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Abstract.

A cactus graph is a connected graph in which every block is either an edge or a cycle. An opti-

mal algorithm is presented here to find a maximum independent set and maximum 2-independent

set on cactus graphs in O(n) time, where n is the total number of vertices of the graph. The

cactus graph has many applications in real life problems, specially in radio communication

system.
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1 Introduction

Let G = (V, E) be a finite, connected, undirected, simple graph of n vertices and m edges, where

V is the set of vertices and E is the set of edges. A vertex v is called a cutvertex if removal of

v and all edges incident to v disconnect the graph. A non-separable graph is a connected graph

which has no cut-vertex and a block means a maximum non-separable sub-graph. A block is a

cyclic block or simply cycle in which every vertex is of degree two.

A cactus graph is a connected graph in which every block is either an edge or a cycle.

A subset of the vertices of a graph G = (V, E) is an independent set if no two vertices in

this subset are adjacent. The maximum independent set (MIS) problem on G is to determine a
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Figure 1: A cactus graph G.

maximum size independent set on G. The MIS problem is NP-complete for general graphs [2],

but it can be solved in polynomial time for many special graphs [7].

The maximum k-independent set (MKIS) problem on G is to determine k disjoint independent

sets S1, S2, . . . , Sk in G such that S1
⋃

S2
⋃

. . . Sk is maximum. The MKIS problem is NP-

complete for general graphs [3].

The maximum 2-independent set (M2IS) problem, which is a special case of the MKIS prob-

lem, is also NP-complete for general graphs [15] and it applications have been studied in the last

decade [6, 10, 15]. In [6], Hsiao et. al. have solved the two-track assignment problem by solving

the M2IS problem on circular arc graph. In [10], Lou et. al. have solved the maximum 2-chain

problem on a given point set, which is the same as the M2IS problem on permutation graph.

In this paper, MKIS problem is considered on a non-weighted cactus graph for k = 1 and

k = 2.

Cactus graph has many applications. These graphs can be used to model physical setting

where a tree would be inappropriate. Examples of such setting arise in telecommunications

when considering feeder for rural, suburban and light urban regions [9] and in material handling

network when automated guided vehicles are used in [8]. Moreover ring, star and bus structures

are often used in local area networks. The combination of local area network forms a cactus

graph.

To illustrate the problem we consider the cactus graph of Figure 1.

In the following section, we construct a tree TBC whose nodes are the blocks of G and edges

are defined between two nodes if they are adjacent blocks, i.e., they have at least one common
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vertex of the graph G.

2 Construction of the Tree TBC

As described in [12] the blocks as well as cut vertices of a graph G can be determined by applying

DFS technique. Using this technique we obtain all blocks and cut vertices of the cactus graph

G = (V, E). Let the blocks be B1, B2, B3,. . . , BN and the cut vertices be C1, C2, C3, . . . , CR

where N is the total number of blocks and R is the total number of cut vertices.

The blocks and cut vertices of the cactus graph shown in Figure 1 are respectively B1 =

(1, 2, 3, 4, 5), B2 = (6, 1), B3 = (7, 6), B4 = (7, 8), B5 = (7, 10), B6 = (9, 7), B7 = (6, 11, 12, 13, 14),

B8 = (13, 15, 17, 18, 19, 20), B9 = (15, 16), B10 = (18, 21), B11 = (21, 22, 23), B12 = (24, 19), B13 =

(24, 25), B14 = (24, 26), B15 = (26, 27, 28, 29) and C1 = 1, C2 = 6, C3 = 7, C4 = 13, C5 =

15, C6 = 18, C7 = 19, C8 = 21, C9 = 24, C10 = 26.

Now we have in a position to construct the tree TBC . Before constructing the tree we define

an intermediate graph G′ whose vertices are the blocks of G and if two blocks are adjacent in G

then they are connected by an edge in G′.
i.e., G′ = (V ′, E′) where V ′ = {B1, B2, . . . , BN}
and E′ = {(Bi, Bj) : i �= j, i, j = 1, 2, . . . , N , Bi and Bj are adjacent blocks }.
The graph G′ for the graph G of Figure 1 is shown in Figure 2.

Two properties of the graph G′ are described below.

Lemma 1 In G′ there exists no cycle of length more than 3.

Lemma 2 The three vertices of G′ forming a triangle must have a common cut vertex of G.

Now the tree TBC is constructed from G′ as follows:

We discard some suitable edges from G′ in such a way that the resultant graph becomes a

tree. The procedure for such reduction is given below:

Let us take any arbitrary vertex of G′, containing at least two cut-vertices of G, as root of

the tree TBC and mark it. All the adjacent vertices of this root are taken as children of level one

and mark them. If there are edges between the vertices of this level, then discard these edges.

Each vertices of level one is considered one by one to find the vertices which are adjacent to

them but unmarked. These vertices are taken as children of the corresponding vertices of level

one and put them at level two. These children at level two are marked and if there be any edge

between them then remove them. This process is continued until all the vertices are marked.

Thus the tree TBC = (V ′, E′′) where V ′ = {B1, B2, . . . , BN} and E′′ ⊂ E′ is obtained.

For convenience, we refer the vertices of TBC as nodes.

241



Kalyani Das

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
��

��������

�
�

��

�
��

�������

�
�

��

�
�

�
��

13, 15, 17, 18, 19, 20

B8

6, 11, 12, 13, 14

B7 B9

15, 16

B10

18, 21

B12

19, 24

B13

24, 25

B14

24, 26

B15

26, 27, 28, 29

B11

21, 22, 23

B2

1, 6

B3

6, 7

B1

1, 2, 3, 4, 5
B4

7, 8
B5 B6

7, 10 7, 9
�� ����

�������

�
�

�
��

�
�

�
�

�
�

�
�

��

�
�

��

�
��

Figure 2: The intermediate graph G′ of G.

We note that each node of this tree is a block of the graph G = (V, E).

The parent of the node Bi in the tree TBC will be denoted by Parent(Bi). The tree TBC

constructed from G′ is given in Figure 3.

3 Euler Tour

Euler tour produces an array of nodes. The tour proceeds with a visit to the root and there

after visits to the children of the root one by one from left to right returning each time to

the root using tree edges in both directions. Algorithm GEN-COMP-NEXT of Chen et al. [1]

implements this Euler tour on a tree starting from the root. The input to the algorithm is the

tree represented by a ‘parent of’ relation with explicit ordering of the children. The output of

the algorithm is the tour starting from the root of the tree and ending also at the root. The

tour is represented by an array S(1 : 2N − 1) that stores information connected to the visits

during the tour. The element S(i) of the array S is a record consisting of two fields, one of

which, denoted by S(i).node, is the node visited during the ith visit while the other, denoted

by S(i).subscript is the number of times the node S(i).node is visited during the first i visits of

the tour. Two fields of an element of S are written together using the notation (node)subscript.

Also, we consider an array f(j) which stores the total number of occurrence of the block

Bj , j = 1, 2, 3, . . . , N in the array S(i), i = 1, 2, 3, . . . , 2N − 1. Thus f(j) represents the number

of visits of the block Bj in the Euler tour, i.e., f(j) is the maximum subscript of Bj in the array

S(i).
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Figure 3: The tree TBC of the graph G

i : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(i) :(B8)1(B7)1 (B2)1 (B1)1 (B2)2 (B7)2 (B3)1 (B4)1 (B3)2 (B5)1 (B3)3 (B6)1 (B3)4 (B7)3(B8)2
i : 16 17 18 19 20 21 22 23 24 25 26 27 28 29

S(i) :(B9)1(B8)3(B10)1(B11)1(B10)2(B8)4(B12)1(B13)1(B12)2(B14)1(B15)1(B14)2(B12)2(B8)5

Table 1: The sequence of nodes obtained from Euler tour.

The array S for the graph of Figure 1 is shown in Table 1.

For each j, j = 1, 2, . . . , N , (Bj)f(j) occurs only once in the array S(i) and before (Bj)f(j) all

of (Bj)1, (Bj)2, . . . , (Bj)f(j)−1 occur in order of increasing subscripts of Bj .

The following important lemma is proved in [11].

Lemma 3 If S(i).subscript = 1 and S(i+1).subscript �= 1, then S(i).node is a leaf node of the

tree.

In a tree there are three types of nodes. One is leaf node and others are interior and root

node. Leaf node contains one cutvertex where as interior node contains at least two cutvertices

and the root node contains one or more than one cutvertices.
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4 Computation of Independent Set from a Leaf and an Interior

Node

Since the blocks of the cactus graphs are cyclic the vertices others than the cutvertices are

adjacent with only two vertices and cutvertices are adjacent with at least two vertices. Thus

when we consider a block, say B we try to exclude the cutvertex of B and Parent(B) in the

independent set I.

4.1 When the node is a leaf node

Suppose B be a leaf node (block) containing the vertices {v1, v2, . . . , vn} where v1 be the cutvertex

of B and Parent(B).

Then we select the vertices v2, v4, . . . , vn as member of the independent set I. The adjacent

vertices of I are then marked by ‘∗’.

4.2 When the node is an interior node

Suppose B be an interior node (block). Here some of the vertices are marked due to the con-

sideration of its children nodes. So the free vertices occurred as one or more sequence of edges

and vertices. Suppose such a sequence contains the vertices {v1, v2, . . . , vr}.
Then if r is even select either v1, v3, . . . , vr−1 or v2, v4, . . . , vr as the members of I so that the

set does not contain the cutvertex of B and Parent(B).

If r be odd then select v1, v3, . . . , vr as members of I. If this set contains the cutvertex of B

and Parent(B) then we does not include it when we consider B. It is included in I or not it is

evident when we consider Parent(B).

Lemma 4 A cycle with 2m and 2m + 1 vertices contribute m vertices in I and no more.

Proof: Let us proof by contradiction. Suppose there exist more than m say, m + 1 vertices in

the independent set from a cycle with 2m and 2m + 1 vertices. Since these vertices form an

independent set for the cycle they are not adjacent. There exist at least one vertex which are

not belongs to the independent set between two of these vertices. Thus between m + 1 vertices

there exist another m + 1 vertices to form the cycle. Hence the number of vertices of the block

(cycle) becomes at least 2m + 2 which contradicts our assumption that the cycle contains 2m

and 2m + 1 vertices. �

Lemma 5 A sequence of 2m vertices contribute m vertices and a sequence of 2m + 1 vertices

contribute m + 1 vertices in I and no more.
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Proof: Let us proof by contradiction. Suppose, there exist m + 1 vertices for the sequence

containing 2m vertices and m + 2 vertices for the sequence containing 2m + 1 vertices. As

in Lemma 4 between these two vertices of the independent set there exist at least one non

independent vertex. Thus for the even case the number of vertices in the sequence becomes

at least 2m + 1 and for the odd case the minimum number of vertices becomes 2m + 2 which

contradicts our initial assumption. Hence the proof. �

5 The Algorithm and its Complexity

In the following algorithm we compute independent set from each node as well as from the graph

G.

Algorithm MIS

Input: The cactus graph G = (V, E).

Output: Independent set I.

Step 1: Compute the blocks and cut vertices of G and construct a tree TBC .

Step 2: Apply Euler tour on TBC and store the output in the array S(1 : 2N − 1), N is the

total number of nodes of TBC .

Step 3: Compute f(j) which stores total number of occurrences of the node Bj in the array

S, j = 1, 2, . . . , N .

Step 4: Note the order in which (Bj)f(j), j = 1, 2, . . . , N occurs in the array S.

Step 5: Consider the nodes Bj one by one following the order of Step 4 and

(i) If f(j) = 1, i.e., for a leaf node Bj , find the vertices for the set I using the

method described in Section-3.1.

(ii) If f(j) �= 1, i.e., for an interior and root node Bj find the vertices for the set I

using the method described in Section-3.2.
end MIS

For the graph of Figure 1, the maximum independent set I is {2, 4, 8, 9, 10, 6, 12, 16, 22, 27, 29, 25, 17, 19}.
Lemma 6 The independent set I obtain from the algorithm MIS is maximal.

Proof: In the algorithm MIS we find the independent set from each cyclic block and from

sequence of edges and vertices so that a cycle with 2m and 2m+1 vertices contribute m vertices

in I (from Lemma 4) and sequence containing 2m and 2m + 1 vertices contribute m vertices

and m + 1 vertices (from Lemma 5). No more vertices are obtained from G for the set I. Hence

the set I becomes the maximum independent set for the graph G. �

Theorem 1 The independent set obtained from the algorithm MIS is computed in O(n) time.
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Proof: The blocks and cut vertices of any graph can be computed in O(m + n) time [12]. For

cactus graph m = O(n), hence Step 1 of Algorithm MIS takes O(n) time. As the array S is

obtained by applying Euler’s tour on the tree TBC , Step 2 takes O(n) time. Step 3 takes only

O(n) time. Step 5 can be perform by comparing f(j) with 1 for j = 1, 2, . . . , n, so this step

takes only O(n) time. Obviously, Step 4 takes O(n) time. Hence the total time complexity of

Algorithm MIS takes O(n) times. �

6 Determination of Maximum 2-independent Set in Cactus Graph

In this section, we describe an algorithm to find a maximum 2-independent set from the graph

G.

Algorithm M2IS

Input: The cactus graph G = (V, E).

Output: Two disjoint independent set S1 and S2.

Step 1: Determine the blocks and cutvertices of G using the method described in section-2

and number of vertices of each block.

Step 2: Find the odd and even blocks according as the block contain odd and even number

of vertices respectively. Define SO be the set of all odd blocks and SE be the set of

all even blocks.

Step 3: For the blocks of the set SE there is no need of deletion of any vertex. For the blocks

of the set SO we follow the following method:

(i) Let Bi ∈ SO be a fixed block and if for all Bj ∈ SE where Bi �= Bj and

Bi ∩ Bj �= φ, then delete a non-cutvertex from Bi and remove the blocks Bi and Bj

from SO and SE respectively.

(ii) Let Bi ∈ SO be a fixed block and if for some Bj ∈ SE and some Bk ∈ SO or

all Bj ∈ SO where Bj , Bk �= Bi and Bi ∩ Bj �= φ and Bi ∩ Bk �= φ, then delete

the cutvertex which contained in maximum number of odd blocks including Bi and

remove the blocks Bi and Bj from SO and SE respectively.

Step 4: After deletion of the vertices from odd blocks, label the rest vertices of G as R and

M so that two consecutive vertices do not label with same symbol.

Step 5: Take all the vertices with label R in S1 and the vertices with label M in S2.

Thus we get two disjoint independent set S1 and S2 and the maximum 2-independent

set is S1
⋃

S2.
end M2IS

For the graph of Figure 1, the sets SO, SE , S1, S2 and maximum two-independent sets are
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SO = {B1, B7, B11}
SE = {B2, B3, B4, B5, B6, B8, B9, B10, B12, B13, B14, B15}
S1 = {2, 4, 6, 8, 9, 10, 13, 16, 17, 19, 25, 21, 26, 28},
S2 = {1, 3, 7, 11, 14, 15, 18, 20, 22, 24, 27, 29},
S1

⋃
S2 = G − {5, 12, 23}.

Lemma 7 The two sets S1 and S2 obtained from algorithm M2IS are maximal and disjoint.

Proof: Using the algorithm M2IS, we divide the graph in terms of even blocks and odd blocks.

In an even block the vertices are marked with two symbols alternatively and the vertices of

different symbols are not adjacent. So marking the vertices with two symbols clearly give two

disjoint sets. But for an odd block if we use two symbols, it is obvious that there exist two

adjacent vertices which have same symbol. For this reason we delete one vertex from each odd

block or common vertex of two or more odd blocks in Step 4 of the algorithm M2IS. Hence in

algorithm we describe a method which shows that two adjacent vertices of the graph G have

not marked with same symbol and since the set S1 and S2 are the sets containing vertices with

different symbol these two sets are disjoint.

Now for the deletion of one vertex from each odd block we always try to delete the cutvertex

which contained in maximum numbers of odd blocks instead of deletion of one vertex from each

odd block. Thus deletion of vertices is minimized and therefore the number of vertices in S1

and S2 are maximized. Hence the theorem. �

Theorem 2 The 2-independent set obtained from the algorithm M2IS is computed in O(n) time.

Proof: The blocks and cutvertices of any graph can be computed in O(m + n) time [12]. For

cactus graph m = O(n), hence Step 1 of algorithm M2IS takes O(n) time. Counting the number

of vertices of each blocks, putting them into SE and SO obviously take O(n) time. In Step 4, we

perform comparison in which each even block is considered only one time and some odd blocks

taken more time to find adjacent blocks but it does not exceed the number of blocks and number

of block in cactus graph is O(n). Hence Step 4 takes O(n) time. Step 5 and Step 6 obviously

take O(n) time. Hence the complexity of the algorithm M2IS is O(n). �
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