AMO- Advanced Modeling and Optimization Volume 12, Number 2, 2010

COLOR CLASS DOMINATION NUMBER OF MIDDLE GRAPH AND CENTER GRAPH OF $K_{1,n}$, C_n AND P_n

Y.B.VENKATAKRISHNAN¹ AND V.SWAMINATHAN²

¹ Department of Mathematics, SASTRA University, Tanjore, India.

Email: venkatakrish2@maths.sastra.edu

²Co-ordinator (Retd), Ramanujan Research Center, S.N.College, Madurai, India.

ABSTRACT

We give the color class domination number of the center graph and middle graph of $K_{1,n}$, C_n and P_n .

1 INTRODUCTION

By a graph we mean a finite, undirected graph without loops or multiple edges. Terms not defined here are used in the sense of Harary [2].

For a given graph G = (V,E) we do an operation on G, by subdividing each edge exactly once and joining all the non adjacent vertices of G. The graph obtained by this process is called central graph [4] of G, denoted by C(G).

The middle graph [1] of G, denoted by M(G) is defined as follows: The vertex set of M(G) is $V(G) \cup E(G)$. Two vertices x, y in the vertex set of M(G) are adjacent in M(G) in case one of the following holds: (i) x, y are in E(G) and x, y are adjacent in G. (ii) x is in V(G), y is in E(G), and x, y are incident in G.

AMO-Advanced Modeling and Optimization. ISSN: 1841-4311.

Domination and coloring are well studied concepts in graph theory. In [3]

the concept of color class domination partition of a graph G was introduced. Let $\Pi = \{ V_1, V_2, V_3, ..., V_k \}$ be a proper color partition of G. Π is called a color class domination partition of G if for every i, $1 \le i \le k$, there exists a vertex $u \in V(G)$ such that V_i is dominated by u. The minimum cardinality of a color class domination partition of G is denoted by χ_{cd} (G) and is called color class domination number of G.

Theorem 1.1. [3] χ_{cd} (C_n) = [n/2], if n =0, 1, 3 (mod 4) and n/2 +1 if n =2 (mod 4).

Theorem 1.2. [3] χ_{cd} (P_n) = [n/2], if n \equiv 0, 1, 3 (mod 4) and n/2 +1 if n \equiv 2 (mod 4).

2 Color class domination number of middle graphs

Theorem 2.1: For any star graph $K_{1,n}$, χ_{cd} (M($K_{1,n}$))=n+1.

Proof: Let $V(K_{1,n}) = \{v, v_1, v_2, v_3, \dots, v_n\}$ and $E(G) = \{e_1, e_2, e_3, \dots, e_n\}$. By the definition of Middle graph, we have $V[M(K_{1,n})] = \{v\} \cup \{e_i / 1 \le i \le n\} \cup \{v_i / 1 \le i \le n\}$, in which the vertices $e_1, e_2, e_3, \dots, e_n, v$ induces a clique of order n + 1. Hence, $\chi_{cd}(M(K_{1,n})) \ge n+1$.

 $\begin{aligned} \Pi = \{\{e_{1}, v_{2}\}, \{e_{2}, v_{3}\}, \{e_{3}, v_{4}\}, \dots, \{e_{n-1}, v_{n}\}, \{e_{n}, v_{1}\}, \{v\}\} \text{ forms a color class} \\ \text{domination partition of } M(K_{1,n}). \text{ Hence, } \chi_{cd} (M(K_{1,n})) \leq n+1. \text{ Therefore,} \\ \chi_{cd} (M(K_{1,n})) = n+1. \end{aligned}$

Theorem 2.2: For any cycle C_n , χ_{cd} (M(C_n))=n.

Proof: Let $V(C_n) = \{v_1, v_2, v_3, ..., v_n\}$ and $E(C_n) = \{e_1, e_2, e_3, ..., e_n\}$ where $e_i = v_i v_{i+1}$ ($1 \le i \le n-1$), $e_n = v_n v_1$. By the definition of middle graph, $M(C_n)$ has the vertex set

Color class domination number of Middle and center graph of $K_{1,n}$ C_n and P_n

 $V(C_n) \cup E(C_n)$ in which e_i is adjacent with e_{i+1} (i=1,2,3,...,n-1) and e_n is adjacent with v_1 .

In M(C_n), $v_{1,e_1,v_2,e_2,v_3,e_3,...,e_{n-1},v_1}$ induces a cycle of length 2n. Therefore, χ_{cd} (M(C_n)) \geq n. Π ={{ e_2,v_1 }, { e_3,v_2 }, { e_4,v_3 },...,{ e_n,v_{n-1} }, { e_n,v_1 }, { v_n,e_1 } forms a color class domination partition of M(C_n). Hence, χ_{cd} (M(C_n)) \leq n. Therefore, χ_{cd} (M(C_n))=n.

Theorem 2.3: For any path P_{n} , χ_{cd} (M(P_n))=n.

Proof: Let $P_{n:}v_1, v_2, v_3, ..., v_{n+1}$ be a path of length n and let $v_iv_{i+1}=e_i$. By the definition of middle graph, $M(P_n)$ has the vertex set $V(P_n) \cup E(P_n) = \{v_i / 1 \le i \le n+1\} \cup \{e_i / 1 \le i \le n\}$ in which each v_i is adjacent to e_i and e_i is adjacent to v_{i+1} . Also e_i is adjacent to e_{i+1} .

Case (i): $|V(P_n)| = 2k$.

 $|V(M(P_n))| = 4k-1$. The vertices v_1 , e_1 , v_2 , e_2 ,..., e_{2k-1} , v_k induces a path of length 4k. Therefore, χ_{cd} (M(P_n)) $\ge 2k$.

 $\Pi = \{ \{ v_1, v_2 \}, \{ v_3, v_4 \}, \dots, \{ v_{2k-1}, v_{2k} \}, \{ e_1, e_2 \}, \{ e_3, e_4 \}, \dots, \{ e_{2k-3}, e_{2k-1} \}, \{ e_{2k} \} \} \text{ is a color class domination partition. Hence, } \chi_{cd} (M(P_n)) \le 2k.$

Case (ii): $|V(P_n)| = 2k+1$.

 $|V(M(P_n))| = 4k+1$. The vertices v_1 , e_1 , v_2 , e_2 ,..., e_{2k} , v_{2k+1} induces a path of length 4k. Therefore, χ_{cd} (M(P_n)) \geq 2k.

$$\begin{split} \Pi &= \{\{v_1, v_2\}, \{v_3, v_4\}, \ \dots, \{v_{2k-1}, v_{2k}\}, \{v_{2k+1}\}, \{e_1, e_2\}, \{e_3, e_4\}, \dots, \{e_{2k-3}, e_{2k-2}\}, \{e_{2k-1}, e_{2k}\}\} \\ \text{is a color class domination partition. Hence, } \chi_{cd} (\mathsf{M}(\mathsf{P}_n)) \leq 2k. \text{ Therefore,} \\ \chi_{cd} (\mathsf{M}(\mathsf{P}_n)) = n. \end{split}$$

3 Color class domination number of center graphs

Theorem 3.1: For any star graph $K_{1,n}$, χ_{cd} (C($K_{1,n}$))=n+1.

Proof: Let $V(C(K_{1,n})) = \{v_1, v_1, v_2, \dots, v_n, e_1, e_2, \dots, e_n\}$. All e_i 's are adjacent to v. e_i is adjacent to v_i , for every i ($1 \le i \le n$).

The set of vertices $v_1, v_2, v_3, ..., v_n$ forms a clique of order n+1. Therefore, $\chi_{cd} (C(K_{1,n})) \ge n+1$. $\Pi = \{\{e_1, e_2, e_3, ..., e_n\}, \{v_1, v_1\}, \{v_2\}, \{v_3\}, ..., \{v_n\}\}$ forms a color class domination partition of $C(K_{1,n})$. Hence, $\chi_{cd} (C(K_{1,n})) \le n+1$. Therefore, $\chi_{cd} (C(K_{1,n})) = n+1$.

Theorem 3.2: For any cycle C_n , $\chi_{cd}(C(C_n)) = n/2$ if n is even and (n+1)/2 if n is odd.

Proof: Let $V(C_n) = \{v_{1,v_2,v_3,...,v_n}\}$ and $E(C_n) = \{e_{1,e_2,e_3,...,e_n}\}$. By the definition of $C(C_n)$, we have (i) v_i is adjacent to e_{i-1} and e_i , i = 2 to n-1. (ii) v_1 is adjacent to e_1 and e_n (iii) v_n is adjacent to e_n and e_{n-1} (iv) v_i is adjacent to v_j , i = 2 to n-1, $j \neq i-1, i+1$ (v) v_1 is adjacent to v_j $3 \le j \le n-1$. (vi) v_n is adjacent to v_j $2 \le j \le n-2$.

Case (i): n even.

The vertices v_{1} , e_{1} , v_{2} , e_{2} , v_{3} , e_{3} ,..., v_{n} induces a subgraph C_{2n} and $\chi_{cd}(C(C_{n})) \ge n/2$.

Subcase (i): n/2 is even.

The following is a color class domination partition $\Pi = \{\{e_1, e_2, v_{1+n/2}, v_{2+n/2}\}, \{e_3, e_4, v_{3+n/2}, v_{4+n/2}\}, \dots, \{e_{1+n/2}, e_{2+n/2}, v_1, v_2\}, \dots, \{e_{n-1}, e_n, v_{(n/2)-1}, v_{n/2}\}\}$. Therefore, $\chi_{cd}(C(C_n)) \le n/2$. Hence, $\chi_{cd}(C(C_n)) = n/2$.

Subcase (ii): n/2 is odd.

 $\Pi = \{ \{v_{1}, v_{2}, e_{n-2}, e_{n-1}\}, \{v_{3}, v_{4}, e_{n-4}, e_{n-3}\}, \dots, \{v_{n/2}, v_{1+n/2}, e_{n}, e_{1}\}, \dots, \{v_{n-1}, v_{n}, e_{(n/2)-1}, e_{n/2}\} \}$ forms a color class domination partition. Therefore, $\chi_{cd}(C(C_n)) \le n/2$. Hence, $\chi_{cd}(C(C_n)) = n/2$.

Color class domination number of Middle and center graph of $K_{1,n}\ C_n$ and P_n

Case (ii): n is odd.

The vertices $v_{1,e_1,v_2,e_2,v_3,e_3,...,e_n,v_n}$ induces a subgraph C_{2n} of length 4n+2. Therefore, $\chi_{cd}(C(C_{2n})) = (n+1)/2$. $\Pi = \{ \{v_{(n+1)/2,v_{(n+3)/2,e_1,e_2}\},..., \{v_{n,v_1,e_{(n+1)/2,e_{(n+3)/2}}\},..., \{v_{(n-5)/2,v_{(n-3)/2,e_{n-2,e_{n-1}}}\},..., \{v_{n-1,v_n,e_{(n/2)-1,e_{n/2}}\}\}$ forms a color class domination partition. Therefore, $\chi_{cd}(C(C_n)) \le (n+1)/2$. Hence, $\chi_{cd}(C(C_n)) = (n+1)/2$.

Theorem 3.3: For any path P_n , $\chi_{cd}(C(P_n)) = [n/2]$.

References

 [1] Danuta Michalak, On Middle and total graphs with coarseness number equal 1; Graph theory, Proc.Conf;Lagow/pol.1981, Lect.Notes Math.1018 Springer, Berlin 1983, 139-150.

[2] F.Harary, Graph theory, Addison Wesley Reading Mass, 1969.

- [3] R.Sundareswaran, V. Swaminathan, Color class domination and anti Domination in graphs. (accepted for publication)
- [4] Vernold Vivin.J, Harmonious coloring of total graph, n-leaf, central graphs and circumdetic graphs; Ph.D thesis, Bharathiar University (2007), India.