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Abstract
We analyze here some very interesting and useful tools of Combina-

torics, to develop the new and quickly evolving theory so-called as Prob-
abilistic Graphical Models, with many current and quickly expanding ap-
plications.
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1 Introduction

Let G be a graph. Suppose that we denote by V(G) their set of nodes, and by
E(G) their set of edges.
A graph, G, is said to be node-transitive (or vertex-transitive), if for any two

of its nodes, ni and nj ; there is an automorphism which maps ni to nj :

A simple graph, G, is said to be edge-transitive (or link-transitive), if for any
two of its edges, e and e�; there is an automorphism which maps e into e�:

A simple graph, G, is said to be symmetric, when it is both, node-transitive
and edge-transitive.

But a simple graph, G, which is edge-transitive, but not node-transitive, is
said semi-symmetric. Obviously, such a graph will be necessarily a bipartite
graph.

Let G be an undirected graph (UG). We says that G is chordal, if every cicle
of length strictly greater than three possesses a "chord". This name ("chord")
means an edge joining two non-consecutive nodes of the cycle. Therefore, an
UG will be chordal, if it does not contain an induced subgraph isomorphic to
the Cn; when n > 3:
The chordality result a hereditary property, because all the induced sub-

graphs of a chordal graph will be also chordal. For instance, the interval graphs
are chordal.
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2 The Incidence Problem

We may to de�ne the Incidence Matrix of an Incidence Structure as a (pxq)-
matrix, where p and q are the number of points and the number of lines, re-
spectively, in such a way that

bij =

(
+1; if the point pi and the line Lj are incident

0; otherwise

In this case, the Incidence Matrix will be also a biadjacency matrix of the
Levi graph of the structure. And because there is a Hypergraph for every Levi
graph, and a Levi graph for every Hypergraph (or vice versa), it is possible to
conclude that the incidence matrix of an incidence structure describes a hyper-
graph.
We can also to introduce the matrix of valencies, also called degrees (deg),

of the nodes in the graph. Such degree matrix will be denoted by D(G). And
there you are three fundamental matrices which may appears associated with a
graph, as the Incidence Matrix, that encapsulates node-edge relationships, the
Adjacency Matrix, that encapsulates node-node relationships, and the Degree
Matrix, that encapsulates information about the degrees. But also there is
one last and many times interesting matrix, which will be called the Laplacian
Matrix.
Let G be a graph. We can de�ne the Laplacian Matrix of G, denoted L (G) ;

by

L (G) � D (G)�A (G)

where D (G) is the degree matrix of G, and A (G) is the adjacency matrix of G:

3 Enumerating Graphs

Among the di¤erent type of graphs, Bayesian Networks are the most sucessful
class of models to represent uncertain knowledge. But the representation of con-
ditional independencies (CIs, in acronym) does not have uniqueness. The reason
is that probabilistically equivalent models may have di¤erent representations.
And this problem is overcome by the introduction of the concept of Essential

Graph (EGs), as unique representant of each equivalence class.
Knowing the ratio of EGs to DAGs (Directed Acyclic Graphs) is a valuable

tool, because through this information we may decide in which space to search.
If the ratio is low, we may prefer to search the space of DAG models, rather
than the space of DAGs directly, as it was usual until now.
Recall that a DAG, G, is essential, if every directed edge of G is protected.

So, an Essential Graph (EG) is a graphical representation of a Markov equiva-
lence class.
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In relation with the Essential Graph, each directed edge would have the same
direction in all the graphs that belongs to its equivalence class.
There is a bijective correspondence (one-to-one) among the set of Markov

equivalence classes and the set of essential graphs, its representatives.
The labeled or unlabeled character of the graph means whether its nodes or

edges are distinguishable or not.
For this, we will say that it is vertex-labeled, vertex-unlabeled, edge-labeled,

or edge-unlabeled.

The labeling will be considered as a mathematical function, referred to a
value or name (label), assigned to its elements, either nodes, edges, or both,
which makes them distinguishable.

Let

F (s) �
P
i2N�

ci s
i

i!

Then, if we denotes as � the linear operation on exponential generating
functions which divides by exp2 Ci;2; i.e.

�F (s) �
P
i2N�

ci s
i

i! exp
2
Ci;2

So, we can use the function �F (s) to count labeled DAGs. It will be called
as the Special Generating Function for F:
Let a

n
be the number of labeled n-DAGs. We can found the zeroes of the

function

�exp (�s) =
P
i2N�

(�s)i
i! exp

2
Ci;2

by Mathematical Analysis, more exactly by Theory of Residua.

4 Searching for bounds

Let an be the number of essential (labeled) DAGs, and an�be the number of (also la-
beled) DAGs. Then, an is given by the recurrence equation

an =
Pn

s=1
(�1)

s+1

Cn;s

�
2
n�s

� n+ s
�s

an�s ; with a0 = 1

Whereas we can obtain for the number of labeled n-DAGs,

a
n
�=

Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s
�s

a
n�s�; with a0�= 1
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The basic idea is to count the number of n-DAGs considering each digraph as
created by adding terminal nodes to a DAG with lesser number of nodes. After
this addition, we obtain a new DAG. So, the new formula would be recursive,
and it is a direct application of the IEP. From which, we can reach directly the
equation.
We may rewrite the equation as

Pn

s=0
(�1)

n�s
C
n;s

�
2
s � s

�n�s
a
s
= 0; with n � 1

Another case of application of Inclusion-Exclusion Principle is to �nd the
cardinal of the set of essential DAGs, E, with a set of nodes f1; 2; : : : ; ng. For
this, we start with a family of sets, as the aforementioned fA

k
gnk=1 :

Therefore, to know the cardinal of E, �rst we compute the intersection that
appears in the last summatory, for j = 1, 2, . . . , n. With the total allowed
connection numbers, from a given node being

2
n�s � n+ s

So, the number of possible ways of adding directed edges from the essential
graph until all the s terminal nodes will be

[2
n�s � n+ s]s

If we denote an the number of essential n�DAGs; this would be

a
n
=
Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s � (n� s)

�s
a
n�s ; with a0 = 1

It is possible to obtain a very similar expression. In such case, the purpose
was to obtain a number of labeled n-DAGs. It would be

an�=
Pn

s=1
(�1)

s+1

Cn;s

�
2
n�s
�s
an�s�; with a0�= 1

If we denote e
n
the number of essential n-graphs, also labeled, it holds

an � en � an�

I.e. both precedent values, a
n
and a�

n
; are the lower and upper bounds of

e
n
; for each selected order, n: So, it holds

1
13:6 �

an
a�n

And also

1
13:6an�� en � a�n

where we obtain lower and upper bounds for the cardinal of essential graphs.

414



5 Conclusion

We shall support our study on a more powerful analytical framework, improving
theoretical foundations, being the di¤erent result coherent with the precedent
known computations.
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