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Abstract

In recent years, optimal transport has become a highly active and wide area of research, thanks to the discovery of a

number of important theoretical results and the development of an array of new applications in various fields ranging

from cosmology, geophysics, oceanography, meteorology and fluid mechanics to optics, image processing and pattern

recognition. Despite this ample field of applications, there is a serious lack of numerical optimal transport softwares

available to the research and academic community. To remedy to this shortage, this paper introduces Optrans,

a parallel library for solving time-dependent optimal transport problems in free and convexly constrained forms.

Optrans is designed following an object oriented approach and exploits the capabilities of C++, the implementation

language, to offer an easy-to-use programming interface and ensure easy-extendability. The library uses MPI for

communication and synchronization, allowing it to run on a variety of architectures. In addition to the software

related aspects of the library, a number of implemented numerical techniques are presented, for instance, solving

transport problems on domains with null Neumann boundary conditions and using a smoothing term to transport

densities that approach zero. Numerical experiments are presented to demonstrate the capabilities of the library and

the implemented techniques.
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1. Introduction

The optimal transport problem was first introduced more than 200 years ago by the French mathematician

Monge, who studied the problem of transporting soil materials from mining sites to construction sites with

a minimum cost. Monge assumed the cost to be proportional to the distance traveled and the mass trans-

ported. Later on, this problem came to be known as the optimal transport with the Euclidean distance. In the

first half of the twentieth century, Kantorovich, a Russian mathematician and economist, made important

contributions to the field by introducing a weak version of optimal transport and formulating the problem as

a linear program [Kantorovitch, 1942]. Besides its application in economics, optimal transport has also been

widely used in probability theory [Rachev and Ruschendorf, 1998]. In the last two decades, research on the

subject has undergone a rapid expansion, and a wide range of new areas of application has been discovered.

This includes fluid dynamics [Jordan et al., 1998,Carrillo et al., 2007], geophysics, oceanography and mete-

orology [Cullen, 2006,Cullen and Maroofi, 2003], cosmology [Frisch et al., 2002,Brenier et al., 2003], image

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

347



Said Kerrache and Yasushi Nakauchi

processing and computer vision [Gangbo and McCann, 2000,Haker et al., 2004,Museyko et al., 2009] to cite

a few.

There are two formulations of the optimal transport problem. In the classic, or time-independent formu-

lation, a map from the space that contains the initial density to the space that contains the final density is

sought, which minimizes the transport cost. In the time-dependent version, the two densities are assumed to

lie on the same space, and the goal is to find a time-continuous transport plan that minimizes the transport

cost. The time-dependent formulation offers a more complete description of the transport process, since it

gives a time-continuous interpolation of the density. Optimal transport with the squared Euclidean distance

as cost is by far the most theoretically understood and practically used instance of the optimal transport

problem [Villani, 2009]. Its time-dependent version was discovered to admit a computational fluid dynamics

formulation [Benamou and Brenier, 2000], which allowed the development of an iterative numerical scheme

to solve the time-dependent transport problem with the squared Euclidean distance as cost on closed convex

subsets of Rd. The transport problem is shown equivalent to finding a flow of minimum kinetic energy that

transports the initial density to the final one. In [Kerrache and Nakauchi, 2010], this problem is solved with

the constraint that the interpolating density and the momentum of the flow belong to a closed convex set.

This paper introduces Optrans, a parallel library for solving the time-dependent optimal transport prob-

lem. The library implements the algorithm proposed in [Benamou and Brenier, 2000] for free problems and

the family of algorithms proposed in [Kerrache and Nakauchi, 2010] for solving constrained problems. The

time-dependent problem is computationally complex but lends itself to parallelism, which motivates the

choice of a parallel implementation. To the best knowledge of the authors, there are no publicly available

softwares for solving the time-dependent optimal transport problem, neither serial nor parallel.

This paper is organized as follows. Section 2 gives an overview of the algorithms implemented in Optrans

and presents a number of numerical techniques used in their implementation. Section 3 details the internal

architecture and the programming interface of the library. Section 4 presents a series of numerical experiments

that demonstrate the working of Optrans and the implemented techniques. Finally, Section 5 concludes the

paper and gives some future research directions.

2. Algorithms and Methods

In [Benamou and Brenier, 2000], the problem of optimal mass transport in a closed convex subset D of

Rd with the squared Euclidean distance as cost is recast as an optimal control problem of a potential flow

[Cohen and Kundu, 2004]. The approach consists in computing a flow that moves the initial density to the

final one, while minimizing the kinetic energy. More precisely, the problem is formulated as

inf
ρ,m

∫ 1

0

∫
D

|m (t, x)|2

2ρ (t, x)
dxdt, (1)

s.t. ∂tρ+∇ ·m = 0, ρ (0, ·) = ρ0, ρ (1, ·) = ρ1, (2)

where ρ (t, x) is the density, m is the momentum of the flow, ρ0(x) and ρ1(x) are two bounded positive

density functions defined on D, such as:∫
D

ρ0 (x) dx =

∫
D

ρ1 (x) dx = 1

This problem is then transformed to the following saddle point problem:

inf
φ,q

sup
µ
L (φ, q, µ) = F (q) +G (φ) + 〈µ,∇φ− q〉 , (3)

where µ = (ρ,m), G (φ) =
∫
D
φ (0, x) ρ0 (x)− φ (1, x) ρ1 (x) dx, F is defined by

F (q) =

 0 if q ∈ K,

+∞ otherwise,

with

K =

{
(a, b) : R× Rd → R× Rd, a+

|b|2

2
≤ 0 pointwise

}
,
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and 〈·, ·〉 is the inner product defined by

〈u, v〉 =

∫ 1

0

∫
D

u · v.

The authors then present an algorithm to compute the optimal flow by iteratively updating φ, q and µ. The

computation of φ consists in solving a Poisson equation, q is obtained by solving a pointwise optimization

problem, whereas µ is updated using a gradient-type rule.

In [Kerrache and Nakauchi, 2010], Problem (1) is solved under the additional constraint that µ = (ρ,m) ∈
U , where U is a closed convex set. In the algorithms proposed to solve the constrained version, µ is obtained

as the solution to a quadratic optimization problem having U as the constraint set.

Optrans implements the algorithm proposed in [Benamou and Brenier, 2000] and the set of algorithms

proposed in [Kerrache and Nakauchi, 2010]. In the remainder of this section, a number of issues and tech-

niques related to the implementation of these algorithms are presented.

2.1. Computing q

The optimization required to compute q can be performed numerically by using a general nonlinear

optimization algorithm. However, an analytic solution can substantially reduce computation time and would

therefore be preferable, especially for large problems. The objective function and the constraint of the

problem are both convex and differentiable, which implies that the KKT (Karush-Kuhn-Tucker) conditions

are necessary and sufficient to characterize the optimum. Remember that, at step n, q is obtained as the

solution to (see [Benamou and Brenier, 2000] for details):

inf
q∈K

〈
∇φn +

µn

r
− q,∇φn +

µn

r
− q
〉
.

This problem can be solved pointwise. Let:

p (t, x) = (α (t, x) , β (t, x)) = ∇φn (t, x) +
µn (t, x)

r
.

Then, the new value of q (t, x) = (a (t, x) , b (t, x)) can be obtained by solving in (a, b)

inf

{
(a− α)

2
+ |b− β|2 , a+

|b|2

2
≤ 0

}
,

where the explicit dependency on x and t is dropped since the problem is to be solved pointwise. The

Lagrangian for this problem is:

Lq (a, bi, λ) = (a− α)
2

+ |b− β|2 − λ

(
a+
|b|2

2

)
The KKT conditions for this problem are then:

2 (a− α)− λ = 0

2 (bi − βi)− λbi = 0

λ

(
a+
|b|2

2

)
= 0

a+
|b|2

2
≤ 0

λ ≤ 0

(4)

Hence, λ must satisfy the following third degree equation:

λ3 + (2α− 4)λ2 + (4− 8α)λ+ 8α+ 4 |β|2 = 0

Although this equation can be solved analytically, such a method suffers from numerical instability. Dedicated

and robust numerical methods for finding polynomial roots are better suited in this case. To this end, Optrans

uses the Jenkins-Traub algorithm [Jenkins and Traub, 1970]. Once the roots of the polynomial are found,

determining the optimal point is a matter of a straightforward computation.
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2.2. Handling null Neumann boundary conditions

The algorithm presented in [Benamou and Brenier, 2000] is stated for domains with periodic boundary

conditions. However, the method can be adapted to domains with null Neumann boundary conditions with

a minimum change. In deed, a close inspection of the KKT optimality conditions for computing q (see Eq.

(4)) reveals that the space components of q and ∇φ + µ/r must be either parallel or simultaneously null.

From the update rule of µ, it can be seen that if ∇φn, qn and µn have null normal component in the space

domain, then so does µn+1. Therefore, if the initial value µ0 has null normal component in the space domain

and φn is obtained by solving the Poisson PDE with null Neumann boundary conditions in space, then all

the terms of the sequence µn, and consequently its limit, satisfy the same condition.

2.3. Smoothing term

The algorithm proposed by [Benamou and Brenier, 2000] is an application of a more general numerical

scheme, a description of which can be found in [Fortin and Glowinski, 1983] and [Glowinski and Tallec, 1989].

Theoretically, the optimal transport problem is not coercive as required, but this can be dealt with by adding

to the Lagrangian L (see Eq. (3)) a small perturbation term: H |q|2, where H is a positive parameter. How-

ever, as observed in [Benamou and Brenier, 2000], this perturbation is unnecessary in practice. Nonetheless,

the additional term, H |q|2, can be be useful to smooth out the solution in some cases, for instance, when the

initial or the final densities take values that approach zero. Indeed, an important limitation of the method

is its inability to handle densities that reach zero somewhere in the domain. A solution to this problem

would be to perturbate the density by adding a small quantity everywhere on the space then rescale the

result. However, even for densities that are no where null, but takes values that are close to zero, the method

becomes numerically instable. The convergence becomes very slow, and the quality of the solution degrades

sensibly. As numerical experiments demonstrate, adding the term H |q|2 helps accelerating the convergence

process and smoothing the solution. Since the new problem is a perturbated version of the original, the

obtained solution has a sub-optimal objective value, and the deviation from optimality increases with larger

values of H. This implies that H must be selected to strike a compromise between optimality and con-

vergence speed. Section 4.3 shows experimentally the effects of the smoothing term on the behavior of the

algorithm.

2.4. Parallelization

The only global step in the the algorithm proposed in [Benamou and Brenier, 2000] is the solution to

the Poisson PDE. Upon discretization, this equation is transformed to a sparse linear system that can be

solved using a number of parallel methods [Saad, 2001]. In the constrained case, computing µ creates an

additional interdependence between the data, the degree of which depends on the nature of the constraint.

In the simplest case, the constraint is pointwise and no interdependence is added. The constraint can as

well be spacial, in which case computing µ can be divided to a set of independent problems, one for each

time instant. The case where the constraint is space-time is the hardest to parallelize, since it causes the

greatest degree of interdependence between the problem data. Parallelism in the optimal transport problem

is therefore data driven, which implies that the computational domain has to be distributed among the

processors. Optrans offers three possible distribution schemes:

– Partitioned : in this scheme, the domain is divided as equally as possible among the processors. This is

intended to be used with space domains before the time dimension is added. Time is added so that all

the points in the time-space domain corresponding to the same point in the space domain are located in

the same processor (Figure 1).

– Time-sliced : in this scheme, a space-time domain is split along the time dimension, with each processor

being responsible for part of the time interval. Every processor keeps the whole space domains correspond-

ing to the time instants belonging to its part (Figure 2). This scheme is mainly intended for constrained

transport problems with a spacial constraint. Indeed, the scarcity of distributed quadratic optimization
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solvers makes partitioning the space domain an inefficient strategy, since the data corresponding to the

whole space must be moved to the same location to solve the quadratic problem.

– Duplicated : in this scheme, the domain is duplicated on all processors. This is intended for space do-

mains that are used to generate other domains. For instance, a space domain is duplicated before being

transformed into a time-space domain and sliced along the time dimension.

P0
t0 tmt1...

...

t0 tmt1...
...

t0 tmt1...
...

P1 Pn...

...
Fig. 1. Distribution of a time-space domain over a partitioned space domain among n processors. m is the time resolution.

P0

DD D

t0 t2t1

P1

DD D

t3 t5t4

Pn

DD D

tm

...

...
Fig. 2. Distribution of a time-sliced domain among n processors. D is the space domain, and m is the time resolution.

3. The Optrans Library

The current version of Optrans implements solvers for free and convexly constrained problems on regular

grid box domains of arbitrary dimensions discretized by finite difference. Each dimension of the domain can

have cell or vertex-centered discretization, and its boundary conditions can be periodic or null Neumann.

The software is developed in C++ and currently tested under Linux. From the design perspective, three

main objectives are considered:

(i) Exploiting parallelism: solving optimal transport problems requires high computational power and

large amounts of memory. Parallelism is therefore necessary for solving large scale problems. On the

other hand, the rapid development of multi-core processors and their availability makes parallelization

a rational choice to exploit the computational power that is already available to the users even if they

are only concerned with small or medium size problems.

(ii) Providing an easy interface: optimal transport is a field that regroups researchers from different back-

grounds and with various degrees of familiarity with programming and the use of optimization libraries.

Designing a simple interface is therefore necessary to ensure the accessibility of the library to the largest

possible segment of the research community.

(iii) Ensuring extendability: scientific computing literature is rich with different approaches to representing

computational domains and discretizing partial differential equations, which obviously can not be im-

plemented conjointly at the initial stage. Consequently, the library must be designed with extendability

in mind in order to incorporate new representations and discretization schemes with minimum effort

and alteration to the existing code.

Optrans makes use of the object oriented capabilities of C++, such as as inheritance and polymorphism, to

achieve these objectives. In what follows, the internal architecture and the programming interface of Optrans

are presented.
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3.1. Internal architecture

The design of Optrans follows an object-oriented approach, with objects representing entities that are

naturally related to the problem. For instance, the object Domain represents the computational domain,

Function represents a function, and VField represents a vector field. Figure 3 shows an overview of the

interaction between these objects. The interfaces through which this interaction takes place are kept as

generic as possible in order to hide as much as possible the internal functioning of each object. This is

achieved by using the mechanisms of inheritance and virtual methods overloading.

Transport problem solver Domain

Function

Vector field

Poisson PDE solver

Quadratic probelm solver

Accessing values
Applying operators such as
gradient and divergence
Synchronization etc.

Solving the 
Poisson PDE

Comput ing mu
(constrained case)

Obtaining discretization of the PDE and the boundary conditions

Accessing domain
to complete operations

Fig. 3. Overview of the interaction between the internal objects of the library.

At the functional level, Optrans makes use of a number of external libraries to complete its task (Figure

4). Optrans uses MPI (Message Passing Interface) for message passing and synchronization, which allows

it to run on distributed as well as shared memory architectures. MPI is a mature specification with imple-

mentations available on virtually all parallel architectures, from networks of personnel computers to super

computers. Its widespread use makes it the de facto standard for parallel applications. Using MPI allows

Optrans to benefit from existing parallel libraries, for instance the hypre library as explained below, and

also facilitates its potential integration as part of other parallel applications.

The BoomerAMG solver [Henson and Yang, 2002], which is part of the hypre library [Falgout et al., 2006a],

is used for solving the linear system resulting from the Poisson PDE. hypre is library of high performance

preconditioners and solvers dedicated to solving large, sparse linear systems on massively parallel computers.

Besides its mature development status, which is the result of years of refinement, hypre has the advantage

of offering different types of interfaces to suit the different needs of applications [Falgout et al., 2006b]. Of

these interfaces, Optrans uses what is called the Linear-Algebraic Interface or the IJ interface for short. This

is basically the most generic interface, where the matrix and the right hand side vector are passed to hypre,

then a solver is chosen to solve the corresponding linear system. The matrix and the right hand side vector

are given to the library in distributed form, that is, every processor stores part of the matrix and vector.

Optrans discretizes the Poisson equation, handles the boundary conditions and prepares the coefficients of

the matrix and the right hand side vector before passing them through the IJ interface. The choice of the

IJ interface is due to its flexibility and the fact that it is not limited in term of the dimensionality of the

problem. The BoomerAMG solver is a parallel implementation of algebraic multigrid, which offers various

choices for coarsening and relaxation techniques, and because of its general purpose nature, it represents a

natural choice for using with Optrans.

In the constrained case, Optrans solves the arising quadratic problem using either the Ipopt solver

[Wächter and Biegler, 2006], with the user providing the constraints, or a function entirely provided by the

user. Ipopt is a library for large-scale nonlinear optimization. It computes the local solutions of optimization

problems having the from 
min
x∈Rn

f (x) ;

s.t. gL ≤ g (x) ≤ gU and xL ≤ x ≤ xU ,
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where the constraints are vector valued. From the performance perspective, using the Mehrotra algorithm

[Mehrotra, 1992] implemented in Ipopt is faster than using the interior point method of Ipopt. At the

implementation level, Ipopt is written in C++, and therefore, it can be easily interfaced with Optrans.

Although not a distributed optimizer, Ipopt can be configured to use a parallel linear solver, such as Par-

diso [Schenk et al., 2001] or MUMPS [Amestoy et al., 2000], that can take advantage of shared memory

architectures.

Fig. 4. Optrans and external libraries.

3.2. Programming interface

The library is accessed via a set of classes representing domains, functions, vector fields, transport prob-

lems and solvers. The approach followed is to separate between the description of the problem and the

algorithms used to solve it, which is similar in spirit to [Meza et al., 2007], for instance. The user first cre-

ates a representation of the problem, then instantiates a solver object to which the problem representation

is passed. The user can choose the algorithm and the parameters that the solver uses to solve the problem.

To illustrate the use of Optrans programming interface, a simple example is presented. Consider an optimal

transport problem in a regular two dimensional box with periodic boundary conditions. In the following,

the steps necessary to solve such a problem with Optrans are presented.

First, and like any MPI based program, initialization is needed.

/∗ I n i t i a l i z e MPI ∗/
MPI Init(&argc , &argv ) ;

After initializing MPI, the computational domain must be defined. For this, the dimension, the mesh reso-

lution, the mesh step size, the type of boundary conditions and the type of discretization are to be specified.

The domain is created then distributed among the processors. The distribution scheme used in this example

is Partitioned, which can be set by calling the method partition on the domain object.

i n t dim= 2 ;

i n t meshRes= 32 ;

double meshStep= 1 . 0 / 3 2 ;

BCType bCTypes [ dim ] ;

DiscType discTypes [ dim ] ;

bCTypes [1 ]= bCTypes [0 ]= Per i od i c ;

discTypes [1 ]= discTypes [0 ]= Cel lCentered ;

/∗ Create the domain ∗/
RGCube dom(MPI COMM WORLD, dim , bCTypes , discTypes , meshRes , meshStep ) ;

/∗ P a r t i t i o n the domain ∗/
dom . p a r t i t i o n ( ) ;

The next step is to create the transport problem object. This requires specifying the domain, the initial

and the final densities. The latter are objects of type Function defined on the computational domain. In the

distribution scheme of this example, only the local part of the function values needs to be passed. The local

interval is given by the properties ilower and iupper of the domain object.
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r h o I n i t= new Function(&dom ) ;

rhoFina l= new Function(&dom ) ;

i l o w e r= dom . ge t I l owe r ( ) ;

iupper= dom . get Iupper ( ) ;

f o r ( k=i l o w e r ; k<=iupper ; k++)

{
(∗ r h o I n i t ) [ k]= . . . ;

(∗ rhoFina l ) [ k]= . . . ;

}
/∗ Create the t ranspor t problem ∗/
OptransPb optransPb(&dom, rho In i t , rhoFina l ) ;

Once the transport problem object is created, it is passed to a solver object along with the time resolution.

The solver is controlled by a number of parameters, which are divided into three major groups. The first group

contains the parameters that control the behavior of the algorithms. These are set using the setAlgParams

method. In the present example, the algorithm that is run by the solver is ALG0, which denotes the algorithm

proposed in [Benamou and Brenier, 2000]. For this algorithm, the only relevant parameters are r and the

smoothing parameter H. The second group of parameters specifies the stopping criteria. These are the

maximum number of iterations, the maximum allowed residual, the maximum allowed normalized criterion

(see [Benamou and Brenier, 2000]), the maximum allowed change in mass and the maximum allowed change

in µ. The algorithm is stopped whenever any one of these criteria is verified. These parameters are set using

setTolParams. The third group of parameters, which is not shown in this example, controls the I/O operations

during the execution, for instance, enabling or disabling trace, the trace file name, the frequency of backup

points and the backup file name. This group of parameters is set using the setIOParams method.

/∗ Create the s o l v e r ∗/
OptransCFDSolverC s o l v e r (&optransPb , timeRes ) ;

/∗ Set a lgor i thm ∗/
s o l v e r . setAlgParams (ALG0, r , s , H, rho , rhoR , rhoS ) ;

/∗ Set t o l e r a n c e ∗/
s o l v e r . setTolParams ( maxIter , maxRes , maxNCr , maxDeltaMass , maxDeltaMu ) ;

At this stage, all the parameters are set, and the only remaining step is to initialize the solver and then call

the solve method.

/∗ I n i t i a l i z e ∗/
s o l v e r . i n i t ( ) ;

/∗ Solve ∗/
s o l v e r . s o l v e ( ) ;

Finally, once computed, the solution to the problem can be obtained from Optrans through arguments, or

saved to disk. Information about the execution, such the number of iterations or the residual, can also be

obtained by calling the appropriate methods on the solver object.

The classes Function and VField offer the possibility of reading and writing their values from and to file,

which can be useful for inputting and outputting data to and from Optrans. There are two available modes

for this operation, centralized and distributed:

– In the centralized mode, the processor with ID 0 reads the whole set of values from file and distributes

the content to each other processor. This can be useful for simplifying the storage of the data or in the

case where some processors have no input/output capabilities.

– In the distributed mode, each processor reads its portion of the data. Therefore, each of the portions has

to be stored in a separate file. This mode is useful for computer networks, where each processor has a

local storage device.
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4. Experimental Results

This section presents a set of numerical experiments to demonstrate the working of Optrans and the

numerical methods used therein. Experiment 1 shows a three dimensional example problem that can be

solved by Optrans. In Experiment 2, a transport problem with null Neumann boundary conditions is solved.

In Experiment 3, the effect of the smoothing term H |q|2 are studied. Finally, Experiment 4 shows the effect

of parallelization on the execution time.

4.1. Experiment 1: Solving a three dimensional problem

The first experiment demonstrates the use of Optrans by solving a free transport problem on a three

dimensional domain with periodic boundary conditions. The domain is discretized by a cell-centered mesh

with a resolution of 20×20×20. Figure 5 shows the density and the velocity field of the computed solution at

different time instants. Figure 6 shows the evolution of the objective function and the convergence criteria.

The results confirms that, indeed, the optimality conditions for the problem are satisfied, and that the

obtained solution offers a smooth interpolation between the initial and the final densities.

4.2. Experiment 2: Null Neumann boundary conditions

Figure 7 shows the solution of a transport problem on a domain with periodic boundary conditions. The

concentration of mass initially at the left is divided into two parts, one part is transported to the right, and

the other is transported through the left boundary. Figure 8 shows the solution to the same transportation

problem, but this time on a domain with null Neumann boundary conditions. Here, the mass can not be

transported through the boundary, hence the whole concentration of mass is transported within the domain

towards the right side.

4.3. Experiment 3: The effects of the smoothing term

The goal of this experiment is to show the effects of the smoothing term on the quality of the solution

and the convergence process. To this end, the initial and the final densities are chosen to have values that

approach zero. For the sake of this experiment, both densities reach a minimum value of approximately

0.005. Figure 9 shows the solution computed without any smoothing, that is H=0. The solution has steep,

non smooth transitions, and there are clear distortions at the initial and the final densities. On the other

hand, Figure 10 shows the solution with H=0.5. Clearly, the solution is much smoother and there are no

visible distortions at the initial and the final time instants.

The effect of the parameter H on the convergence of the algorithm is presented in Figure 11, 12, 13 and

14, which show the evolution of the objective function and the convergence criteria for the values of H =0,

0.1, 0.5 and 1 respectively. It can be observed that as H gets smaller, the gap between the kinetic energy

and the product 〈µ, q〉 becomes smaller, the fluctuations in the values of the energy also diminish, and lower

values of kinetic energy are attainable. On the other hand, the minimum residual attainable becomes larger,

and similarly is the case for |∇φ− q|. Furthermore, small values of H cause slow convergence as |∇φ− q|
decreases more slowly, causing in turn the slow convergence of µ. Large values of H offer quick convergence,

but the solution has a higher objective value. The graphs show that, in this example, an intermediate value

of H that offers a good compromise between smoothness of the solution and rapid convergence on the one

hand and the quality of the solution on the other hand is H=0.5.

4.4. Experiment 4: Parallelization

The goal of this experiment is to show the speedup obtained by parallelizing the execution of the algo-

rithms. Three test problems are used:

(i) A free problem: this is an ordinary transport problem without any constraints.
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(ii) A transport problem with bound: in this problem, each point in the space has an upper bound on its

density. The upper bound may vary from one point to another, and the goal is transport the initial

density to the final one without violating any bound constraint.

(iii) A metric deformation problem: the initial and the final densities in this case are distance functions.

The transport must be done so that the intermediate densities are all distance functions as well (see

[Kerrache and Nakauchi, 2010]).

Note that the problems are cited in order of increasing complexity, with the free problem being the simplest

and the metric deformation problem being the most complex.

Figure 15 shows the execution time for the three test problems as the number of processors varies. For

this experiment, the solver is run on a multi-core machine (shared memory). The graphs show that there is

reduction in execution time in all cases, and that the speedup increases with the problem complexity. The

reason is that, because of the constraints being spacial, the quadratic problem necessary for computing µ

can be split into smaller problems, one for each time instant, that can be solved simultaneously. This reduces

the execution time considerably, especially when the constraint is complex.

5. Conclusion

This paper introduced Optrans, a parallel library for solving the time-dependent optimal transport prob-

lem. Both free and convexly-constrained problems can be handled by the library. Optrans is designed using

an object oriented approach and developed in C++. It offers a simple, object-oriented programming in-

terface. The current version supports regular grid box domains discretized by finite difference. A number

of techniques introduced in the library were presented, including solving transport problems on domains

with null Neumann boundary conditions and handling densities that approach zero using a smoothing term.

The parallelization of the processing shows gain in the execution time, especially for spacially constrained

problems with complex constraints. As a next step in the development of Optrans, the possibility of han-

dling more complicated geometries and discretization schemes, namely, structured grids and finite element

domains in two and three dimensions, is considered. The hypre interfaces for structured grids and finite

elements can provide an important help in implementing these improvements.
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[Wächter and Biegler, 2006] Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57.

Fig. 5. A three dimensional transport problem.
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Fig. 6. Evolution of the objective function and the convergence criteria for the three dimensional problem.
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Fig. 7. Transport on a domain with periodic boundary conditions.
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Fig. 9. Transport of a density that reaches zero without smoothing (H=0).
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Fig. 10. Transport of a density that reaches zero with H= 0.5.
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Fig. 11. Evolution of the objective function and the convergence criteria for H=0.
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Fig. 12. Evolution of the objective function and the convergence criteria for H=0.1.
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Fig. 13. Evolution of the objective function and the convergence criteria for H=0.5.
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Fig. 14. Evolution of the objective function and the convergence criteria for H=1.
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Fig. 15. Execution time on a multi-core architecture.
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