

k2∑
i2=1

. . .

kn∑
in=1

a1
i1i2...inx1

i1x
2
i2 . . . xn

in .

and for q-th person

fq(x1, x2, . . . , xn) =
k1∑

i1=1

k2∑
i2=1

. . .

kn∑
in=1

aq
i1i2...in

x1
i1x

2
i2 . . . xn

in ,

q = 1, 2, . . . , n

Definition 2.1 A vector of mixed strategies x̃q ∈ Dkq , q = 1, 2, . . . , n
is a Nash equilibrium if

f1(x̃1, x̃2, . . . , x̃n) ≥ f1(x1, x̃2, . . . , x̃n), ∀x1 ∈ Dk1

· · · · · · · · · · · · · · · · · ·
fq(x̃1, x̃2, . . . , x̃n) ≥ fq(x1, x̃2, . . . , x̃n), ∀xq ∈ Dkq

· · · · · · · · · · · · · · · · · ·
fn(x̃1, x̃2, . . . , x̃n) ≥ fn(x1, x̃2, . . . , x̃n), ∀xn ∈ Dkn .

60



Global Optimization Approach to Nonzero Sum n Person Game

It is clear that

f1(x̃1, x̃2, . . . , x̃n) = maxx1∈Dk1
f1(x1, x̃2, . . . . . . , x̃n),

· · · · · · · · · · · ·
fq(x̃1, x̃2, . . . , x̃n) = maxxq∈Dkq

fq(x̃1, x̃2, . . . , . . . , x̃q−1, xq, . . . , x̃q+1, . . . , x̃n),
· · · · · · · · · · · ·
fn(x̃1, x̃2, . . . , x̃n) = maxxn∈Dkn

fn(x̃1, x̃2, . . . , x̃n−1, xn).

Denote by

k1∑
i1=1

k2∑
i2=1

. . .

kn∑
in=1

aq
i1i2...in

x1
i1x

2
i2 . . . xn

in ,
k1,k2,...,kn∑
i1i2...in=1

aqx1x2 . . . xn ,

,

kj∑
ij=1

aq
(∏

xj
)
,

k1,k2,...,kn∑
i1i2...in=1

aqx , fq(x1, x2, . . . , xn) , fq(x), q = 1, 2, . . . , n

and

k1∑
i1=1

k2∑
i2=1

. . .

kq−1∑
iq−1=1

kq+1∑
iq+1=1

. . .

kn∑
in=1

aq
i1i2...in

x1
i1x

2
i2 . . . xq−1

iq−1
xq+1

iq+1
. . . xn

in ,

k1,...,kq−1,kq+1,...,kn∑
i1,...iq−1,iq−1,...in=1

aqx1 . . . xq−1xq+1 . . . xn ,

kj∑
ij=1 j 6=q

aqx1 . . . xq−1xq+1 . . . xn ,

,

kj∑
ij=1

aq

 n∏
j=1, j 6=q

xj

 , fq(x1x2 . . . xq−1xq+1 . . . xn) , fq(x\xj), j, q = 1, 2, . . . , n.

For further purpose, it is useful to formulate the following statement.

Theorem 2.1 A vector strategy (x̃1, x̃2, . . . , x̃n) is a Nash equilib-
rium if and only if

kj∑
ij=1

aq
(∏

x̃j
)
≥

kj∑
ij=1

aq

 n∏
j=1, j 6=q

x̃j

 (1)

for
ij = 1, 2, . . . , kj ,

j = 1, 2, . . . , n,

q = 1, 2, . . . , n.
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Proof. Necessity : Assume that x̃ is a Nash equilibrium. Then by
definition 1.1, we have

k1∑
i1=1

k2∑
i2=1

. . .

kn∑
in=1

aq
i1i2...in

x̃1
i1 . . . x̃n

in ≥

≥
k1∑

i1=1

k2∑
i2=1

. . .

kq−1∑
iq−1=1

kq+1∑
iq+1=1

. . .

kn∑
in=1

aq
i1i2...in

x̃1
i1 . . . x̃q−1

iq−1
xq

iq
x̃q+1

iq+1
. . . x̃n

in

(2)

q = 1, 2, . . . , n

In the inequality (2), successively choose xi = (0, 0, . . . , 1, . . . , 0) with
1 in each of the ki spots. We can easily see that

fq(x̃) =
kj∑

ij=1

aq
(∏

x̃j
)
≥

kj∑
ij=1

aq

 n∏
j=1, j 6=q

x̃j

 , for ij = 1, 2, . . . , kj ;

j = 1, 2, . . . , n, q = 1, 2, . . . , n.

Sufficiency : Suppose that for a vector x̃ ∈ Dk1 ×Dk2 × . . .×Dkn ,
conditions (1) are satisfied. We choose xq ∈ Dkq , q = 1, 2, . . . , n and
multiply (1) by x respectively. We obtain

kq∑
j=1

xj

 kj∑
ij=1

aq
(∏

x̃j
) ≥ k1∑

i1=1

. . .

kq∑
iq=1

. . .

kn∑
in=1

aq
i1i2...in

x̃1
i1 . . . x̃q−1

iq−1
xq

iq
x̃q+1

iq+1
. . . x̃n

in

q = 1, 2, . . . , n

Taking into account that
∑kq

i=1 xq
i = 1, q = 1, 2, . . . , n. we have

fq(x̃1, x̃2, . . . , x̃n) ≥ fq(x̃1, . . . , x̃q−1, xq, x̃q+1 . . . x̃n), ∀xq ∈ Dkq

q = 1, 2, . . . , n

which shows that x̃ is a Nash equilibrium. The proof is complete.�

Theorem 2.2 A mixed strategy x̃ is a Nash equilibrium for the
nonzero sum n-person game if and only if there exists vector p̃ such
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that vector (x̃, p̃) is a solution to the following nonlinear programming
problem :

max
(x,p)

F (x, p) =
k1∑

i1=1

k2∑
i2=1

. . .

kn∑
in=1

 n∑
q=1

aq
i1i2...in

x1
i1x

2
i2 . . . xn

in −
n∑

q=1

pq

(3)
subject to :

kj∑
ij=1

aq

 n∏
j=1, j 6=q

xj

 ≤ pq, ∀iq = 1, 2, . . . , kq, (4)

kq∑
i=1

xq
i = 1, q = 1, 2, . . . , n. (5)

Proof. Necessity : Now suppose that x̃ is a Nash point. Choose
vector p̃ as : p̃q = fq(x̃), q = 1, 2, . . . , n
We show that (x̃, p̃) is a solution to problem (3)-(5).First, we show
that (x̃, p̃) is a feasible point for problem (3).
By Theorem 1.1, the equivalent characterization of a Nash point, we
have

kj∑
ij=1 j 6=q

aqx̃1 . . . x̃q−1x̃q+1 . . . x̃n ≥ fq(x̃1, . . . , x̃n), q = 1, 2, . . . , n.

The rest of the constraints are satisfied because x̃q ∈ Dkq, q =
1, 2, . . . , n. It meant that (x̃, p̃) is a feasible point. Choose any xq ∈
Dkq, q = 1, 2, . . . , n.
Multiply (4) by xq

i , q = 1, 2, . . . , n. respectively. If we have sum up
these inequalities, we obtain

fq(x, y, z) =
kj∑

ij=1

aq
(∏

xj
)
≤ pq, q = 1, 2, . . . , n.

Hence, we get

F (x, p) =
k1∑

i1=1

k2∑
i2=1

. . .

kn∑
in=1

 n∑
q=1

aq
i1i2...in

x1
i1x

2
i2 . . . xn

in −
n∑

q=1

pq ≤ 0
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for all xq ∈ Dq, q = 1, 2, . . . , n.
But with p̃q = fq(x̃), we have F (x̃, p̃) = 0 Hence, the point (x̃, p̃) is
a solution to the problem (3)-(5).
Sufficiency : Now we have to show reverse, namely, that any solution
of problem (3)-(5) must be a Nash point. Let (x̄, p̄) be any solution
of problem (3)-(5). Let x̃ be a Nash point for the game, and set
p̃q = fq(x̃).
We will show that x̄ must be a Nash equilibrium of the game. Since
(x̄, p̄) is a feasible point, we have

kj∑
ij=1

aq

 n∏
j=1, j 6=q

x̄j

 ≤ p̄q ∀j = 1, 2, . . . , kq, q = 1, 2, . . . , n. (6)

Hence, we have

kj∑
ij=1

aq
(∏

x̄j
)
≤ p̄q, q = 1, 2, . . . , n.

Adding these inequalities, we obtain

F (x̄, p̄) =
k1∑

i1=1

k2∑
i2=1

. . .

kn∑
in=1

 n∑
q=1

aq
i1i2...in

 x̄1x̄2 . . . x̄n−
n∑

q=1

pq ≤ 0 (7)

We know that at a Nash equilibrium F (x̃, p̃) = 0. Since (x̄, p̄) is also
a solution, F (x̄, p̄) be equal to zero :

F (x̄, p̄) =
k1∑

i1=1

k2∑
i2=1

. . .

kn∑
in=1

 n∑
q=1

aq
i1i2...in

 x̄1x̄2 . . . x̄n−
n∑

q=1

pq = 0 (8)

Consequently,

kj∑
ij=1

aq
(∏

x̄j
)

= p̄q, q = 1, 2, . . . , n.

Since a point (x̄, p̄) feasible, we can write the constrains (6) as follows:

kj∑
ij=1

aq
(∏

x̄j
)
≥

kj∑
ij=1

aq

 n∏
j=1, j 6=q

x̄j

 , for ij = 1, 2, . . . , kj , q = 1, 2, . . . , n.
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3 Computational Experiments

Let A = (aijk)2×2×2 and B = (bijk)2×2×2, C = (ijk)2×2×2

Three problems of type (5) − (9) have been solved numerically on
”MATLAB” for dimensions 2 × 2 × 2. In all cases, Nash points were
found successfully. These problems were :
Problem 1. Let a111 = 2, a112 = 3, a121 = −1, a122 = 0, a211 =
1, a212 = −2, a221 = 4, a222 = 3, b111 = 1, b112 = 2, b121 = 0, b122 =
−1, b211 = −1, b212 = 0, b221 = 2, b222 = 1, and c111 = 3, c112 =
2, c121 = 1, c122 = −3, c211 = 0, c212 = 2, c221 = −1, c222 = 2.
Then we have the problem:

F (x, y, z, p, q, t) = 6x1y1z1 + 7x1y1z2 − 3x1y2z2 + 5x2y1z2+

+6x2y2z2 − p− q − t→ max

2y1z1 + 3y1z2 − y2z1 − p ≤ 0
y1z1 − 2y1z2 + 4y2z1 + 3y2z2 − p ≤ 0
x1z1 + 2x1z2 − x2z1 − q ≤ 0
−1x1z2 + 2x2z1 + x2z2 − q ≤ 0
3x1y1 + x1y2 − x2y2 − t ≤ 0
2x1y1 − 3x1y2 + 2x2y1 + 2x2y2 − t ≤ 0
x1 + x2 = 1
y1 + y2 = 1
z1 + z2 = 1
x1 ≥ 0 , x2 ≥ 0 , y1 ≥ 0 , y2 ≥ 0
z1 ≥ 0 , z2 ≥ 0 , p ≥ 0 , q ≥ 0 t ≥ 0

Solution is F ∗ = −2.2204e − 016, x∗ = (0.5191; 0.4809)T , y∗ =
(0.5888; 0.4112)T and z∗ = (0.5382; 0.4618)T . p∗ = 1.2281, q∗ = 0.5
and t∗ = 0.9327
Problem 2. Let a111 = 5, a112 = 3, a121 = 6, a122 = 7, a211 =
0, a212 = 8, a221 = 2, a222 = 1, b111 = 2, b112 = 4, b121 = −1, b122 =
0, b211 = 3, b212 = 5, b221 = 4, b222 = 9, and c111 = 2, c112 = 0, c121 =
−4, c122 = −1, c211 = −2, c212 = 6, c221 = 8, c222 = 9.
Solution is F ∗ = −0.00986, x∗ = (0.8; 0.2)T , y∗ = (0.1; 0)T and
z∗ = (0.5; 0.5)T . p∗ = −2.2204e− 016, q∗ = 3.2 and t∗ = 1.2
Problem 3. Let a111 = 3, a112 = 2, a121 = 1, a122 = 5, a211 =
8, a212 = 4, a221 = 1, a222 = 3, b111 = 3, b112 = 2, b121 = 4, b122 =
0, b211 = 1, b212 = 8, b221 = 6, b222 = 6, and c111 = 3, c112 = 1, c121 =
9, c122 = 2, c211 = 4, c212 = 7, c221 = 2, c222 = 3.
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Solution is F ∗ = 0, x∗ = (1; 0)T , y∗ = (1; 0)T and z∗ = (0; 1)T .
p∗ = 4, q∗ = 8 and t∗ = 7

Now taking into account the above results, by Theorem 2.2 we
conclude that x̄ is a Nash point which a completes the proof.�
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