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Abstract. Based on the proximal algorithms for general variational inequalities, we present

a new approximate proximal point algorithm (APPA) for general variational inequalities with

separable operators in this paper. The resulting proximal subproblems are allowed to be solved

approximately with summable accuracy. The global convergence of the proposed method is
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1 Introduction

In recent years, variational inequalities have been extended and generalized in different directions. A

basic generalization of variational inequalities is called general variational inequalities(GVI). Since the

original work in [1], many researchers have concentrated on the development of GVI [2-4]. In this paper,

we consider the following special GVI: general variational inequalities with separable operators, denote

by GVI(F,G,Ω), which is to find u∗ ∈ Rm+n such that

F (u∗) ∈ Ω and (u− F (u∗))⊤G(u∗) ≥ 0, ∀u ∈ Ω, (1)

where

u =

 x

y

 , F (u) =

 f1(x)

f2(y)

 , G(u) =

 g1(x)

g2(y)

 ,

and

Ω = {(x, y)|x ∈ X , y ∈ Y, Ax+By = b},
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X ⊆ Rn and Y ⊆ Rm are given nonempty closed convex sets; f1, g1 are given continuous operators from

Rn into itself and f2, g2 are given continuous operators from Rm into itself; A ∈ Rr×n and B ∈ Rr×m

are given matrices; b ∈ Rr is a given vector. It is easy to see that if F (u) = u, GVI(F,G,Ω) reduces to

structured variational inequalities which have been well studied in the literatures [5-7].

As it is well known, Proximal Point Algorithm (PPA)[8] is an effective numerical approach to solv-

ing classical variational inequalities, however, the study on applying PPA to solve general variational

inequalities does not receive much attention. To mention a few, [9] analyzed both the exact and inex-

act versions of PPA-based algorithms for general variational inequalities. [10] proposed some proximal

algorithms for linearly constrained general variational inequalities. Without specific consideration of the

special structure of GVI(F,G,Ω), the algorithms proposed in [9] are applicable to solving GVI(F,G,Ω),

however, this treatment is obviously not beneficial to developing efficient numerical algorithms. In this

paper, inspired by [9-10], we propose a new APPA-based algorithm for GVI(F,G,Ω).

The remainder of the paper is organized as follows. In Section 2, we summarize some basic concepts

about variational inequalities. In Section 3, the new APPA method is described formally and its global

convergence is proved. Some concluding remarks are given in the last section.

2 Preliminaries

In this section, we present some basic definitions and propositions which will be used in the following

discussions. Recall that PK[·] denotes the projection onto a closed convex set K ⊂ Rn in the Euclidean

norm, i.e.,

PK[u] = argmin
v∈K

∥u− v∥.

Some fundamental properties are listed below without proof (see, e.g., [11]).

Lemma 2.1 Let K be a nonempty closed convex subset of Rn. For any u, v ∈ Rn and any w ∈ K, the

following properties hold:

(u− PK[u])
⊤(w − PK[u]) ≤ 0. (2)

∥(u− PK[u])− (v − PK[v])∥2 ≤ ∥u− v∥2 − ∥PK[u]− PK[v]∥2. (3)

From (3), we have

∥(u− PK[u])− (v − PK[v])∥ ≤ ∥u− v∥. (4)

By attaching a Lagrange multiplier vector λ ∈ Rr to the linear equality constraint Ax + By = b,

problem GVI(F,G,Ω) can be equivalently transformed into the following compact form, denoted by

GVI(M,N,W): Find w∗ ∈ Rm+n+r, such that

M(w∗) ∈ W and (w −M(w∗))⊤N(w∗) ≥ 0, ∀w ∈ W, (5)
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where

w =


x

y

λ

 ,M(w) =


f1(x)

f2(y)

λ

 , N(w) =


g1(x)−A⊤λ

g2(y)−B⊤λ

Af1(x) +Bf2(y)− b

 ,W = X × Y ×Rr.

It is well known[11] that problem GVI(M,N,W) is equivalent to finding the zero point of

e(w, β) =


ex(w, β)

ey(w, β)

eλ(w, β)

 =


f1(x)− PX [f1(x)− β(g1(x)−A⊤λ)]

f2(y)− PY [f2(y)− β(g2(y)−B⊤λ)]

β[Af1(x) +Bf2(y)− b]

 . (6)

We need the following definitions concerning the functions.

Definition 2.1 Let f and g be mappings from Rn into itself. Then

(a). The mapping f is said to be g−monotone if and only if

(f(s)− f(t))⊤(g(s)− g(t)) ≥ 0, ∀s, t ∈ Rn;

(b). The mapping f is said to be uniformly g−strongly monotone if there exists a positive constant

µ > 0 such that

(f(s)− f(t))⊤(g(s)− g(t)) ≥ µ∥s− t∥2, ∀s, t ∈ Rn;

(c). The mapping f is said to be uniformly g−Lipschitz continuous on if there exists a constant L > 0

such that

∥f(s)− f(t)∥ ≤ L∥g(s)− g(t)∥, ∀s, t ∈ Rn.

Throughout this paper, we make the following assumptions:

Assumptions. (A). The mapping fi is gi−monotone and gi−Lipschitz continuous with modulus Li,

i = 1, 2.

(B). The solution set of GVI(M,N,W), denoted by W∗, is nonempty.

(C). X and Y are simple closed convex sets in the sense that the projection onto them is easy to

compute. (e.g. the positive orthant, boxed set, ball).

(D). The mapping gi is nonsingular, i.e., there exists a positive constant ρi (i = 1, 2) such that

∥g1(u)− g1(ũ)∥ ≥ ρ1∥u− ũ∥, ∀u, ũ ∈ Rn,

and

∥g2(v)− g2(ṽ)∥ ≥ ρ2∥v − ṽ∥, ∀v, ṽ ∈ Rm.
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With the assumption (A), it is easily verify that

(M(w)−M(w̃))⊤(N(w)−N(w̃))

=


f1(x)− f1(x̃)

f2(y)− f2(ỹ)

λ− λ̃


⊤ 

(g1(x)− g1(x̃))−A⊤(λ− λ̃)

(g2(y)− g2(ỹ))−B⊤(λ− λ̃)

A(f1(x)− f1(x̃)) +B(f2(y)− f2(ỹ))


= (f1(x)− f1(x̃))

⊤(g1(x)− g1(x̃)) + (f2(y)− f2(ỹ))
⊤(g2(y)− g2(ỹ))

≥ 0,

which implies that the mapping M in GVI(M,N,W) is N−monotone.

3 APPA Method and Global Convergence

In this section, we present the APPA method for solving GVI(M,N,W) and show its global convergence.

We first denote

R(w) =


β(g1(x)−A⊤λ)

β(g2(y)−B⊤λ)

λ

 , (7)

and

Pk(w) =


f1(x) + β[g1(x)− g1(x

k)−A⊤(λ− λk)]

f2(y) + β[g2(y)− g2(y
k)−B⊤(λ− λk)]

λ

 , Qk(w) =


β(g1(x)−A⊤λ)

β(g2(y)−B⊤λ)

λ− λk + β(Af1(x) +Bf2(y)− b)

 .

(8)

According to the assumption (D), it is easy to verify that R is a continuous and nonsingular mapping,

i.e., there exists a positive constant ρR such that

∥R(w)−R(w̃)∥ ≥ ρR∥w − w̃∥, ∀w, w̃ ∈ W. (9)

Now we introduce the APPA method as follows:

Algorithm 3.1. The APPA method with summable accuracy

Step 0. Given ε > 0, choose w0 = (x0, y0, λ0)⊤ ∈ W, β > 0 and set k:=0.

Step 1. If ∥e(wk, β)∥ ≤ ε, then stop. Otherwise, goto Step 2.

Step 2. Generate the next iterate wk+1 such that

Pk(w
k+1) ∈ W, [w − (Pk(w

k+1)− ξk)]⊤Qk(w
k+1) ≥ 0, ∀w ∈ W, (10)

with the inexactness criterion

∥ξk∥ ≤ δk∥R(wk)−R(wk+1)∥, (11)
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where

ξk =


ξkx

ξky

0

 , δk > 0,
∞∑
k=0

δ2k < +∞. (12)

Step 3. With k = k + 1, go to Step 1.

Lemma 3.1. The GVI (10) is uniformly strongly monotone GVI under the assumption that fi is

gi−monotone, i = 1, 2.

Proof. It follows from (7)-(9) that

(Pk(w)− Pk(w̃))
⊤(Qk(w)−Qk(w̃))

=


f1(x)− f1(x̃) + β[g1(x)− g1(x̃)−A⊤(λ− λ̃)]

f2(y)− f2(ỹ) + β[g2(y)− g2(ỹ)−B⊤(λ− λ̃)]

λ− λ̃


⊤ 

β[g1(x)− g1(x̃)−A⊤(λ− λ̃)]

β[g2(y)− g2(ỹ)−B⊤(λ− λ̃)]

λ− λ̃+ β[A(f1(x)− f1(x̃)) +B(f2(y)− f2(ỹ))]


= β[f1(x)− f1(x̃)]

⊤[g1(x)− g1(x̃)] + β2∥g1(x)− g1(x̃)−A⊤(λ− λ̃)∥2

+β[f2(y)− f2(ỹ)]
⊤[g2(y)− g2(ỹ)] + β2∥g2(y)− g2(ỹ)−B⊤(λ− λ̃)∥2 + ∥λ− λ̃∥2

≥ ∥R(w)−R(w̃)∥2

≥ ρ2R∥w − w̃∥2,

which implies the assertion.

Remark 3.1. Therefore, each iteration of Algorithm 3.1 for solving GVI(M,N,W) consists of solving

the uniformly strongly monotone GVI (10), which is easier than the original GVI (5) and can be solved

by existing methods, such as [3].

Remark 3.2. According to (6), the GVI (10) is characterized by the projection equation:

Pk(w
k+1)− ξk = PW [Pk(w

k+1)− ξk −Qk(w
k+1)],

which is equivalent to the equalities
f1(x

k+1) + β[g1(x
k+1)− g1(x

k)−A⊤(λk+1 − λk)]− ξkx = PX [f1(x
k+1)− β(g1(x

k)−A⊤λk)− ξkx ],

f2(y
k+1) + β[g2(y

k+1)− g2(y
k)−B⊤(λk+1 − λk)]− ξky = PY [f2(y

k+1)− β(g2(y
k)−B⊤λk)− ξky ],

λk+1 = λk − β[Af1(x
k+1) +Bf2(y

k+1)− b]

(13)

In the following we study some convergence properties of the proposing APPA method. To prove the

convergence conveniently, we let v ∈ (0, 1) and denote ηk = δk/v. Then, we have

δk = vηk with v ∈ (0, 1), ηk > 0 and
∞∑
k=1

η2k < +∞. (14)

53



Sun Min, Tian Maoying

Lemma 3.2. Let{wk} be the sequence generated by Algorithm 3.1. Then, for any w∗ ∈ W∗, we have

∥R(wk+1)−R(w∗)∥2

≤ (1 + 2η2k)∥R(wk)−R(w∗)∥2 − (1− v2 − 2η2k)∥R(wk)−R(wk+1)∥2.
(15)

Proof. By using the first equation of (13) and ex(w
∗, β) = 0, we have

β(g1(x
k+1)−A⊤λk+1)

= PX [f1(x
k+1)− β(g1(x

k)−A⊤λk)− ξkx ]− [f1(x
k+1)− β(g1(x

k)−A⊤λk)− ξkx ]
(16)

and

−β(g1(x
∗)−A⊤λ∗)

= −PX [f1(x
∗)− β(g1(x

∗)−A⊤λ∗)] + [f1(x
∗)− β(g1(x

∗)−A⊤λ∗)]
(17)

Setting u = f1(x
∗)− β(g1(x

∗)−A⊤λ∗) and v = f1(x
k+1)− β(g1(x

k)−A⊤λk)− ξkx in (3), it follows from

(16) and (17) that

β2∥g1(xk+1)− g1(x
∗)−A⊤(λk+1 − λ∗)∥2

≤ ∥β(g1(xk)− g1(x
∗)−A⊤(λk − λ∗)) + ξkx − (f1(x

k+1)− f1(x
∗))∥2

−∥PX [f1(x
∗)− β(g1(x

∗)−A⊤λ∗)]− PX [f1(x
k+1)− β(g1(x

k)−A⊤λk)− ξkx ]∥2

= ∥β(g1(xk)− g1(x
∗)−A⊤(λk − λ∗)) + ξkx − (f1(x

k+1)− f1(x
∗))∥2

−∥(f1(x∗)− f1(x
k+1)) + β[(g1(x

k)− g1(x
k+1))−A⊤(λk − λk+1)] + ξkx∥2

≤ ∥β[g1(xk)− g1(x
∗)−A⊤(λk − λ∗)] + ξkx∥2 − ∥β[(g1(xk)− g1(x

k+1))−A⊤(λk − λk+1)] + ξkx∥2

−2β(f1(x
k+1)− f1(x

∗))⊤A⊤(λ∗ − λk+1)

≤ [(1 + 2η2k)∥β[g1(xk)− g1(x
∗)−A⊤(λk − λ∗)]∥2 + (1 + 1

2η2
k

)∥ξ2x∥2]− [(1− 1
2η2

k

)∥ξ2x∥2

−(1− 2η2k)∥β[(g1(xk)− g1(x
k+1))−A⊤(λk − λk+1)]∥2]− 2β(f1(x

k+1)− f1(x
∗))⊤A⊤(λ∗ − λk+1)

(18)

where the second inequality follows from the g1-monotonicity of f1, and the last inequality follows from

Cauchy-Schwartz inequality. Similarly, we obtain

β2∥g2(yk+1)− g2(y
∗)−B⊤(λk+1 − λ∗)∥2

≤ [(1 + 2η2k)∥β[g2(yk)− g2(y
∗)−B⊤(λk − λ∗)]∥2 + (1 + 1

2η2
k

)∥ξ2y∥2]− [(1− 1
2η2

k

)∥ξ2y∥2

−(1− 2η2k)∥β[(g2(yk)− g2(y
k+1))−B⊤(λk − λk+1)]∥2]− 2β(f2(y

k+1)− f2(y
∗))⊤B⊤(λ∗ − λk+1)

(19)

Since λk+1 = λk − β[Af1(x
k+1) +Bf2(y

k+1)− b], we have

∥λk+1 − λ∗∥2

= ∥(λk − λ∗)− β[Af1(x
k+1) +Bf2(y

k+1)− b]∥2 − ∥(λk − λk+1)− β[Af1(x
k+1) +Bf2(y

k+1)− b]∥2

= ∥λk − λ∗∥2 − ∥λk − λk+1∥2 − 2β(Af1(x
k+1) +Bf2(y

k+1)− b)⊤(λk+1 − λ∗)

(20)
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Adding (18)-(19) and using Af1(x
∗) +Bf2(y

∗) = b, we have

β2∥g1(xk+1)− g1(x
∗)−A⊤(λk+1 − λ∗)∥2 + β2∥g2(yk+1)− g2(y

∗)−B⊤(λk+1 − λ∗)∥2∥λk+1 − λ∗∥2

≤ (1 + 2η2k)∥R(wk)−R(w∗)∥2 − (1− 2η2k)∥R(wk)−R(wk+1)∥2 + 1

η2k
(∥ξ2x∥2 + ∥ξ2y∥2)

≤ (1 + 2η2k)∥R(wk)−R(w∗)∥2 − (1− v2 − 2η2k)∥R(wk)−R(wk+1)∥2,

where the first inequality follows from the definition of R, and the second inequality follows from the

inexactness criterion (12), (14). The assertion is a compact form of the above inequality and then the

proof is complete.

Lemma 3.3. Let {wk} be the sequence generated by Algorithm 3.1. Then, we have

∥e(wk+1, β)∥ ≤ 3(1 + vηk)∥R(wk)−R(wk+1)∥. (21)

Proof. From the definition of e(w, β), we know that

∥ex(wk+1, β)∥

= ∥f1(xk+1)− PX [f1(x
k+1)− β(g1(x

k+1)−A⊤λk+1)]∥

= ∥PX [f1(x
k+1)− β(g1(x

k)−A⊤λk)− ξkx ] + ξkx + β[g1(x
k)− g1(x

k+1)−A⊤(λk − λk+1)]

−PX [f1(x
k+1)− β(g1(x

k+1)−A⊤λk+1)]∥

≤ ∥ξkx + β[g1(x
k)− g1(x

k+1)−A⊤(λk − λk+1)]∥

≤ ∥ξkx∥+ ∥β[g1(xk)− g1(x
k+1)−A⊤(λk − λk+1)]∥

≤ (1 + δk)∥R(wk)−R(wk+1)∥.

where the first inequality follows from (4). Similarly, we have

∥ey(wk+1, β)∥

≤ (1 + δk)∥R(wk)−R(wk+1)∥.

From the third equality of (13), we obtain

∥eλ(wk+1, β)∥

= β∥Af1(xk+1) +Bf2(y
k+1)− b∥

= ∥λk+1 − λk∥

≤ ∥R(wk)−R(wk+1)∥.

The assertion is followed by the above three inequalities and this complete the proof.

Theorem 3.1. The sequence{wk} generated by Algorithm 3.1 converges to a point in W∗.
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Proof. Since limk→∞ ηk = 0, without loss of the generality, we can assume that vηk < 1/3 and η2k ≤
(1− v2)/4 for all k. Thus, (15) and (21) can be modified to

∥R(wk+1)−R(w∗)∥2 ≤ (1 + 2η2k)∥R(wk)−R(w∗)∥2 − 1− v2

2
∥R(wk)−R(wk+1)∥2, (22)

and

∥e(wk+1, β)∥ ≤ 4∥R(wk)−R(wk+1)∥, (23)

respectively. Setting ζk = 2η2k, then by (12), we have

∞∑
k=0

ζk < +∞.

Therefore we have
∏∞

k=0(1 + ζk) < +∞. We denote

Cs =

∞∑
k=0

ζk and Cp =

∞∏
k=0

(1 + ζk).

Let w∗ ∈ W∗. From (22), we obtain

∥R(wk+1)−R(w∗)∥2 ≤
k∏

i=j

(1 + ζi)∥R(wj)−R(w∗)∥2 ≤ Cp∥R(wj)−R(w∗)∥2, ∀j ≤ k. (24)

Therefore, there exists a constant C > 0 such that

∥R(wk)−R(w∗)∥ ≤ C, ∀k ≥ 0, (25)

thus by the nonsingularity of R (see(9)), it is easy to verify that the sequence {wk} is bounded. Combining

(22) and (25), we have

1− v2

2
∥R(wk)−R(wk+1)∥2

≤ ∥R(w0)−R(w∗)∥2 +
∞∑
k=0

ζk∥R(wk)−R(w∗)∥2

≤ C + C
∞∑
k=0

ζk

≤ (1 + Cs)C.

Recall that v ∈ (0, 1). Consequently, we have

lim
k→∞

∥R(wk)−R(wk+1)∥ = 0. (26)

From (23) and (26), we obtain

lim
k→∞

e(wk, β) = 0. (27)
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Let w̃ be a cluster point of {wk} and the subsequence {wkj} converges to w̃. Because e(w, β) is continuous,
we have

e(w̃, β) = lim
j→∞

e(wkj , β) = 0.

So w̃ ∈ W∗. By a similar analysis as Theorem 2.1 of [9], we can show that the whole sequence {wk}
converges to w̃, a solution of GVI(M,N,W). This completes the proof.

4 Conclusions

In this paper, we presented a new APPA method for general variational inequalities with separable

operators. Each iteration of the method consists of solving a proximally regularized subproblem, and

this subproblem is allowed to be solved approximately subject to some inexactness criterion. Global

convergence of the new method is proved under mild assumptions.
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