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Abstract

Soft segmentation is more flexible than hard segmentation but the membership functions are sensitive to
noise. In this paper, we proposed a multiphase soft segmentation model based on Gaussian mixture. Compared
with previous models, the proposed energy functional is not only convex with respect to objective membership
functions, but more robust to noise. With recently developed technique for solving simplex constraint, the model
can be solved very fast.

I. INTRODUCTION

Soft segmentation has attracted increasing interest in recent studies, partly because of its success in
seeking a global optimal solution in variational hard segmentation models. For example, Chan and Bresson
et al [Chan, 2006; Bresson, 2007; Bresson, Chan, 2008] proved in their new variational frameworks
that global minimum can be achieved in these models due to the convexity of the energy functional.
Very recently, based on a variational convexification technique due to Pock et. al. [Pock, 2008], Brown
et. al. [Brown, 2009], and Bae et. al. [Bae, 2009] provide different ways to find globally optimal
solution for piecewise constant Mumford-Shah model (more generally called continuous Potts model).
A common technique in these methods is the relaxation of characteristic functions to functions evaluated
in [0, 1] (called membership function or ownership function), transforming the original problem to a
soft segmentation. It is then proved that one can find a global optimal solution at integrality value of
membership functions in these models. As a result, this integrality global solution for soft segmentation is
thereby a global solution for original hard segmentation. Another motivation for studying soft segmentation
is partial volume effect in MRI brain image segmentation. Due to limited spacial resolution of the
equipment, not all the voxels in a segmented region contain the same tissue type, especially near the
boundary between different subregions. Using soft segmentation, one can find the percentage of each
tissue contained in the partial volume.

There have been many soft segmentation methods [Chen, 2004; Li, 2005; Mory, Arden, 2007; Pham,
1998; Shen, 2006; Zhu, 1996]. For example, Mory and Ardon extended the original region competition
model [Zhu, 1996] to a fuzzy region competition method [Mory, Arden, 2007]. Fuzzy C-mean (FCM) is a
method developed for pattern classification and recognition. It can also be applied to image segmentation.
The original FCM method is very sensitive to noise. Pham et.al [Pham, 1998] proposed an adaptive fuzzy
C mean (AFCM) model, where the constant cluster centers used in the FCM model are substituted by
spatially varying functions. AFCM is more robust to noise than the standard FCM. Another similar work
is proposed by Zhang et. al. [Chen, 2004], where the fitting term is represented with a kernel function.

Another class of soft segmentations are based on stochastic approaches [Shen, 2006; Li, 2005]. For
example, Li et. al. proposed a segmentation framework based on maximum a posteriori principle (MAP)
for partial volume (PV) segmentation of magnetic resonance brain images [Li, 2005]. J. Shen [Shen,
2006] proposed a general multiphase stochastic variational fuzzy segmentation model combining stochastic
principle and the Modica-Mortola’s phase-transition theory. The intensity of images was modeled as a
mixed Gaussian distribution.
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Among all multiphase segmentation methods, piecewise constant model is easier to implement [Chan,
Vese, 2001]. However, even if an image is very ideal and should be piecewise constant, the image
may appear quite different from piecewise constant due to the existence of noise and inhomogeneous
illumination. Hence, bias correction based methods have been studied [Wells, 1996; Pham, 1998; Ahmed,
2002; Li, 2008]. These methods are usually integrated into soft segmentation schemes.

This paper is based on the work of Li et. al. [Li, 2005] and the work of Shen [Shen, 2006]. We
proposed a stochastic variational model for multi-phase Mumford-Shah soft segmentation in the presence
of intensity inhomogeneity, where the image intensity at each point is modeled as a mixed Gaussian
distribution with means and variants to be optimized. Compared with J. Shen’s work, our model does not
assume that membership functions must be close to either 1 or 0. So, our model matches soft segmentation
more precisely, and hence can be applied to partial volume segmentation. The new model is more robust
to noise than the model in [Li, 2005]. The experiment shows that our model is also robust to bias.

The rest of the paper is organized as follows. Section II is the development of the new model. The
implementation scheme is presented in Section III. In Section IV, we demonstrate the efficiency of the
model with synthetic images and authentic images.

II. MODEL DEVELOPMENT

Let I be an image defined in an open bounded domain Ω. Suppose I contains K phases, and make the
following stochastic assumption: the intensity I(x) of each pixel is a sample of Gaussian mixture of K
Gaussian probability density functions (PDF) fi(x), defined as

fi(x)) = g(I(x), |ci, σi) :=
1√
2πσi

e
− (I(x)−ci)

2

2σ2
i (1)

with mixture coefficient field pi(x), (1 ≤ i ≤ K). Then the pdf of the mixture image I at any pixel x is
given by

P (I(x)) =
K∑
i=1

fi(x)pi(x). (2)

Further, we assume that all those samples {I(x), x ∈ Ω} are independent. Then the likelihood (joint
pdf) is ∏

x∈Ω

K∑
i=1

fi(x)pi(x) (3)

Ideal segmentation should maximize the likelihood or minimize the negative log-likelihood as follows.

E[I|P,U ] = −
∫
Ω

log

(
K∑
i=1

fi(x)pi(x)

)
, (4)

Adding total variation of pi(x) as regularity terms for membership functions pi(x) respectively leads to
the following stochastic variational segmentation model with Gaussian mixture. We add to the energy
functional the L2− norm of ∇ and total variation of pi(x) as regularity terms for bias field b(x) and
membership functions pi(x) respectively. This leads to the following stochastic variational segmentation
model with Gaussian mixture and bias correction.

E(p, b, c) =λ

∫
Ω

−log[
K∑
i=1

1√
2πσi

exp(−(I(x)− b(x)ci)
2

2σ2
i

)pi]dx

+µ

∫
Ω

|∇b|2dx+
K∑
i=1

∫
Ω

|∇pi|dx
(5)
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Simply write it as

E(p, b, c) = −λ

∫
Ω

log(
∑

fi(x)pi(x))dx+ µ

∫
Ω

|∇b|2dx+
K∑
i=1

∫
Ω

|∇pi|dx (6)

where
fi(x) =

1√
2πσi

exp(−(I(x)− b(x)ci)
2

2σ2
i

) (7)

We use two different regularization methods for bias field b and membership functions pi(x) (L2-norm
for bias field and TV for membership function). The reason is that we require the bias field to be smooth
in the entire domain (there is no obvious edge in b). So we use L2-norm since it is isotropic. However,
although we assume all membership functions are defined in the entire domain, each pi should be close
to 1 in the region corresponding to the object and be close to 0 in other regions. Just as in partial volume
segmentation, only near the boundary of different objects, the value may neither close to 1 nor close to 0.
Hence, each membership function may contains obvious edge. Using TV for its regularization can protect
edges since L1-norm is anisotropic.

III. NUMERICAL IMPLEMENTATION

Note that the energy functional is convex with respect to all parameters except for the variances. For
fixed variances, global minimization can be achieved for any initialization. The Euler-Lagrange equations
of variance, means and bias are as follows.

∂E

∂σ2
i

= −λ

∫
Ω

fipi((I − bci)
2 − σ2

i )

2σ4
i

∑K
i=1 fipi

dx (8)

∂E

∂ci
= − λ

σ2
i

∫
Ω

fipi(Ib− cib
2)∑

fipi
dx = 0 (9)

∂E

∂b
= −µ∆b− λ

∑
fipi(I − bci)ci
σ2
i

∑
fipi

(10)

The only challenge of the implementation is the optimization of membership functions pi(x) because
of the constraints.

1 ≥ pi(x) ≥ 0

and
K∑
i=1

pi(x) = 1.

The constraint 1 ≥ pi(x) ≥ 0 can be achieved by adding term

γ

∫
Ω

ν(pi)dx (11)

where ν is defined by

ν(ξ) = max{0, 2|ξ − 1

2
| − 1} (12)

and γ should be big enough so that the added term is an exact penalty [Chan, 2006].
The constraint

∑K
i=1 pi(x) = 1 can be achieved by using Lagrange multiplier method. So, the final

energy functional is
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E(p, b, c) =λ

∫
Ω

−log[
K∑
i=1

fipi]dx

+µ

∫
Ω

|∇b|2dx+
K∑
i=1

∫
Ω

|∇pi|dx

+

∫
Ω

α(
K∑
i=1

pi − 1)dx+ γ

K∑
i=1

∫
Ω

ν(pi)dx

(13)

Considering we have fast algorithm for some variational functional, we add some auxiliary variables
v1, ..., vK , and consider the dual projection problem [Bresson, 2007; Huang, 2008]

E(p, v, b, c) =λ

∫
Ω

−log[
K∑
i=1

fipi]dx

+µ

∫
Ω

|∇b|2dx+
K∑
i=1

∫
Ω

|∇vi|dx+
1

2θ

K∑
i=1

∫
Ω

(pi − vi)
2dx

+

∫
Ω

α(
K∑
i=1

pi − 1)dx+ γ
K∑
i=1

∫
Ω

ν(pi)dx

(14)

The v-minimization problem can be efficiently solved by fast duality projection algorithm [Chambolle,
2004]. The solution is given by

vi = pi − θdiv(di), 1 ≤ i ≤ K (15)

where the vector di can be solved by fixed point method: Initializing d0i = 0 and iterating

dn+1
i =

dni + τ∇(div(dni )− pi/θ)

1 + τ |∇(div(dni )− pi/θ)|
(16)

with τ ≤ 1/8 to ensure convergence.
The derivative of the energy functional with respect to pi is

∂E

∂pi
= −λ

fi∑
fipi

+
1

θ
(pi − vi) + α = 0 (17)

The pi can not be solved explicitly. We use the following iteration which is also very fast.

p
(n+1)
i = v

(n)
i + θ

{
λ

fi∑
fipi

− α

}(n)

(18)

With the constraint that
∑

pi = 1 we get

α =

∑
vi − 1

θK
+

λ
∑

fi
K
∑

fipi
(19)

Substitute α in previous formula, we get the iteration

p
(n+1)
i = v

(n)
i + θ

{
λ

fi∑
fipi

−
∑

vi − 1

θK
− λ

∑
fi

K
∑

fipi

}(n)

(20)

Finally, we take the max-min operation to make sure that 0 ≤ pi(x) ≤ 1.

pi(x) = min{max{pi(x), 0}, 1} (21)
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(a) (b) (c)

(d) (e) (f)
Fig. 1. Experiment 1: Robustness to noise

IV. EXPERIMENT AND DISCUSSION

In this part, we demonstrate the good performance of the proposed model with several experiments
in different aspects. Since the paper is discussing soft segmentation model, we present all membership
functions in each experiment, where at each pixel, if the intensity is very bright, then it means that the
corresponding membership function at that point is very close to 1; on the contrary, if the intensity is
very dark, then it means that the membership function has a value close to 0. For some examples (Fig.3),
we also show hard segmentation by thresholding.

The first experiment aims at the robustness to noise. In Fig.1, (a) is the original synthetic image, (b)
is obtained by adding Gaussian noise G(µ, σ2) to (a) with µ = 0 and σ2 = 0.02. The result is shown in
(c) for hard segmentation and (d)-(f) for membership functions.

The second experiment aims at the robustness to bias.
In Fig.2, (a) is the original image, (b) is a vertical bias field. (c) is the biased image obtained by adding

multiplicative bias (b) to image (a). (d), (e) and (f) are the three membership functions obtained using
the proposed model. Clearly, there is no bias in the membership functions.

Fig.3 gives a segmentation for real MRI brain image. (a) is the original real MRI brain image.
(c), (d), (e) are membership functions of CSF, gray matter and white matter, respectively. (b) is the hard
segmentation after thresholding.

V. CONLUSION

In this paper, we proposed a stochastic variational model for multiphase soft segmentation based on
Gaussian mixture. Compared with previous models, the proposed model is more robust to noise and bias.
Several experiments are presented to demonstrate the efficiency of our model.
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Fig. 2. Experiment 2: Robustness to bias.
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