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Comment on Combinatorial analysis by

the Ihara zeta function of graphs

O. Shanker ∗

Abstract

In this short note we point out that a recent article in this journal
incorrectly attributes some properties to Ihara zeta functions. The prop-
erties actually are attributable to another class of complex network zeta
functions, which are used in computer science and mathematical physics
applications.

In an interesting study [ AGarrido2009] have presented many aspects of Ihara
zeta functions of graphs. While the bulk of the analysis is valid, we note that the
properties attributed to the Ihara zeta functions on pages 261 and 262, and the
discussion of monotonicity, stability and Lipschitz Invariance, are not correct.
These properties seem to be taken from a class of functions different from Ihara
zeta functions, and the other class of functions are reported in [ OShanker2007].
The class of functions for which these properties actually hold are now called
complex network zeta functions [ OShanker2008], to avoid confusion with Ihara
graph zeta functions. They have been studied in the mathematical physics and
computer science [OShanker2009, OShanker2010] literature.

To help clear up the confusion, we briefly present here the definition of
the complex network zeta function, with particular reference to the properites
presented in [ AGarrido2009] which actually hold for the complex network zeta
functions and not for Ihara graph zeta functions. Let us denote by rij the
distance from node i to node j of a complex network (the length of the shortest
path connecting the node i to node j). rij is ∞ if there is no path from node i
to node j. This definition of distance satisfies the triangle inequality, and hence
the nodes of the complex network form a metric space.
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The complex network zeta function ζG(α) is defined as

ζG(α) := lim sup
node i

∑

j 6=i

r−α
ij . (1)

Originally the definiton was given as an average over all nodes (average over
i), but the formulation in terms of lim sup given in Eq. 1 makes it smoother to
apply for formally infinite graphs. The definition Eq. 1 can be expressed as a
weighted sum over the node distances. When the exponent α tends to infinity,
the sum in Eq. 1 gets contributions only from the nearest neighbours of a node.
The other terms tend to zero. Thus, ζG(α) tends to the average vertex degree
for the complex network. When α is zero the sum in Eq. 1 gets a contribution
of one from each node. This means that ζG(α) is N − 1, where N is the graph
size, measured by the number of nodes. Hence ζG(α) tends to infinity as the
system size increases.

Furthermore, ζG(α) is a decreasing function of α,

ζG(α1) > ζG(α2), (2)

if α1 < α2. Thus, if it is finite for any value of α, it will remain finite for all
higher values of α. If it is infinite for some value of α, it will remain infinite
for all lower values of α. Thus, there is at most one value of α, αtransition, at
which ζG(α) transitions from being infinite to being finite. This is reminiscient
of the behaviour of Hausdorff dimension [ Falconer2003]. In fact, we can define
the complex network dimension as the value of the exponent α at which ζG(α)
transitions from being infinite to being finite, i.e.,

dzeta−function := αtransition. (3)

If ζG(α) remains infinite in the large system limit for all values of α, we
define the graph dimension to be infinite. For regular discrete d-dimensional
lattices Zd with distance defined using the L1 norm the complex network zeta
function can be explicitly evaluated [ OShanker2007]. It is a sum of shifted
Riemann zeta functions. One finds that the transition occurs at α = d, as is
reasonable for a good definition of the complex network dimension.

Let us define the distance for regular discrete d-dimensional lattices Zd using
the L1 norm:

‖~n‖1 = ‖n1‖+ · · ·+ ‖nd‖. (4)

We are viewing the lattice as a graph, with the lattice points as the nodes
and the links being to the closest neighbours along the coordinate axes. Because
of the homogenity of the lattice points, the definition Eq. 1 can be expressed as
a Dirichlet series expression:

ζG(α) =
∑

r

S(r)/rα, (5)
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where the graph surface function, S(r), is defined as the number of nodes
which are exactly at a distance r from a given node, averaged over all nodes
of the network. For a one-dimensional regular lattice there are two nearest
neighbours, two next-nearest neighbours, etc. Thus, the graph surface function
S1(r) is exactly two for all values of r. The complex network zeta function
ζG(α) is equal to 2ζ(α), where ζ(α) is the usual Riemann zeta function. The
Sd(r) satisfy the recursion relation

Sd+1(r) = 2 + Sd(r) + 2
r−1∑

i=1

Sd(i). (6)

This result follows by choosing a given axis of the lattice and summing over cross-
sections for the allowed range of distances along the chosen axis. Asymptotically,
Sd(r) → 2drd−1/Γ(d) as r →∞. r →∞ corresponds to α → αtransition. Thus,
ζG(α) → 2dζ(α − d + 1)/Γ(d) as α → αtransition. ζG(α) → 2d as α → ∞.
Table 1 gives ζG(α) as a function of the lattice dimension d. It follows from
the recursion relation 6 that Sd(r) is a polynomial of order d − 1 in r, with
only even or odd terms present. ζG(α) is the sum of different Riemann zeta
functions. The poles of ζG(α) occur for α = d and for all positive integer values
of α which are less than d and differ from d by an even number.

Table 1: Graph zeta function for different regular lattices.

Dimension d ζG(α)

1 2ζ(α)
2 4ζ(α− 1)
3 4ζ(α− 2) + 2ζ(α)
4 8

3ζ(α− 3) + 16
3 ζ(α− 1)

5 4
3ζ(α− 4) + 20

3 ζ(α− 2)) + 2ζ(α)
α → αtransition O(2dζ(α− d + 1)/Γ(d))

In applying Eq. 6 to calculate the surface function for higher values of d, we
need an expression for the sum of positive integers raised to a given power k.
The following result is useful:

r∑

i=1

ik =
rk+1

(k + 1)
+

rk

2
+

(k+1)>2j∑

j=1

(−1)j+12ζ(2j)k!rk+1−2j

(2π)2j(k + 1− 2j)!
. (7)

Another formula which can be used recursively is

n∑

k=1

(
n+1

k

) r∑

i=1

ik = (r + 1)((r + 1)n − 1). (8)
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