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Abstract 
 
In this paper we have investigated analytically the optimal distribution of time dependent 
point heating power inserted in the tumour site [Deng and liu, 2002] of the tissue described 
by bio-heat equation so as to attain desired temperature of the tumour at the end of time of 
operation of the process under constant surface cooling temperature using conjugate 
gradient method [Loulou and Scott, 2002].  
Here the temperature of the tissue against the length of the tissue at different total times of 
operation of the process due to calculated distribution of heating power is numerically 
evaluated for investigation of desired tumour temperature.  
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Notations:  
 
c = specific heat of tissue, J/kg 

o
C 

 
h = heat transfer coefficient between the skin and the ambient air, CWm 02 /−

 

 
k  = thermal conductivity of tissue, CmW 01 /−

 

 
L = thickness of the plate, m  

 
x1 = Point of location of the tumour, m  

 
χ  = temperature, 

0
C 

 

aχ  = arterial temperature, 
0
C 

 

0χ  = initial temperature, 
0
C 

 
u(t) = temperature of the surrounding medium, 

0
C 

 
*χ  = desired temperature to be attained, 

0
C 

 
T = Total time of the process, s  

 
t1 = switching time, s 

 

Q(t) = optimal heat generation rate due to volumetric heating, Wm
-3

 
 

ρ  = density of tissue, Kg m
-3 

 

δ  = dirac – delta function. 
 

ω  = product of flow and heat capacity of blood, W m
-3

 / 
0
C  

 
Qm = rate of metabolic heat generation, Wm

-3
 

 
 
1.  Introduction 
 
The determination of temperature distributions throughout the biological tissue by solving 
simple Pennes’ bio-heat equation, so as to elevate the temperature of tumour to therapeutic 
value avoiding the overheating of the healthy tissue, are important issues of investigation in 
hyperthermia. In course of this investigation, the mathematical models of patient’s anatomy 
and patient’s tolerance due to the effect of heating power deposition patterns carry vital 
points of consideration. Computer simulation have more potentiality for determination of the 
optimal power of the applied heat source and also surface cooling temperature which 
generally can be regarded as direct control input variables. The location of the tumour cells 
in the tissue as well as blood flow rate is also needful for the purpose of investigating 
problems on optimization.  
 
[Deng and Liu, 2002] have performed several closed form of analytical solutions in bio-heat 
transfer problems, with transient heating on the skin surface or inside biological bodies by  
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inserting a heating probe at the tumour region, using Green’s function method. [Dhar and 
Sinha, 1989] investigated analytically optimal temperature control in hyperthermia by 
controlling artificial surface cooling. 
 
[Wagter, 1986] studied an optimization procedure to calculate transient temperature profiles 
in plane tissue by multiple electro-magnetic applicatiors. Analytical study by [Butkovasky, 
1969] had carried the fundamentals of optimal control problems in distributed parameter 
system. [Dhar and Sinha, 1988] had considered analytically an optimal control problem so as 
to attain a desired temperature throughout the tissue by induced heat source at least 
possible time.          
 
A computational technique for fast hyperthermia temperature optimization using finite 
element method was presented by [Das, Clegg and Samulski, 1999].[Kowalsk and Jin, 2003] 
conducted a study on cost minimization problem in space by feedback control system 
applying electro-magnetic phased –array. [Loulou and Scott, 2002] investigated a thermal 
dose optimization problem in hyperthermia with the aid of conjugate gradient method. 
 
An optimization problem on diseased tissue by generating heat with the aid of alternating 
magnetic field was investigated in [Bagaria and Johnson, 2005].  
 
In course of investigation on optimization of radio-immunotherapy (RIT) interactions with 
hyperthermia, the combination of local hyperthermia with RIT has been discussed in [Kinuya 
et al., 2004]. [Szasz and Vincze, 2006] proposed a generalization of Pennes- equation 
inducing the entire energy balance where the new paradigm could be a theoretical basis of 
the empirical dose-construction for oncological hyperthermia.  
 
The article of [Rapoport et al., 2009] described the study of targeted chemotherapeutic 
intervention on solid tumors by means of ultrasound. 
 
In the work of [Liu and Chen, 2009] analyzed the temperature rise behaviors in biological 
tissues during hyperthermia treatment within the dual-phase-lag model, which accounted the 
effect of local non-equilibrium on the thermal behavior. 
 
The aim of the investigation presented in [Shih et al., 2008] was to consider the feasibility of 
the heating on the tumor periphery using high intensity focused ultrasound during thermal 
surgery.  
 
[Dhar et al., 2010] investigated analytically a distributed optimal control problem by achieving 

desired temperature of the tumor due to induced microwave in a homogeneous tissue by 

Conjugate gladiate method. 

In this paper, an analytical investigation of the optimal distribution of time dependent point 
heating power inserted in the tumour site [Deng and liu,2002] so as to attain desired 
temperature of the tumour at the end of operation of the process under constant surface 
cooling temperature was carried out with the aid of bioheat equation using conjugate 
gradient method [loulou and Scott, 2002] under calculus of variation.  
 
The distribution of heating power for different values of total time of operation of the process 
have been calculated numerically. The temperature of the tissue along the length of the 
tissue at diffent times due to calculated distribution of heating power have also been worked 
out.  
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2  Mathematical Analysis 
 
The one dimensional bio-heat equation for a point conducting heating probe at x = x1 
[Deng and Liu,2002] can be written as,  
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  We would like to attain the desired temperature *χ  at the point 1= xx , where the 

tumour is located, at the end of total time T of the process by controlling optimally 
rate of generation of heat Q(t) induced by conducting heating probe at x = x1 [Deng 
and Liu,2002].  
 Thus the functional [Dhar and Sinha, 1989 ; Wagter, 1986]  
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Let us write a function J, given by [ButKovasky, 1969 ; Loulou and Scott, 2002]  
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  where ),( txψ  is the auxiliary function. 

 By considering Qm as constant, the first variation of the function J can be written as,  
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with the help of equations (2) and (3). By assuming Jδ  to vanish for any  

)(),,(),,(),,(),,( tQTxtotxtLx δδχδχδχδχ , )(tuδ  and taking ),(),,( tLox δχδχ  both equal 

to Zero, a system of auxiliary function ),( txψ  is obtained as,  
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 and the optimal value of the controls Q(t) and u(t) stand,  
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Here the conjugate gradient method with the aid of calculus of variation have been 
used [Butkovasky 1969 ; Loulou, T. and Scott, E.P. 2002].  Considering 

atxtx χχχ −),(=),(1  and expressing ),(1 txχ  in Finite Sine Transform, given by,  
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  where np  are positive, real roots of the equation,  
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Finally we get,  
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 The corresponding solution of equation (7) with the help of equations (8) and (9) can be 
written as, with the help of earlier Finite Transform,  

 )()(=),(
1=

xRttx mm

m

ψψ ∑
∞

 (19) 

 where  

 
)(

111

1=

* 1)(})()(){(=)(
tT

mnn

n

am
mexLSinpxRTt

−−
∞

×−×−− ∑ αχχχψ  (20) 

for mp  are roots of the equation (13). 

 
Considering u(t) as constant, the value of optimal control Q(t) can be obtained from equation 
(10) with the help of equations (15), (16),(17), (18) , (19) and (20). 

 
3  Results and Discussions 
Data used in computation are given as follows  
 
c = 3770 J kg-1 0 C-1  
ρ  = 998  Kgm-3 

k = .5 Wm-1 0 C-1 
h = 6 Wm-2  0C -1 

aχ  = 370C 

*χ  = 430C 

L = .01 m,  
x1 = .006m 
ω  = 3000 Wm-3   0 C-1 
Qm  = 33800 Wm-3    

0χ  = 250C 

T = 600s, 800s, 1000s  
u(t) = 20oC  

 

The value of Q(t) (Wm-3) can be obtained from equation (10) with a the help of equations 

(17),(18), (19) and (20) since )(tχ can be calculated by equations (16), (17) and (18).  
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Computational Algorithm:  
 
(i) Take a set of values of time (t1, t2, ......., tr = T). Asume initial guess of Q(0).  

(ii) Obtain ),( 11 txχ with the help of equations (16) and (17), by Simpon’s rule of 

integration  

(iii) Repeat this operation to obtain ),( 1 Ttx r =χ   

(iv) Obtain auxiliary function ),( 11 −rtxψ with the help of equaitons (19) and (20).  

(v) After obtaining ),( 11 −rtxψ complete Q(tr-1) by equation (10).  

(vi) The exact value of Q(tr-1) is obtained by improving initial Q(0) (mentioned (i)) 
with the aid of simulation so that the increment of Q(tr-1) is satisfied within a 
relative error of 10-3.  

(vii) Repeat the procedure from (i) to (v) to compute Q(ti) (i=r – 2, r – 3, …. 2,1) after 
obtaining the exact values of Q(tr-1) and Q(0).  

(viii) Thus an exact set of values Q(ti) (i = 1,2 ………, r – 1, T) together with Q(0) are 
obtained where Q(T) is calculated with the help of equations (19) and (20) 
which approaches to the vlaue Zero. [ Vide the condition of the problem given in 
equation (9)].  
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  Fig 1: Distribution of applied heat source Q(t)(wm-3) versus time(s)  for 

            different total time  of the process T=600s,T=800s,T=1000s.   
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Fig 3: Temperature(0c) of the tissue along the length of the tissue(mm) 

                  for  heat source Q(t)(wm-3) in Fig 1 at  T=800s.
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Fig 4: Temperature(0c) of the tissue along the length of the tissue(mm) 

                  for  heat source Q(t)(wm-3) in Fig 1 at  T=1000s.
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Fig 1 displays the optimal distribution of time dependent point heating power Q(t) 
(Wm-3) versus time for different total time of operation of the process T = 600s, 800s 
and 1000s respectively. It is seen that Q(t) (Wm-3) is maximum at the staring time of 
operation and decreases rapidly till the end of the process to the value zero for T = 
600s, 800s and 1000s respectively. Further it is observed the starting value of Q(t) 
decreases with the increase of total time of opertation of the process.  
 
Fig 2, Fig 3 and Fig 4 depict the distribuion of temperature of the tissue at different 
times for various total time of operation of the porcess T = 600s, 800s and 1000 
respectively due to the application of calculated distributions of Q(t) (Wm-3) given in 
Fig 1. Here it is observed in Fig2, Fig 3 and Fig 4 that the temperature of the tissue 
increases steadily till it attains the tumour temperature 43oC at the location of tumour 
x1=.006m at the end of the process T(s) and after that it decreases rapidly to 37oC 
(Arterial temperature). Thus overall, it is seen that the temperaute of healthy tissue 
are not been overheated avoiding it’s damage and so, most possibly, this analytical 
study conforms one of basic concept of hyperthermia treatment.  
 
4. Conclusion:  
 
This analytical study will provide a focusing aspect for further developments in case 
of different times of operation of the process and different points of location of the 
tumour having various length of tumour.  
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