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Abstract. In this paper, we propose a two-stage descent method for monotone variational

inequality problems, which only needs functional values for given variables in the solution

process. Under certain conditions, the global convergence of the method is proved. Prelimi-

nary numerical experiments are included to illustrate the efficiency of the proposed method.
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1 Introduction

A classical variational inequality, denoted by VI(f, S), which is to find a vector x∗ ∈ S, such that

(x− x∗)⊤f(x∗) ≥ 0 ∀x ∈ S , (1)

where S ⊆ Rn is a nonempty closed convex subset of Rn and f is a continuous mapping from Rn into

itself. The set S in VI(f, S) often has the following structure, see [3-5]:

S = {x|Ax = b, x ∈ X} (2)

or

S = {x|Ax ≤ b, x ∈ X} (3)

where A ∈ Rm×n,b ∈ Rm, and X is a simple closed convex subset of Rn.

In this paper, we focus our attention on the variational inequality problem (1) that S has the structure

(2), which is also denoted by VI(f, S). This class of variational inequality problems arise frequently in
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some practical applications. For example, in the traffic assignment problem, by representing x as the

route flow variable, the demand constraint can by expressed in the form Ax = b.

By appending a Lagrange multiplier y ∈ Rm to the linear constraints Ax = b, VI(f, S) can be

translated to an enlarged but compact form(denoted by VI(F ,Ω)): find u∗ ∈ Ω such that

(u− u∗)⊤F (u∗) ≥ 0,∀ u ∈ Ω, (4)

where u =

 x

y

, F (u) =

 f(x)−A⊤y

Ax− b

, Ω = X × Y .

Among powerful approaches to solving structured VI(F ,Ω) is the alternating direction method(ADM),

which was originally proposed in [1,2]. In particular, for the given uk = (xk, yk) ∈ X×Y , the new iterate

uk+1 = (xk+1, yk+1) is generated by the following procedure: find xk+1 ∈ X, such that

(x′ − xk+1)⊤f(xk+1)−A⊤[yk − (Axk+1 − b)] ≥ 0, ∀x′ ∈ X, (5)

then update y via

yk+1 = yk − (Axk+1 − b).

The method is attractive for large-scale problems since it decomposes the original problem into a series

of small-scale problems. However, note that its subproblem (5) is still a variational inequality problem,

which is usually difficult to solve efficiently and exactly at each iteration.

Motivated by the above observation, this paper presents a two-stage descent method for monotone

VI(f, S). Firstly, the separable structure of S is utilized to generate a descent direction; and an appropri-

ate step size along this descent direction is identified to generate a temporal point. Then, an additional

projection step is performed, and another optimal step size which is depended on the previous points is

employed to generate next iterate.

The remainder of the paper is organized as follows: some definitions and properties used in this paper

are presented in Section 2. In Section 3, a two-stage descent method is given and its global convergence

is proved. Some preliminary computational results are given in Section 4.

2 Preliminaries

In this section, we first give some basic properties and related definitions used in the sequent sections.

First, we denote ∥x∥ =
√
x⊤x as the Euclidean norm. For a given vector x ∈ Rn, the orthogonal

projection of x onto the set X, is defined as the nearest vector y ∈ X to x, i.e.,

PK(x) = argmin{∥y − x∥ | y ∈ K}.
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Similarly, we denote PΩ(·) as the orthogonal projection mapping from Rn+m onto Ω. That is

PΩ(u) = PΩ

 x

y

 =

 PX(x)

y

 , u = (x, y) ∈ Rn+m.

The projection mapping PX has the following important properties, which will be used in the following.

Lemma 2.1. For any x ∈ Rn, y ∈ X, the following inequalities hold

(x− PX(x))⊤(y − PX(x)) ≤ 0; (6)

||PX(x)− y||2 ≤ ||x− y||2 − ∥x− PX(x)∥2. (7)

Many numerical methods for solving variational inequality problems are based on the following well-

known result due to Eaves[6], that is, VI(F,Ω) is equivalent to a projection equation

u = PΩ[u− βF (u)],

where β is an arbitrary but fixed positive constant. Let

r(u, β) =

 r1(u, β)

r2(u, β)

 = u− PΩ[u− βF (u)] =

 x− PX [x− β(f(x)−A⊤y)]

β(Ax− b)


denote the residual function of the projection equation. VI(F,Ω) is equivalent to finding a zero point of

the residual function r(u, β).

The following lemma plays an important role in the global convergent analysis of our algorithm.

Lemma 2.2. For all u ∈ Rm+n and ρ1 > ρ2 > 0, it holds that

∥r(u, ρ1)∥ ≥ ∥r(u, ρ2)∥. (8)

∥r(u, ρ1)∥
ρ1

≤ ∥r(u, ρ2)∥
ρ2

. (9)

Definition 2.1. A mapping f : Rn → Rn is said to be monotone if

(x− y)⊤(f(x)− f(y)) ≥ 0, ∀x, y ∈ Rn.

Throughout of this paper, we assume the solution set of VI(f, S), denoted by S∗, is nonempty, and

the solution set of VI(F,Ω), denoted by Ω∗, is also nonempty.

3 Main results

For simplicity, set ri = ri(u, β), i = 1, 2, g = f(x)−A⊤y .
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Lemma 3.1. Let u∗ = (x∗, y∗) ∈ Ω∗ be an arbitrary solution of VI(F,Ω), and

d(u, β) :=

 r1 − βf(x) + βf(x− r1) + βA⊤r2

r2 − βAr1

 ,

then for any u = (x, y) ∈ Rn+m, β > 0, we have

(u− u∗)⊤d(u, β) ≥ ∥r1∥2 + ∥r2∥2 − βr⊤1 (f(x)− f(x− r1)).

Proof. The proof is similar to that of Lemma 1 of [3].

Lemma 3.2 If u ∈ Ω is not a solution of VI(F,Ω), then for any δ ∈ (0, 1), there exist β̃(u) > 0, such

that ∀β ∈ (0, β̃(u)], we have

β∥f(x)− f(x− r1)∥ ≤ δ∥r(u, β)∥. (10)

Proof. See Lemma 3 of [4].

If u ∈ Ω is not a solution of VI(F,Ω), from Lemma 3.1 and Lemma 3.2, there is a positive β > 0, such

that

(u− u∗)⊤d(u, β) ≥ (1− δ)∥r(u, β)∥2. (11)

which means that −d(u, β) is a descent direction of the merit function ∥u− u∗∥2/2 whenever u is not a

solution of VI(F,Ω). This motivates us to construct the following algorithm.

Algorithm 3.1 Two-stage descent method for VI(f ,S).

Step 0: Given ε > 0. Choose u0 ∈ Ω, and positive parameters µ ∈ (0, 1), γ1, γ2 ∈ [1, 2), β = 1.0,

δ ∈ (0, 1), v ∈ (0, 1) and and a nonnegative sequence {µk}, satisfying
∑+∞

k=1 µk < +∞. Set k := 0;

Step 1: Set βk = β. If ∥r(uk, βk)∥ < ε, then stop; else, find that smallest nonnegative integer mk,

such that βk = βµmk satisfying

βk∥f(xk)− f(PX [xk − βk(f(x
k)−A⊤yk)])∥ ≤ δ∥r(uk, βk)∥. (12)

Step 2: Calculate d(uk, βk) by the expression of d(u, β) in Lemma 3.1 and

ρk = (1− δ)∥r(uk, βk)∥2/∥d(uk, βk)∥2. (13)

Then calculate the temporal iterate ũk = PΩ[u
k − γ1ρkd(u

k, βk)].

Step 3: Calculate the next iterate uk+1 = PΩ[u
k − γ2λk(u

k − ũk)], where the step length λk is defined

by

λk =
∥uk − ũk∥2 + γ1(2− γ1)ρk∥r(uk, βk)∥2

2∥uk − ũk∥2
. (14)

Step 4:(adjust β[4]) If
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βk∥f(xk)− f(PX [xk − βk(f(x
k)−A⊤yk)])∥ ≥ v∥r(uk, βk)∥

then set β = (1 + µk)βk, else set β = βk. Set k := k + 1, go to Step 1.

Remark 3.1 It follows from Lemma 3.2 that at each k, if uk ∈ Ω is not a solution of VI(F,Ω), then

the line search procedure is well defined, the algorithm is therefore well defined.

Remark 3.2 From
∑+∞

k=1 µk < +∞ and it is nonnegative, there is a positive integer M , such that

+∞∏
k=1

(µk + 1) < M.

So we have βk < M, ∀ k = 1, 2, · · ·.
In the following, we assume that the algorithm does not stop in finite steps and an infinite sequence

{uk} is generated.

We first investigate the technique of identifying the optimal step sizes along the descent directions

d(uk, βk). To justify the strategy of choosing the step size ρk as in Step 2, we use

ũk(ρ) := PΩ[u
k − ρd(uk, βk)].

to denote the temporary point taking ρ as the step size along d(uk, βk), the the following lemma motivates

us to identify the optimal step size along this direction.

Lemma 3.3. For given uk and βk > 0, we have

Θk(ρ) := ∥uk − u∗∥2 − ∥ũk(ρ)− u∗∥ ≥ Φk(ρ),

where

Φk(ρ) = −ρ2∥d(uk, βk)∥2 + 2ρ(1− δ)∥r(uk, βk)∥2.

Proof. Because ũk(ρ) := PΩ[u
k−ρd(uk, βk)], by setting x = uk−ρd(uk, βk) and y = u∗ in (7), we obtain

∥ũk(ρ)− u∗∥2 ≤ ∥uk − ρd(uk, βk)− u∗∥2 − ∥uk − ρd(uk, βk)− ũk(ρ)∥2,

and consequently

Θk(ρ) ≥ ∥uk − ũk(ρ)∥2 + 2ρ(uk − u∗)⊤d(uk, βk)− 2ρ(uk − ũk(ρ))⊤d(uk, βk),

Since u∗ is a solution, it follows from (11) that

Θk(ρ)

≥ ∥uk − ũk(ρ)∥2 + 2ρ(1− δ)∥r(uk, βk)∥2 − 2ρ(uk − ũk(ρ))⊤d(uk, βk)

= ∥uk − ũk(ρ)− ρd(uk, βk)∥2 + ρ2∥d(uk, βk)∥2 + 2ρ(1− δ)∥r(uk, βk)∥2

≥ −ρ2∥d(uk, βk)∥2 + 2ρ(1− δ)∥r(uk, βk)∥2 := Φk(ρ)
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The assertion follows from the above inequality directly. The proof is completed.

Clearly, Θk(ρ) means the progress made by the temporal point ũk(ρ) at the kth iteration. Therefore,

in order to accelerate the convergence, it is reasonable to choose

ρk = (1− δ)∥r(uk, βk)∥2/∥d(uk, βk)∥2,

i.e., the optimal value of ρmaximizing the quadratic function Φk(ρ) which provides a lower bound function

of Θk(ρ). Based on numerical experiences, we prefer to attach a relax factor γ1 ∈ [1, 2) to ρk, that is,

ũk = PΩ[u
k − γ1ρkd(u

k, βk)], and simple calculation show that

Φk(γ1ρk) = γ1(2− γ1)Φk(ρk) = γ1(2− γ1)ρk(1− δ)∥r(uk, βk)∥2. (15)

We now consider the criteria of λk, which ensures that uk+1 is closer to the solution set than uk. For

this purpose, we define

Γk(λ) := ∥uk − u∗∥2 − ∥uk+1(λ)− u∗∥2, (16)

where uk+1(λ) = PΩ[u
k − λ(uk − ũk)].

Lemma 3.4. Let u∗ ∈ Ω∗. Then we have

Γk(λ) ≥ λ{∥uk − ũk∥2 + ∥uk − u∗∥2 − ∥ũk − u∗∥2} − λ2∥uk − ũk∥2. (17)

Proof. It follows from (7) and (16) that

Γk(λ)

≥ ∥uk − u∗∥2 − ∥uk − λ(uk − ũk)− u∗∥2

= 2λ(uk − u∗)⊤(uk − ũk)− λ2∥uk − ũk∥2

= 2λ{∥uk − ũk∥2 − (u∗ − ũk)⊤(uk − ũk)} − λ2∥uk − ũk∥2

Using the following identity

(u∗ − ũk)⊤(uk − ũk) = 1
2 (∥ũ

k − u∗∥2 − ∥uk − u∗∥2) + 1
2∥u

k − ũk∥2.

we obtain (17), the required result. The proof is completed.

Using Lemma 3.3, (15) and (17), we get

Γk(λ) ≥ Υk(λ) = λ{∥uk − ũk∥2 + Λk} − λ2∥uk − ũk∥2, (18)

where

Λk = γ1(2− γ1)ρk(1− δ)∥r(uk, βk)∥2. (19)

The above inequality tells us how to choose a suitable λk. Since Υk(λ) is a quadratic function of λ and

it reaches its maximum at

λk =
∥uk − ũk∥2 + Λk

2∥uk − ũk∥2
,
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and

Υk(λk) =
λk[∥uk − ũk∥2 + Λk]

2
. (20)

In addition, from γ1 ∈ [1, 2) and δ ∈ (0, 1), we have

Λk ≥ 0, λk ≥ 1

2
,

and from (18) (20), we get

Γk(λk) ≥ Υk(λk) ≥
Λk

4
.

For fast convergence, we take a relax factor γ2 ∈ [1, 2) to λk, and then

Γk(γ2λk) ≥ Υk(γ2λk) = γ2(2− γ2)Υk(λk) ≥ γ2(2− γ2)
Λk

4
. (21)

Theorem 3.1. Suppose that the operator f(·) is continuous and monotone. Then the sequence of

{uk} = {(xk, yk)} generated by algorithm 3.1 is bounded.

Proof. From (21), it follows that

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − γ2(2− γ2)Λk/4. (22)

From γ2 ∈ [1, 2), Λk ≥ 0, we obtain

∥uk+1 − u∗∥ ≤ ∥uk − u∗∥ ≤ ... ≤ ∥u0 − u∗∥.

This implies that the sequence {uk} is bounded. The proof is completed.

From Theorem 3.1, the proposed method is a projection and contraction method because the new

iterate uk+1 is closer to the solution set Ω∗ than uk.

Lemma 3.4 Suppose that the operator f(x) is continuous, then there is τ > 0, such that

ρk ≥ 1− δ

τ2
> 0. (23)

Proof. The proof is quite easy, so is omitted.

Now, we are in the stage to prove the convergence of the proposed method.

Theorem 3.2 Suppose that the assumptions in Theorem 3.1 hold. Then, the whole sequence {uk}
converges to a solution of VI(F,Ω).

Proof. It follows from (22) that
∞∑
k=0

Λk < ∞.

which means that

lim
k→∞

Λk = 0. (24)
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From (19), (23) and (24), we have

lim
k→∞

∥r(uk, βk)∥ = 0. (25)

It follows from Lemma 2.2 that

∥r(uk, βL)∥ ≥ min{1, βk}∥r(uk, 1)∥.

This together with (25) means that

lim
k→∞

βk∥r(uk, 1)∥ = 0. (26)

We consider the two possible cases. Firstly, suppose that

lim supk→∞βk > 0.

It follows from (26) that

lim infk→∞∥r(uk, 1)∥ = 0.

Since {uk} is bounded, it has a cluster point ū ∈ Ω such that ∥r(ū, 1)∥ = 0. That is, ū is a solution of

VI(F,Ω). Since u∗ is an arbitrary solution, we can just take u∗ = ū in Theorem 3.1 and we have

∥uk+1 − u∗∥ ≤ ∥uk − u∗∥.

The whole sequence {uk} therefore converges to ū, a solution of VI(F,Ω).

Now, we consider the other possible case that

lim
k→∞

βk = 0.

By the choice of βk we know that (12) was not satisfied for mk − 1. That is,

∥f(xk)− f(xk − r1(u
k, βk/µ))∥ > δµ∥r(uk, βk/µ)∥/βk.

Combining the above inequality and (8), we have

∥f(xk)− f(xk − r1(u
k, βk/µ))∥ > δ∥r(uk, 1)∥. (27)

Suppose ũ is a cluster point of {uk}, there exists a subsequence {ukj} converging to it. Taking limit along

such a sequence in (27) and using the continuity of r(·, β), we have

∥r(ũ, 1)∥ = 0.

Hence, ũ is a solution of VI(F,Ω). Set u∗ = ũ in (27), we again have

∥uk+1 − ũ∥ ≤ ∥uk − ũ∥,

and the whole sequence {uk} converges to ũ, a solution of VI(F,Ω). This completes the proof.
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4 Numerical experiment

In this section, we give some preliminary computational results to test the ability of the proposed Algo-

rithm 3.1. All codes are written in MATLAB 7.1 and run on a PIV 2.0 GHz personal computer.

The example used here is taken from the test problems of Zhang and Han[5], which constraint set S

and the mapping f are taken, respectively, as

S = {x ∈ R5
+|

5∑
i=1

xi = 10}.

and

f(x) = Mx+ ρC(x) + q.

whereM is an R5×5 asymmetric positive matrix and Ci(x) = arctan(xi−2), i = 1, 2, · · · , 5. The parameter

ρ is used to vary the degree of asymmetry and nonlinearity, and the data of example are illustrate as

follows:

M =



0.726 −0.949 0.266 −1.193 −0.504

1.645 0.678 0.333 −0.217 −1.443

−1.016 −0.225 0.769 0.943 1.007

1.063 0.587 −1.144 0.550 −0.548

−0.256 1.453 −1.073 0.509 1.026


and

q = (5.308, 0.008 ,−0.938, 1.024, − 1.312)′

In this experiment, we take the stopping criterion ε = 10−6. For Algorithm 3.1, we take y0 = 5 as the

initial point and β0 = 0.6, µ = 0.85, γ1 = γ2 = 1.4, v = 0.25 and δ = 0.8 for ρ = 10 and ρ = 20. For

the method in [5], denoted by Zhang and Han’s method, we take βk ≡ 0.06, δ = 1.35 when ρ = 10 and

βk ≡ 0.05, δ = 1.35 when ρ = 20. The results for ρ = 5 and ρ = 10 are listed in Tables 1 and 2. In these

tables, ′IT′ denote the number of iterations, and ′CPU′ denotes the cputime in seconds.

The results in Tables 1,2 indicate that the proposed Algorithm 3.1 is efficient. Though its CPU time

is almost the same as Zhang and Han’s method, its iterative number is smaller than the latter. As this

descent method only requires function evaluations per iteration, it is attractive from a computational

point of view.
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Table 1: Numerical results for ρ = 10

Starting point Algorithm IT CPU

(25, 0, 0, 0, 0) Algorithm 3.1 97 0.01

Zhang and Han’s method 119 0.01

(10, 0, 0, 0, 0) Algorithm 3.1 86 0.01

Zhang and Han’s method 99 0.01

(10, 0, 10, 0, 10) Algorithm 3.1 81 0.01

Zhang and Han’s method 108 0.01

(0, 2.5, 2.5, 2.5, 2.5) Algorithm 3.1 89 0.01

Zhang and Han’s method 109 0.02

Table 2: Numerical results for ρ = 20

Starting point Algorithm IT CPU

(25, 0, 0, 0, 0) Algorithm 3.1 110 0.01

Zhang and Han’s method 116 0.02

(10, 0, 0, 0, 0) Algorithm 3.1 99 0.01

Zhang and Han’s method 173 0.02

(0, 0, 0, 0, 0) Algorithm 3.1 108 0.02

Zhang and Han’s method 173 0.02

(2.5, 0, 2.5, 0, 2.5) Algorithm 3.1 98 0.01

Zhang and Han’s method 170 0.02
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