Global Optimization Approach to Nonzero Sum n Person Game

S.Batbileg ${ }^{1}$, R.Enkhbat ${ }^{2}$
${ }^{1}$ National University of Mongolia, Ulaanbaatar email:sbatbileg@gmail.com
${ }^{2}$ National University of Mongolia, Ulaanbaatar
email: enkhbat46@gmail.com

Abstract

The nonzero sum n person game has been considered. We show that the game can be reduced to global optimization problem. We derive necessary and sufficient conditions for a point to be Nash point.

Key words: Nash equilibrium, mixed strategies.

1 Introduction

Game theory plays an important role in applied mathematics, economics and decision theory. There are many works devoted to game theory[2-7]. Most of them deals with zero sum two person games or nonzero sum two person games. Also, two person non zero sum game was studied in [5] by reducing it to D.C programming. This paper considers nonzero sum n person game. The paper is organized as follows. In Section 2, we formulate non zero sum n person game and show that it can be formulated as a global optimization problem with polynom constraints. We formulate the problem of finding a Nash equilibrium for non zero sum n-person games as a nonlinear programming problem.

[^0]
2 Nonzero Sum n-person Game

Consider the n-person game in mixed strategies with matrices ($A_{q}, q=$ $1,2, \ldots, n$) for players $1,2, \ldots, n$.

$$
\begin{gathered}
A_{q}=\left(a_{i_{1} i_{2} \ldots i_{n}}^{q}\right), q=1,2, \ldots, n \\
i_{1}=1,2, \ldots, k_{1}, \ldots, i_{n}=1,2, \ldots, k_{n},
\end{gathered}
$$

Denote by D_{q} the set

$$
\begin{gathered}
D_{p}=\left\{u \in R^{p} \mid \sum_{i=1}^{p} u_{i}=1, u_{i} \geq 0, i=1, \ldots, p\right\} \\
p=k_{1}, k_{2}, \ldots, k_{n}
\end{gathered}
$$

A mixed strategy for player 1 is a vector $x^{1}=\left(x_{i_{1}}^{1}, x_{i_{2}}^{1}, \ldots, x_{i_{k_{1}}}^{1}\right) \in D_{k_{1}}$ representing the probability that player 1 uses a strategy i. Similarly, the mixed strategies for q-th player is $x^{q}=\left(x_{i_{1}}^{q}, x_{i_{2}}^{q}, \ldots, x_{i_{k_{1}}}^{q}\right) \in$ $D_{k_{q}}, q=1,2, \ldots, n$. Their expected payoffs are given by for 1 -th person :

$$
f_{1}\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{1} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{n}}^{n} .
$$

and for q-th person

$$
\begin{gathered}
f_{q}\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{q} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{n}}^{n}, \\
\\
q=1,2, \ldots, n
\end{gathered}
$$

Definition 2.1 A vector of mixed strategies $\tilde{x}^{q} \in D_{k_{q}}, q=1,2, \ldots, n$ is a Nash equilibrium if

$$
\left\{\begin{array}{c}
f_{1}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right) \geq f_{1}\left(x^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right), \forall x^{1} \in D_{k_{1}} \\
\ldots \quad \ldots \quad \ldots \quad \ldots \\
f_{q}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right) \geq f_{q}\left(x^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right), \forall x^{q} \in D_{k_{q}} \\
\ldots \quad \ldots \quad \ldots \quad \ldots \\
f_{n}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right) \geq f_{n}\left(x^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right), \forall x^{n} \in D_{k_{n}} .
\end{array}\right.
$$

It is clear that

$$
\begin{aligned}
& f_{1}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right)=\max _{x^{1} \in D_{k_{1}}} f_{1}\left(x^{1}, \tilde{x}^{2}, \ldots \quad \ldots, \tilde{x}^{n}\right) \\
& \ldots \quad \cdots \quad \cdots \quad \cdots \\
& f_{q}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right)=\max _{x^{q} \in D_{k_{q}}} f_{q}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \ldots, \tilde{x}^{q-1}, x^{q}, \ldots, \tilde{x}^{q+1}, \ldots, \tilde{x}^{n}\right), \\
& \ldots \quad \cdots \quad \cdots \quad \cdots \\
& f_{n}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right)=\max _{x^{n} \in D_{k_{n}}} f_{n}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n-1}, x^{n}\right)
\end{aligned}
$$

Denote by

$$
\begin{aligned}
& \sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{q} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{n}}^{n} \triangleq \sum_{i_{1} i_{2} \ldots i_{n}=1}^{k_{1}, k_{2}, \ldots, k_{n}} a^{q} x^{1} x^{2} \ldots x^{n} \triangleq \\
\triangleq & \sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod x^{j}\right) \triangleq \sum_{i_{1} i_{2} \ldots i_{n}=1}^{k_{1}, k_{2}, \ldots, k_{n}} a^{q} x \triangleq f_{q}\left(x^{1}, x^{2}, \ldots, x^{n}\right) \triangleq f_{q}(x), \quad q=1,2, \ldots, n
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{q-1}=1}^{k_{q-1}} \sum_{i_{q+1}=1}^{k_{q+1}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{q} x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{q-1}}^{q-1} x_{i_{q+1}}^{q+1} \ldots x_{i_{n}}^{n} \triangleq \\
& k_{1}, \ldots, k_{q-1}, k_{q+1}, \ldots, k_{n} \\
& \sum_{i_{1}, \ldots i_{q-1}, i_{q-1}, \ldots i_{n}=1}^{q} x^{1} \ldots x^{q-1} x^{q+1} \ldots x^{n} \triangleq \sum_{i_{j}=1}^{k_{j}} a_{j \neq q}^{q} x^{1} \ldots x^{q-1} x^{q+1} \ldots x^{n} \triangleq \\
& \triangleq \sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod_{j=1, j \neq q}^{n} x^{j}\right) \triangleq f_{q}\left(x^{1} x^{2} \ldots x^{q-1} x^{q+1} \ldots x^{n}\right) \triangleq f_{q}\left(x \backslash x^{j}\right), \quad j, q=1,2, \ldots, n .
\end{aligned}
$$

For further purpose, it is useful to formulate the following statement.

Theorem 2.1 A vector strategy $\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right)$ is a Nash equilibrium if and only if

$$
\begin{equation*}
\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod \tilde{x}^{j}\right) \geq \sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod_{j=1, j \neq q}^{n} \tilde{x}^{j}\right) \tag{1}
\end{equation*}
$$

for

$$
\begin{aligned}
i_{j} & =1,2, \ldots, k_{j} \\
j & =1,2, \ldots, n \\
q & =1,2, \ldots, n
\end{aligned}
$$

Proof. Necessity: Assume that \tilde{x} is a Nash equilibrium. Then by definition 1.1, we have

$$
\begin{align*}
& \sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{q} \tilde{x}_{i_{1}}^{1} \ldots \tilde{x}_{i_{n}}^{n} \geq \\
\geq & \sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{q-1}=1}^{k_{q-1}} \sum_{i_{q+1}=1}^{k_{q+1}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{q} \tilde{x}_{i_{1}}^{1} \ldots \tilde{x}_{i_{q-1}}^{q-1} x_{i_{q}}^{q} \tilde{x}_{i_{q+1}}^{q+1} \ldots \tilde{x}_{i_{n}}^{n} \tag{2}
\end{align*}
$$

$$
q=1,2, \ldots, n
$$

In the inequality (2), successively choose $x^{i}=(0,0, \ldots, 1, \ldots, 0)$ with 1 in each of the k_{i} spots. We can easily see that

$$
\begin{gathered}
f_{q}(\tilde{x})=\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod \tilde{x}^{j}\right) \geq \sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod_{j=1, j \neq q}^{n} \tilde{x}^{j}\right), \text { for } i_{j}=1,2, \ldots, k_{j} \\
j=1,2, \ldots, n, \quad q=1,2, \ldots, n
\end{gathered}
$$

Sufficiency: Suppose that for a vector $\tilde{x} \in D_{k_{1}} \times D_{k_{2}} \times \ldots \times D_{k_{n}}$, conditions (1) are satisfied. We choose $x_{q} \in D_{k_{q}}, q=1,2, \ldots, n$ and multiply (1) by x respectively. We obtain

$$
\begin{gathered}
\sum_{j=1}^{k_{q}} x_{j}\left[\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod \tilde{x}^{j}\right)\right] \geq \sum_{i_{1}=1}^{k_{1}} \ldots \sum_{i_{q}=1}^{k_{q}} \ldots \sum_{i_{n}=1}^{k_{n}} a_{i_{1} i_{2} \ldots i_{n}}^{q} \tilde{x}_{i_{1}}^{1} \ldots \tilde{x}_{i_{q-1}}^{q-1} x_{i_{q}}^{q} \tilde{x}_{i_{q+1}}^{q+1} \ldots \tilde{x}_{i_{n}}^{n} \\
q=1,2, \ldots, n
\end{gathered}
$$

Taking into account that $\sum_{i=1}^{k_{q}} x_{i}^{q}=1, \quad q=1,2, \ldots, n$. we have

$$
\begin{gathered}
f_{q}\left(\tilde{x}^{1}, \tilde{x}^{2}, \ldots, \tilde{x}^{n}\right) \geq f_{q}\left(\tilde{x}^{1}, \ldots, \tilde{x}^{q-1}, x^{q}, \tilde{x}^{q+1} \ldots \tilde{x}^{n}\right), \quad \forall x^{q} \in D_{k_{q}} \\
q=1,2, \ldots, n
\end{gathered}
$$

which shows that \tilde{x} is a Nash equilibrium. The proof is complete.

Theorem 2.2 A mixed strategy \tilde{x} is a Nash equilibrium for the nonzero sum n-person game if and only if there exists vector \tilde{p} such
that vector (\tilde{x}, \tilde{p}) is a solution to the following nonlinear programming problem :

$$
\begin{equation*}
\max _{(x, p)} F(x, p)=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}}\left(\sum_{q=1}^{n} a_{i_{1} i_{2} \ldots i_{n}}^{q}\right) x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{n}}^{n}-\sum_{q=1}^{n} p_{q} \tag{3}
\end{equation*}
$$

subject to :

$$
\begin{gather*}
\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod_{j=1, j \neq q}^{n} x^{j}\right) \leq p_{q}, \quad \forall i_{q}=1,2, \ldots, k_{q} \tag{4}\\
\sum_{i=1}^{k_{q}} x_{i}^{q}=1, \quad q=1,2, \ldots, n \tag{5}
\end{gather*}
$$

Proof. Necessity: Now suppose that \tilde{x} is a Nash point. Choose vector \tilde{p} as : $\tilde{p}_{q}=f_{q}(\tilde{x}), q=1,2, \ldots, n$
We show that (\tilde{x}, \tilde{p}) is a solution to problem (3)-(5).First, we show that (\tilde{x}, \tilde{p}) is a feasible point for problem (3).
By Theorem 1.1, the equivalent characterization of a Nash point, we have

$$
\sum_{i_{j}=1}^{k_{j}} a^{q} \tilde{x}^{1} \ldots \tilde{x}^{q-1} \tilde{x}^{q+1} \ldots \tilde{x}^{n} \geq f_{q}\left(\tilde{x}^{1}, \ldots, \tilde{x}^{n}\right), \quad q=1,2, \ldots, n
$$

The rest of the constraints are satisfied because $\tilde{x}^{q} \in D_{k q}, \quad q=$ $1,2, \ldots, n$. It meant that (\tilde{x}, \tilde{p}) is a feasible point. Choose any $x^{q} \in$ $D_{k q}, \quad q=1,2, \ldots, n$.
Multiply (4) by $x_{i}^{q}, q=1,2, \ldots, n$. respectively. If we have sum up these inequalities, we obtain

$$
f_{q}(x, y, z)=\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod x^{j}\right) \leq p_{q}, \quad q=1,2, \ldots, n
$$

Hence, we get

$$
F(x, p)=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}}\left(\sum_{q=1}^{n} a_{i_{1} i_{2} \ldots i_{n}}^{q}\right) x_{i_{1}}^{1} x_{i_{2}}^{2} \ldots x_{i_{n}}^{n}-\sum_{q=1}^{n} p_{q} \leq 0
$$

for all $x^{q} \in D_{q}, \quad q=1,2, \ldots, n$.
But with $\tilde{p_{q}}=f_{q}(\tilde{x})$, we have $F(\tilde{x}, \tilde{p})=0$ Hence, the point (\tilde{x}, \tilde{p}) is a solution to the problem (3)-(5).
Sufficiency: Now we have to show reverse, namely, that any solution of problem (3)-(5) must be a Nash point. Let (\bar{x}, \bar{p}) be any solution of problem (3)-(5). Let \tilde{x} be a Nash point for the game, and set $\tilde{p}_{q}=f_{q}(\tilde{x})$.
We will show that \bar{x} must be a Nash equilibrium of the game. Since (\bar{x}, \bar{p}) is a feasible point, we have

$$
\begin{equation*}
\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod_{j=1, j \neq q}^{n} \bar{x}^{j}\right) \leq \bar{p}_{q} \quad \forall j=1,2, \ldots, k_{q}, \quad q=1,2, \ldots, n \tag{6}
\end{equation*}
$$

Hence, we have

$$
\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod \bar{x}^{j}\right) \leq \bar{p}_{q}, \quad q=1,2, \ldots, n
$$

Adding these inequalities, we obtain

$$
\begin{equation*}
F(\bar{x}, \bar{p})=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}}\left(\sum_{q=1}^{n} a_{i_{1} i_{2} \ldots i_{n}}^{q}\right) \bar{x}^{1} \bar{x}^{2} \ldots \bar{x}^{n}-\sum_{q=1}^{n} p_{q} \leq 0 \tag{7}
\end{equation*}
$$

We know that at a Nash equilibrium $F(\tilde{x}, \tilde{p})=0$. Since (\bar{x}, \bar{p}) is also a solution, $F(\bar{x}, \bar{p})$ be equal to zero:

$$
\begin{equation*}
F(\bar{x}, \bar{p})=\sum_{i_{1}=1}^{k_{1}} \sum_{i_{2}=1}^{k_{2}} \ldots \sum_{i_{n}=1}^{k_{n}}\left(\sum_{q=1}^{n} a_{i_{1} i_{2} \ldots i_{n}}^{q}\right) \bar{x}^{1} \bar{x}^{2} \ldots \bar{x}^{n}-\sum_{q=1}^{n} p_{q}=0 \tag{8}
\end{equation*}
$$

Consequently,

$$
\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod \bar{x}^{j}\right)=\bar{p}_{q}, \quad q=1,2, \ldots, n
$$

Since a point (\bar{x}, \bar{p}) feasible, we can write the constrains (6) as follows:

$$
\sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod \bar{x}^{j}\right) \geq \sum_{i_{j}=1}^{k_{j}} a^{q}\left(\prod_{j=1, j \neq q}^{n} \bar{x}^{j}\right), \text { for } i_{j}=1,2, \ldots, k_{j}, q=1,2, \ldots, n
$$

3 Computational Experiments

Let $A=\left(a_{i j k}\right)_{2 \times 2 \times 2}$ and $B=\left(b_{i j k}\right)_{2 \times 2 \times 2}, C=(i j k)_{2 \times 2 \times 2}$
Three problems of type (5) - (9) have been solved numerically on "MATLAB" for dimensions $2 \times 2 \times 2$. In all cases, Nash points were found successfully. These problems were:
Problem 1. Let $a_{111}=2, a_{112}=3, a_{121}=-1, a_{122}=0, a_{211}=$ $1, a_{212}=-2, a_{221}=4, a_{222}=3, \quad b_{111}=1, b_{112}=2, b_{121}=0, b_{122}=$ $-1, b_{211}=-1, b_{212}=0, b_{221}=2, b_{222}=1$, and $c_{111}=3, c_{112}=$ $2, c_{121}=1, c_{122}=-3, c_{211}=0, c_{212}=2, c_{221}=-1, c_{222}=2$.
Then we have the problem:

$$
\begin{aligned}
& F(x, y, z, p, q, t)=6 x_{1} y_{1} z_{1}+7 x_{1} y_{1} z_{2}-3 x_{1} y_{2} z_{2}+5 x_{2} y_{1} z_{2}+ \\
& +6 x_{2} y_{2} z_{2}-p-q-t \rightarrow \max \\
& \begin{cases}2 y_{1} z_{1}+3 y_{1} z_{2}-y_{2} z_{1}-p & \leq 0 \\
y_{1} z_{1}-2 y_{1} z_{2}+4 y_{2} z_{1}+3 y_{2} z_{2}-p & \leq 0 \\
x_{1} z_{1}+2 x_{1} z_{2}-x_{2} z_{1}-q & \leq 0 \\
-1 x_{1} z_{2}+2 x_{2} z_{1}+x_{2} z_{2}-q & \leq 0 \\
3 x_{1} y_{1}+x_{1} y_{2}-x_{2} y_{2}-t & \leq 0 \\
2 x_{1} y_{1}-3 x_{1} y_{2}+2 x_{2} y_{1}+2 x_{2} y_{2}-t & \leq 0 \\
x_{1}+x_{2} & =1 \\
y_{1}+y_{2} & =1 \\
z_{1}+z_{2} & =1\end{cases} \\
& \begin{array}{l}
x_{1} \geq 0, x_{2} \geq 0, y_{1} \geq 0, y_{2} \geq 0 \\
z_{1} \geq 0, z_{2} \geq 0, p \geq 0, q \geq 0 t \geq 0
\end{array}
\end{aligned}
$$

Solution is $F^{*}=-2.2204 e-016, x^{*}=(0.5191 ; 0.4809)^{T}, y^{*}=$ $(0.5888 ; 0.4112)^{T}$ and $z^{*}=(0.5382 ; 0.4618)^{T} . p^{*}=1.2281, q^{*}=0.5$ and $t^{*}=0.9327$
Problem 2. Let $a_{111}=5, a_{112}=3, a_{121}=6, a_{122}=7, a_{211}=$ $0, a_{212}=8, a_{221}=2, a_{222}=1, \quad b_{111}=2, b_{112}=4, b_{121}=-1, b_{122}=$ $0, b_{211}=3, b_{212}=5, b_{221}=4, b_{222}=9$, and $c_{111}=2, c_{112}=0, c_{121}=$ $-4, c_{122}=-1, c_{211}=-2, c_{212}=6, c_{221}=8, c_{222}=9$.
Solution is $F^{*}=-0.00986, x^{*}=(0.8 ; 0.2)^{T}, y^{*}=(0.1 ; 0)^{T}$ and $z^{*}=(0.5 ; 0.5)^{T} . p^{*}=-2.2204 e-016, q^{*}=3.2$ and $t^{*}=1.2$
Problem 3. Let $a_{111}=3, a_{112}=2, a_{121}=1, a_{122}=5, a_{211}=$ $8, a_{212}=4, a_{221}=1, a_{222}=3, \quad b_{111}=3, b_{112}=2, b_{121}=4, b_{122}=$ $0, b_{211}=1, b_{212}=8, b_{221}=6, b_{222}=6$, and $c_{111}=3, c_{112}=1, c_{121}=$ $9, c_{122}=2, c_{211}=4, c_{212}=7, c_{221}=2, c_{222}=3$.

Solution is $F^{*}=0, x^{*}=(1 ; 0)^{T}, y^{*}=(1 ; 0)^{T}$ and $z^{*}=(0 ; 1)^{T}$. $p^{*}=4, q^{*}=8$ and $t^{*}=7$

Now taking into account the above results, by Theorem 2.2 we conclude that \bar{x} is a Nash point which a completes the proof.

Acknowledgements

This work has been done within the framework of the project "Theory, Algorithm and Applications for Some Problems of Global Optimization" supported by the Asian Research Center in Mongolia and Korea Foundation for Advanced Studies, Korea.

References

[1] Strekalovsky A.S.(1998) Global Optimality Conditions for Nonconvex Optimization, Journal of Global Optimization 12 415-434.
[2] Melvin Dresher(1981) The Mathematics of Games of Strategy , Dover Publications.
[3] Vorobyev,N.N.(1984) Noncooperative games, Nauka .
[4] Germeyer,YU.B.(1976) Introduction to Operation Reseach,Nauka .
[5] Strekalovsky,A.S and Orlov,A.V.(2007) Bimatrix Game and Bilinear Programming, Nauka
[6] Owen,G. (1971) Game Theory, Nauka.
[7] Gubbons,R.(1992) Game Theory for Applied Economists, Princeton University, Press
[8] Horst,R. and Tuy,H. (1993) Global Optimization, SpringerVerlag.
[9] Enkhbat,R. (1999) Quasiconvex Programming and its Applications Lambert Publisher, Germany

[^0]: *AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

