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Abstract

In this paper, first we define strictly set and optimal partition for linear
programming problems with upper bounds which are different from standard
linear programming problems. Then, we study strictly set and optimal parti-
tion sensitivity analysis for these problems. We consider the case when varia-
tions occur in the right-hand-side of the constraints and the coefficients of the
objective function simultaneously. We want to find the range of the parame-
ter variations such that strictly set and optimal partition remain invariant and
then present computable auxiliary problems to identify the invariancy intervals.
We state the relation between simultaneous and independent perturbations for
both sensitivity analysis. We illustrate the results by some numerical examples.
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1 Introduction

Sensitivity analysis is a basic tool for studying perturbations in optimization problems
and it is still focus of research even for linear programming problems. Perturbations
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occur due to calculation errors or just to answer managerial questions “ What if · · · ”.
Sensitivity analysis in simplex method is well developed on the foundation of optimal
basis [3, 4, 11] and it is based on the non-degeneracy assumption of the optimal
basis. However, in case of degeneracy, one gets different ranges due to alternative
optimal bases [4]. In other hand, most interior point methods produce a solution
which converges to an optimal solution. Some additional computations enable us
to get an exact optimal basic or non-basic solution [10]. Interior point method has
been studied for linear programming problems with bounded variables [2]. However,
since sensitivity analysis using an optimal basis can not be applied to an optimal
non-basic solution, another method for sensitivity analysis has been suggested as
Strictly Sensitivity Analysis. In this context, one wants to find the range of parameter
variations where for each parameter value in this range, an optimal solution exists with
exactly the same set of positive variables as for the current optimal solution, which
shows what variables can be chosen while optimality holds. Thus in this situation
the variables suitable to the current position of the decision maker.

In this paper, we define strictly set for a solution of problem with upper bounds.
Then we extend the Goldman-Tucker Theorem to these problems which guarantees
a strictly complementary solution. So, we will studied the sensitivity analysis for the
strictly set and the strictly complementary solution.

This paper is organized as follows. In section 2, we give some duality theorems
and discuss existence of strictly complementary solution for linear programming with
upper bounds. In section 3, we describe perturbed problem and give definitions of
strictly set and optimal partition for linear programming problems with upper bounds.
In section 4, we briefly investigate optimal basis invariancy. In section 5, we study
strictly set sensitivity analysis with simultaneous and independent perturbations and
their relations. In section 6, we state optimal partition sensitivity analysis with
simultaneous and independent perturbations. In section 7, we demonstrate the results
by some examples and we conclude the paper in section 8.

2 Preliminaries

Consider the following linear programming with upper bounds

min z = cTx
s.t. Ax = b (P )

0 ≤ x ≤ u,

where c,u,x ∈ Rn;b ∈ Rm and A ∈ Rm×n is a matrix with full row rank and u ∈ Rn

is upper bound vector of the decision variables x. Thus there exists an m × m,
sub-matrix B which is non-singular.

Let A = [A.1, A.2, . . . , A.n], which A.j denotes the jth column of matrix A. Let
B = {B1, B2, . . . , Bm} ⊆ {1, 2, . . . , n} be a subset of the index set of the columns of
matrix A such that B = {A.B1 , A.B2 , . . . , A.Bm} is a non-singular matrix. Let
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N1 ∪ N2 = {1, 2, . . . , n} \ B, where N1 = {j : xj = 0} and N2 = {j : xj = uj} are
called the index sets of non-basic variables which are at their lower and upper bounds
respectively. So, the matrix A can be permuted as follows

A = [A.B,A.N1 ,A.N2 ],

and correspondingly we can write

x = [xT
B,xT

N1
,xT

N2
]T and cT = [cT

B, cT
N1

, cT
N2

].

Then a solution to Ax = b is given by

xB = B−1b−
∑
j∈N2

B−1A.juj

xN1 = 0 (1)

xN2 = uN2 ,

and the corresponding objective value is equal to

cTx = cT
BxB + cT

N2
xN2

= cT
BB−1b +

∑
j∈N2

(cj − cT
BB−1A.j)uj. (2)

Definition 1. Any solution of the form (1) is called a generalized basic solution of
Ax = b. Moreover, if 0 ≤ xB ≤ uB, then the solution x is called a generalized basic
feasible solution and is briefly denoted by GBFS.

Recall that the problem (P) can be solved by using the upper bound simplex
method without increasing the size of the problem. In this way, a generalized basic
feasible solution x = [xT

B,xT
N1

,xT
N2

]T is optimal if

cj − yA.j = cj − cT
BB−1A.j = 0, ∀j ∈ B,

cj − yA.j = cj − cT
BB−1A.j ≥ 0, ∀j ∈ N1,

cj − yA.j = cj − cT
BB−1A.j ≤ 0, ∀j ∈ N2.

Consider the dual of the problem (P)

max bTv − uTw
s.t. ATv −w ≤ c (D)

w ≥ 0,

where v ∈ Rm and w ∈ Rn are the dual variables. The weak, strong duality and
complementary slackness theorems can easily be generalized to the problems (P) and
(D) and are stated without proof.
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Theorem 1. (Weak Duality) If x is a feasible solution of (P) and (v,w) is a feasible
solution of (D), then

cTx ≥ bTv − uTw.

Theorem 2. (Strong Duality) If the primal and the dual problems (P) and (D) are
feasible, then both problems have optimal solutions and the optimal objective values
are equal.

Theorem 3. (Complementary Slackness Theorem) x∗ and (v∗,w∗) are optimal
solution to (P) and (D) respectively if and only if

x∗js
∗
j = 0, w∗j (uj − x∗j) = 0, j = 1, 2, . . . , n,

where s is the slack vector of (D).

Consider the primal problem in standard form

min cTx
s.t. Ax = b (P1)

x ≥ 0,

and its dual
max bTy
s.t. ATy + s = c (D1)

s ≥ 0.

According to Goldman-Tucker Theorem [5], there exists a primal-dual optimal solu-
tion (x∗,y∗, s∗) which is strictly complementary; that is,

x∗js
∗
j = 0, x∗j + s∗j > 0, j = 1, 2, . . . , n.

Now by using the following theorem for the skew-symmetric matrix K, we extend
Goldman-Tucker Theorem to the problems (P) and (D).

Theorem 4 ([12]). The system Kx ≥ 0, x ≥ 0 has a solution x∗ such that Kx∗ +
x∗ > 0.

Theorem 5. If the problems (P) and (D) are feasible, then there exists an optimal
solution (x∗,v∗,w∗, s∗) such that

x∗j + s∗j > 0, w∗j + (uj − x∗j) > 0, j = 1, 2, . . . , n,

which is referred to as strictly complementary solution.

Proof. Consider the embedding self-dual system of primal and dual problems as fol-
lows

Ax −bt = 0
ATv −w −ct ≤ 0

cTx −bTv +uTw ≤ 0
x −ut ≤ 0.
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By using Theorem 4 to the skew-symmetric matrix K

K =


0 −AT AT I c
A 0 0 0 −b
−A 0 0 0 b
−I 0 0 0 u
−cT bT −bT −uT 0

 ,

there exists a solution (x∗,v∗,w∗, t∗) such that

(1.a) Ax∗ − bt∗ = 0, (2.a) ATv∗ −w∗ ≤ ct∗,
(3.a) bTv∗ − uTw∗ ≥ cTx∗, (4.a) ATv∗ −w∗ < ct∗ + x∗,
(5.a) − x∗ + w∗ > −ut∗, (6.a) cTx∗ < bTy∗ − uTw∗ + t∗.

For t∗ > 0, the relations (1.a) and (2.a) show that
x∗

t∗
and (

v∗

t∗
,
w∗

t∗
) are feasible

solutions to (P) and (D) respectively. The relation (3.a) and Theorem 1 show that
these solutions are optimal. The relations (4.a) and (5.a) imply that

(u− x∗

t∗
) +

w∗

t∗
> 0,

and

x∗

t∗
+

s∗

t∗
> 0.

We set t∗ = 1 which completes the proof.

Note 1. For t∗ = 0, either both problems are infeasible, or at least one of the problems
is infeasible and another is unbounded [13]. This is beyond our discussion and is
omitted.

3 Perturbed problem and sensitivity analysis

To address sensitivity analysis on the data of problem (P), we consider the following
perturbed problem:

min z = (c + λ∆c)Tx
s.t. Ax = b + λ∆b (Pλ)

0 ≤ x ≤ u,

and its dual
max (b + λ∆b)Tv − uTw
s.t. ATv −w + s = c + λ∆c (Dλ)

w, s ≥ 0,

where ∆c ∈ Rn and ∆b ∈ Rm are perturbation vectors and λ is a parameter. In
special cases, one of the vectors ∆b or ∆c may be zero. Let Pλ and Dλ denote the
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feasible sets of problems (Pλ) and (Dλ) respectively. Their optimal solution sets are
denoted by Pλ

∗ and Dλ
∗ correspondingly. For λ = 0 we denote them simply by P∗

and D∗.

Definition 2. For a given vector x ∈ Rn, 0 ≤ x ≤ u, we define

σ(x) = {j : 0 < xj < uj},

and refer to it as strictly set of x.

According to Definition 2, the index set {1, 2, . . . , n} can be partitioned in three
subsets

B = {j : 0 < x∗j < uj for some x∗ ∈ P∗},

N = {j : s∗j > 0 for some (v∗,w∗, s∗) ∈ D∗},

M = {j : w∗j > 0 for some (v∗,w∗, s∗) ∈ D∗},

which is called optimal partition and denoted by π = (B,N ,M). The uniqueness of
the optimal partition is a direct consequence of the convexity of P∗ and D∗.

Let us consider the problem (Pλ). One wants to know what happens to the given
optimal solution if such perturbation occurs. Such questions occurred soon after
the simplex method was introduced and the related research area is known as basis
invariancy sensitivity analysis [11, 12]. Here, we briefly state this sensitivity analysis
for the problems with upper bounds.

3.1 Basis invariancy sensitivity analysis

Let B be the index set of basic variables and N1, N2 be index sets of non-basic vari-
ables which are at their lower and upper bounds respectively. Let x∗ and (v∗,w∗, s∗)
be optimal basic solution of (P) and (D) and assume that [A.B,A.N1 ,A.N2 ] be the
corresponding matrix to x∗ called a basis matrix. We want to compute the set of
parameter values λ such that the given optimal basis remains optimal. This study is
in the domain of the simplex method and based on the non-degeneracy assumption
of the optimal basis. We denote this set by ΥB(x∗). It is easy to verify that ΥB(x∗)
is given by

ΥB(x∗) = {λ : 0 ≤ B−1b−
∑
j∈N2

B−1A.juj + λB−1∆b ≤ uB,

cN1 − cT
BB−1A.N1 + λ(∆cN1 −∆cT

BB−1A.N1) ≥ 0,

cN2 − cT
BB−1A.N2 + λ(∆cN2 −∆cT

BB−1A.N2) ≤ 0 }.
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4 Strictly set invariancy sensitivity analysis

Let x∗ and (v∗,w∗, s∗) be optimal solutions of problems (P) and (D) respectively.
Further, let P := σ(x∗). Thus, the index set {1, 2, . . . , n} can be partitioned in
(P, Z1, Z2), where Z1 ∪ Z2 := {1, 2, . . . , n} \ P , Z1 := {j : x∗j = 0} and Z2 :=
{j : x∗j = uj}. Strictly set sensitivity analysis deals with determining the range of
parameter variations λ, in which the perturbed problem (Pλ) has an optimal solution
with partition (P, Z1, Z2). Note that the given optimal solution is not necessarily a
basic feasible solution. We denote the corresponding set of this sensitivity analysis
by ΥP (x∗); i.e.

ΥP (x∗) = {λ : ∃(x(λ),v(λ),w(λ), s(λ)) ∈ Pλ
∗ ×Dλ

∗,

σ(x(λ)) = P, xZ1(λ) = 0, xZ2(λ) = uZ2}.

The following lemma shows that the set ΥP (x∗) is a convex set.

Lemma 6. The set ΥP (x∗) is a convex set.

Proof. Let λ1 and λ2 be two elements of ΥP (x∗). Let (x(λ1),v(λ1),w(λ1), s(λ1))
and (x(λ2),v(λ2),w(λ2), s(λ2)) be the corresponding optimal solutions to λ1 and λ2,
respectively. By assumption, we have σ(x(λ1)) = σ(x(λ2)) = P, xZ1(λ1) = xZ1(λ2) =
0 and xZ2(λ1) = xZ2(λ2) = uZ2 . For any λ = θλ1 + (1 − θ)λ2, where θ ∈ (0, 1), we
define

x(λ) = θx(λ1) + (1− θ)x(λ2),

v(λ) = θv(λ1) + (1− θ)v(λ2),

w(λ) = θw(λ1) + (1− θ)w(λ2),

s(λ) = θs(λ1) + (1− θ)s(λ2).

One can easily checks that (x(λ),v(λ),w(λ), s(λ)) is a primal-dual feasible solution
of (Pλ) and (Dλ). It is obvious that σ(x(λ)) = P, xZ1(λ) = 0 and xZ2(λ) = uZ2 .
Moreover, we have

(x(λ))T (s(λ)) = 0, (w(λ))T (u− x(λ)) = 0.

Therefore, λ ∈ ΥP (x∗) and this completes the proof.

The Lemma 6 shows that ΥP (x∗) is an interval of the real line that contains zero.
We refer to ΥP (x∗) as the strictly set invariancy interval of the problem Pλ with
respect to the partition (P, Z1, Z2).

The following theorem presents two auxiliary problems to identify the end points
of the interval ΥP (x∗).
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Theorem 7. Let x∗ and (v∗,w∗, s∗) be optimal solutions of the primal and dual
problems (P ) and (D) respectively, where P := σ(x∗). Then, λ` and λu, the end
points of ΥP (x∗), are optimal values of the following problems respectively:

min(max) λ

s.t. APxP − λ∆b = b−AZ2uZ2

AT
Pv − λ∆cP = cP

AT
Z1

v + sZ1 − λ∆cZ1 = cZ1 (3)

AT
Z2

v −wZ2 − λ∆cZ2 = cZ2

xP ≤ uP

sZ1 ,wZ2 ,xP ≥ 0,

where, ΥP (x∗) denotes the closure of the interval ΥP (x∗).

Proof. First we establish the inclusion [λ`, λu] ⊆ ΥP (x∗). If λ` = λu = 0, then it is
trivial. Without loss of generality, let λ` < 0 and λ ∈ (λ`, 0) be given. It is obvious

that σ(xP (λ`)) ⊆ P. Now, for θ =
λ

λ`

∈ (0, 1), we define

x(λ) = θx(λ`) + (1− θ)x∗, (4)

v(λ) = θv(λ`) + (1− θ)v∗, (5)

w(λ) = θw(λ`) + (1− θ)w∗, (6)

s(λ) = θs(λ`) + (1− θ)s∗. (7)

It is easy to verify that (x(λ),v(λ),w(λ), s(λ)) is a primal-dual feasible solution of
problems (Pλ) and (Dλ). Moreover, we have

x(λ)T s(λ) = 0, w(λ)T (u− x(λ)) = 0,

and
σ(x(λ)) = σ(x(λ`)) ∪ σ(x∗) = P, xZ1 = 0, xZ2 = uZ2 .

Therefore, λ ∈ ΥP (x∗).
Now we prove that ΥP (x∗) ⊆ [λ`, λu]. Let λ̃ ∈ ΥP (x∗) but λ̃ /∈ [λ`, λu]. Without

loss of generality, assume that λ̃ < λ`. In this way, for all λ ∈ [λ̃, λ`), we have
λ ∈ ΥP (x∗) that contradicts the optimality of λ`. Thus, λ̃ ∈ [λ`, λu] and the proof is
complete.

Remark 8. If λ` = λu = 0, then it is not possible to perturb the right-hand-side of the
constraints and the coefficients of the objective function of problem (Pλ) in directions
∆b and ∆c while strictly set remains invariant. In this case, ΥP (x∗) is the singleton
{0}. On the other hand, if one of the problems in Theorem 7 is unbounded, then the
interval ΥP (x∗) is infinity.
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Remark 9. If σ(x(λ`)) = P,xZ1(λ`) = 0 and xZ2(λ`) = uZ2 then λ` ∈ ΥP (x∗); that
is, the interval ΥP (x∗) is closed from the left. Analogous discussion is valid for the
right end point λu.

In the rest of this section, we discuss the results for non-simultaneous perturbation,
when either ∆c or ∆b is zero.

4.1 Perturbation of the vector b

In this case ∆c = 0 and the primal and dual perturbed problems are as follows

min z = cTx
s.t. Ax = b + λ∆b (Pλ(∆b))

0 ≤ x ≤ u,

and
max (b + λ∆b)Tv − uTw
s.t. ATv −w + s = c (Dλ(∆b))

w, s ≥ 0.

Let P ∗
λ (∆b) and D∗

λ(∆b) denote the optimal solution set of the problems (Pλ(∆b))
and (Dλ(∆b) respectively. Suppose that ΥP (x∗, ∆b) denotes the strictly set invari-
ancy interval of these problems in x∗. In this way, the problem (3) becomes as follows

min(max) λ

s.t. APxP − λ∆b = b−AZ2uZ2

AT
Pv = cP

AT
Z1

v + sZ1 = cZ1 (8)

AT
Z2

v −wZ2 = cZ2

xP ≤ uP

sZ1 ,wZ2 ,xP ≥ 0

Obviously, the corresponding constraints in dual are independent from λ and xP , and
hence every feasible solution (v, sZ1 ,wZ2) will be complementary with the solution
set of the system

APxP − λ∆b = b−AZ2uZ2

0 ≤ xP ≤ uP .
(9)

Thus, we only need to find the range of parameter variations in λ such that the system
(9) has a feasible solution. The following lemma summarizes these discussions. Its
proof is similar to the proof of Theorem 7 and is omitted.
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Lemma 10. Let x∗ and (v∗,w∗, s∗) be optimal solutions of the primal and dual
problems (P ) and (D) respectively, where P := σ(x∗). Then, λ` and λu, the end
points of ΥP (x∗, ∆b), are optimal values of the problems

min(max) λ

s.t. APxP − λ∆b = b−AZ2uZ2 (10)

0 ≤ xP ≤ uP ,

respectively, where ΥP (x∗, ∆b) denotes the closure of the interval ΥP (x∗, ∆b).

Remark 11. If σ(x(λ`)) = P,xZ1(λ`) = 0 and xZ2(λ`) = uZ2 then λ` ∈ ΥP (x∗, ∆b);
that is, the interval ΥP (x∗, ∆b) is closed from the left. Analogous discussion is valid
for the right end point λu.

4.2 Perturbation in the coefficients of objective function

In this case ∆b = 0 and the primal and dual perturbed problems are as follows

min z = (c + λ∆c)Tx
s.t. Ax = b (Pλ(∆c))

0 ≤ x ≤ u,

and
max bTv − uTw
s.t. ATv −w + s = c + λ∆c (Dλ(∆c))

w, s ≥ 0.

Let P ∗
λ (∆c) and D∗

λ(∆c) denote the optimal solution set of the problems (Pλ(∆c))
and (Dλ(∆c) respectively. Suppose that ΥP (x∗, ∆c) be the strictly set invariancy
interval of these problems in x∗. In this way, by the same discussion as in subsection
4.1, the end points of ΥP (x∗, ∆c) are determined by two auxiliary problems given in
the following lemma.

Lemma 12. Let x∗ and (v∗,w∗, s∗) be optimal solutions of the primal and dual
problems (P ) and (D) respectively, where P := σ(x∗). Then, λ` and λu, the end
points of ΥP (x∗, ∆c), are optimal values of the following problems respectively:

min(max) λ

s.t. AT
Pv − λ∆cP = cP

AT
Z1

v + sZ1 − λ∆cZ1 = cZ1 (11)

AT
Z2

v −wZ2 − λ∆cZ2 = cZ2

sZ1 ,wZ2 ≥ 0,

where, ΥP (x∗, ∆c) denotes the closure of the interval ΥP (x∗, ∆c).
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4.3 The relation between simultaneous and independent per-
turbations

Let us assume that both ∆c and ∆b are not zero. The following theorem presents
the relation between the intervals ΥP (x∗, ∆c), ΥP (x∗, ∆b) and ΥP (x∗). It allows
us to identify ΥP (x∗) when ΥP (x∗, ∆c) and ΥP (x∗, ∆b) are known. It is a direct
consequence of the relation between feasible solution sets of problems (3), (10) and
(11).

Theorem 13. ΥP (x∗) = ΥP (x∗, ∆c) ∩ΥP (x∗, ∆b).

5 Optimal partition invariancy sensitivity analysis

Let π = (B,N ,M) be the optimal partition of (P) and (D). Sensitivity analysis aims
to find the range of parameter variations λ such that the optimal partition π remains
invariant for any λ in this range. In other hand, sensitivity analysis proceeds to find
the range of λ within which optimal partition of (Pλ) and (Dλ) is equal to π and
denote this set by Υπ; that is,

Υπ = {λ : π = π(λ) = (B(λ),N (λ),M(λ))}.

Several papers have been published based on the concept of optimal partition. These
studies focused on finding the range of the parameter variations for which the optimal
partition remains invariant. Adler and Monteiro [1] are studied this concept to in-
dependent perturbed linear programming problems to standard form. Simultaneous
perturbations of the right-hand-side and the objective function for the primal and
dual problems in canonical form are studied by Greenberg[7]. For the case of per-
turbation in right-hand-side of constraints and objective function coefficients in two
different directions with two different parameters has been studied by Kheirfam and
Mirina [9]. Here we study the optimal partition in linear programming with upper
bounds which is different from the optimal partition of standard linear programming
problems.

The following lemma shows that the set Υπ is a convex set.

Lemma 14. The set Υπ is a convex set.

Proof. Let λ1, λ2 ∈ Υπ. Further, let (x(λ1),v(λ1),w(λ1), s(λ1)) and (x(λ2),v(λ2),w(λ2),
s(λ2)) be the corresponding strictly complementary solutions to λ1 and λ2, respec-
tively. For λ = θλ1 + (1− θ)λ2, where θ ∈ (0, 1) we define

x(λ) = θx(λ1) + (1− θ)x(λ2),

v(λ) = θv(λ1) + (1− θ)v(λ2),
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w(λ) = θw(λ1) + (1− θ)w(λ2),

s(λ) = θs(λ1) + (1− θ)s(λ2).

One can easily verifies that (x(λ),v(λ),w(λ), s(λ)) is a feasible solution for Pλ and
Dλ. In the other hand, σ(x(λ)) = B, σ(s(λ)) = N and σ(w(λ)) = M. So (x(λ),v(λ),
w(λ), s(λ)) is a strictly complementary optimal solution for problems Pλ and Dλ, as
well as the invariancy of the optimal partition π = (B,N ,M) at λ. This implies the
lemma.

The above Lemma shows that Υπ is an interval on the real line that contains
zero. We refer it as the actual invariancy interval. The following theorem gives two
auxiliary problems to obtain the end points of the invariancy interval Υπ. We also
state a relation between these intervals in simultaneous and independent perturbation
cases. The proofs are analogous with the strictly set case when the given solution is
strictly complementary and they are omitted.

Theorem 15. Consider the primal and dual problems (Pλ) and (Dλ) respectively.
Further, let π = (B,N ,M) be a optimal partition of problems (P) and (D). Then,
λ` and λu, the end points of the interval Υπ are optimal solutions of the following
problems respectively:

min(max) λ

s.t. ABxB − λ∆b = b−AMuM

AT
Bv − λ∆cB = cB

AT
Nv + sN − λ∆cN = cN (12)

AT
Mv −wM − λ∆cM = cM

xB ≤ uB

sN ,wM,xB ≥ 0,

where, Υπ denotes the closure of the interval Υπ.

Lemma 16. Consider the primal and dual problems (Pλ(∆b)) and (Dλ(∆b)) respec-
tively. Further, let π = (B,N ,M) be a optimal partition of problems (P) and (D).
Then, λp

` and λp
u, the end points of the optimal partition invariancy interval π are

optimal solutions of the following problems respectively:

min(max) λ

s.t. ABxB − λ∆b = b−AMuM (13)

0 ≤ xB ≤ uB.

Lemma 17. Consider the primal and dual problems (Pλ(∆c)) and (Dλ(∆c)) respec-
tively. Further, let π = (B,N ,M) be a optimal partition of problems (P) and (D).

394



Strictly sensitivity analysis for linear programming· · ·

Then, λd
` and λd

u, the end points of the optimal partition invariancy interval π are
optimal solutions of the following problems respectively:

min(max) λ

s.t. AT
Bv − λ∆cB = cB

AT
Nv + sN − λ∆cN = cN (14)

AT
Mv −wM − λ∆cM = cM

sN ,wM ≥ 0.

The following lemma is a direct consequence of the feasible solution sets of problems
(12), (13) and (14) and shows the relation between simultaneous and independent
perturbations.

Lemma 18. Υπ = (λp
` , λ

p
u) ∩ (λd

` , λ
d
u).

6 Examples

Example 1. Consider the primal problem

min z = 2x1 + 6x2 − x3 − 4x4 + x5

s.t. 2x1 + x2 + 4x3 + x4 + x5 = 8
3x1 + 8x2 − 3x3 + x4 = −2

0 ≤ x1 ≤ 3,
0 ≤ x2 ≤ 3
0 ≤ x3 ≤ 8
0 ≤ x4 ≤ 1
0 ≤ x5 ≤ 20,

with its dual
max 8v1 − 2v2 − 3w1 − 3w2 − 8w3 − w4 − 20w5

s.t. 2v1 + 3v2 − w1 ≤ 2
v1 + 8v2 − w2 ≤ 6
4v1 − 3v2 − w3 ≤ −1
v1 + v2 − w4 ≤ −4
v1 − w5 ≤ 1
w1, w2, w3, w4, w5 ≥ 0.

One can easily verifies that x∗ = (1
2
, 0, 3

2
, 1, 0)T ,v = (1

6
, 5

9
)T ,w = (0, 0, 0, 85

18
, 0)T

and s = (0, 25
18

, 0, 0, 5
6
)T is a primal-dual optimal solution with strictly set σ(x) =

{1, 3}, Z1 = {2, 5} and Z2 = {4}. Let us consider the perturbation vectors ∆b =
(2, 1)T and ∆c = (−3,−1, 2,−1, 1)T . The invariancy intervals ΥP (x∗, ∆b), ΥP (x∗, ∆c)
and ΥP (x∗) are (−0.9, 4.5), [−0.2212, 85) and [−0.2212, 4.5) respectively.
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Example 2. Consider the following primal problem

max z = −2x1 − x2 − x3 + 2x4 − 2x5 + x6 + x7 − 3x8

s.t. x1 + 3x3 + x4 − 5x5 − 2x6 + 4x7 − 6x8 = 7
x2 − 2x3 − x4 + 4x5 + x6 − 3x7 + 5x8 = −3

0 ≤ x1 ≤ 8, 0 ≤ x2 ≤ 6, 0 ≤ x3 ≤ 4,
0 ≤ x4 ≤ 15, 0 ≤ x5 ≤ 2, 0 ≤ x6 ≤ 10,

0 ≤ x7 ≤ 10, 0 ≤ x8 ≤ 3.

One can easily verifies that x∗ = (0, 6, 0, 15, 0, 1, 0, 1)T , x̃ = (4, 6, 0, 15, 0, 6, 0, 0)T , x̄ =
(20

3
, 6, 0, 15, 0, 10, 4

3
, 0)T and x̂ = (6, 6, 0, 15, 2, 10, 4, 0)T are primal basic optimal solu-

tions and v = (2, 3)T , w = (0, 2, 0, 1, 0, 0, 0, 0)T and s = (0, 0, 1, 0, 0, 0, 0, 0)T is a dual
optimal solution.Therefore, the optimal partition is as follows

(B,N ,M) =
(
{1, 5, 6, 7, 8}, {3}, {2, 4}

)
.

Now consider the non-basic optimal solution

x̌ = (2, 6, 0, 15, 0,
7

2
, 0,

1

2
)T ,

which σ(x̌) = {1, 6, 8}, Z1 = {3, 5, 7} and Z2 = {2, 4}. Let us consider the pertur-
bation vectors ∆b = (3,−2)T and ∆c = (0, 3, 0, 1, 3

4
,−3,−3, 0)T . In this way, the

invariancy interval ΥP (x̌,4c) = 0, ΥP (x̌,4b) = (−9.5, 3) and ΥP (x̌) = 0.

Example 3. Consider the Example 2. For this example, invariancy interval of opti-
mal partition is equal to zero, that is; Υπ = 0.

7 Conclusions

In this paper, we have proved existence of strictly complementary optimal solution
for linear programming problems with upper bounds which leads to study of optimal
partition sensitivity analysis for such problems. Also strictly set sensitivity analysis
is studied and its main advantage that can be performed to any optimal solution
which is a basic or non-basic optimal solution. We have developed computational
procedures to calculate the invariancy intervals. We investigated the case when per-
turbation occurs in the vectors b or c, and also when both b and c are perturbed
simultaneously.
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