

Corresponding authors: syed_sdj@yahoo.co.in (S. D. Jabeen)* and math_akbhunia@buruniv.ac.in (A. K.
Bhunia)

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

AMO - Advanced Modeling and Optimization, Volume 12, Number 2, 2010

Population based steepest descent method

S. D. Jabeen* and A. K. Bhunia

Department of Mathematics, The University of Burdwan, Burdwan-713104, India,

Abstract

In this paper, two approaches based on steepest descent method for solving unconstrained

or bound constrained optimization problems having continuously differentiable objective

functions have been proposed. In the first approach, an efficient heuristic method, viz.

Genetic Algorithm is applied for finding the step length in each iteration of steepest descent

method. Then, this idea has been extended to a set of multi-point approximations instead of

single point approximation to avoid the convergence of the existing method at local

optimum point of multi-modal objective functions and a new method (we call it as

population based steepest descent method) has been proposed to find the global or close-to-

global optima. Finally, to demonstrate the performance of both the proposed methods,

several multi-dimensional standard test functions available in the literature have been

solved. The results have been compared with the same of recently developed two hybrid

algorithms with respect to different comparative factors like; functions evaluations, number

of iterations, CPU time (computational time) and frequency of occurrence of close-to-

global solution.

Keywords: unconstrained optimization, steepest descent method and genetic algorithm.

1. Introduction

During several decades, optimization is an active research area due to the introduction of

competitive market situation as well as globalization of market. At present, in the different

sectors of any country, most of the real life problems are of increasingly complex

S. D. Jabeen and A. K. Bhunia

 178

optimization problems. Due to complexity of these problems, more efficient and powerful

optimization algorithms are to be derived to obtain the global solution of them. Though the

gradient based iterative method is a very oldest method, but it is still a useful optimization

procedure. This method exploits the derivative information of a function and is usually faster

search method. Among the gradient based methods, the steepest descent method due to

Cauchy (1847) is one of the oldest and most widely known minimization schemes (Bazaraa et

al., 1979) for unconstrained optimization of continuously differentiable functions.

According to the existing literature, there exist other several steepest descent

procedures. Armijo (1996) developed a modified steepest descent method which

automatically adapts the step size. M. N. Vrahates et al. (2000) derived a steepest descent

method with adaptive step size using the local estimation of Lipschitz constant. Banzilai and

Borwein (1988) proposed a gradient method using different strategies for choosing the step

length. Yiu et al. (2004) proposed a hybrid descent method (HDM) for global optimization of

multi-dimensional non-convex functions. This method employs gradient based techniques for

local neighbourhood improvement and the simulated annealing technique to by-pass local

solutions. Tsai et al. (2004) proposed a hybrid method [called Hybrid Taguchi genetic

algorithm (HTGA)] to solve global numerical optimization problems with continuous

variables.

 This paper deals with two approaches based on steepest descent method to solve the

unconstrained or bound constrained minimization problems having continuously

differentiable objective functions. In the first approach, the step length in each iteration of

this method is computed by a heuristic method, viz. Genetic Algorithm. Then this idea is

incorporated to a set of multi-points approximations instead of single point approximation

and a new method (called population based steepest descent method, PSDM) is proposed to

find the global or close-to-global minima. Finally, to demonstrate the effectiveness of our

proposed methods, several multi-dimensional test functions are solved and the results are

compared with the Armijo’s modified steepest descent methods, HTGA (Tsai et al., 2004)

and HDM (Yiu et al., 2004).

2. Cauchy’s steepest descent method and modifications

The Cauchy’s steepest descent method is one of the oldest and most widely known simplest

method for solving unconstrained minimization problems as follows:

S. D. Jabeen and A. K. Bhunia

 179

 ()Minimize f x (1)

where : nf ℜ → ℜ is continuously differentiable function. This is an iterative method which

generates a sequence of points (0) (1) (2), , ,...x x x belonging to the domain of definition of()f x ,

for which ()() *kf x f→ as k → ∞ . The algorithm for solving Eq. (1) is as follows:

Algorithm 1

begin

input (0)x , the initial approximation of x;

set 1K ← ;

repeat

 compute ()(1)kf x −∇ ;

 obtain the optimal value of step length λ by minimizing ()()(1) (1)k kf x f xλ− −− ∇ i.e., ()g λ and

store in ()kλ ;

 assign ()() (1) (1)k k kxx f xλ− −← − ∇ ;

 increase K by 1 i.e., 1K K← + ;

until termination criterion is satisfied;

print the last approximation of x along with()f x ;

end

For the termination criterion mentioned above, any one condition of following can be used to

terminate the iterative process in the Algorithm 1 :

(i) When the change in function value in two consecutive iterations is very small i.e.,

() ()

1()

k k
new old

k
old

f f

f
ε− ≤

(ii) When the norm of the gradient of f is very small i.e.,

 2 f ε∇ ≤

(iii) When the change in the vector in two consecutive iterations is very small i.e.,

 () ()
3

k k
new oldx x ε− ≤

 where (=1,2,3) i iε being very small positive numbers.

S. D. Jabeen and A. K. Bhunia

 180

In the Cauchy’s method, the main task is to find the optimal step length for getting the better

approximations of the decision variables in each iteration. In the k-th iteration this step length

is computed by solving another optimization problem as follows:

 ()()(1) (1)Minimize k kf x f xλ− −− ∇ ,

where (1)kx − being the (k-1) th approximation

i.e, ()Minimize g λ where () ()()(1) (1)k kg f x f xλ λ− −= − ∇ (2)

A necessary and sufficient condition for λ to be optimal in Eq. (2) is that () 0g λ′ = which is

a nonlinear equation and can be solved by any method like Newton-Raphson, Regula-Falsi,

fixed point iteration method, etc. The main disadvantages for using this method is to find out

the location of root in the iteration of descent method. To overcome this difficulty, Armijo

(1996) proposed an alternative approach for finding an optimal step length. It is known as

modified steepest descent method which is presented in Algorithm 2 .

Algorithm 2

begin

input (0)x , the initial approximation;

set 0k ← ;

compute the objective function value()()kf x and ()()kf x∇ ;

while (termination criterion not satisfied) do

 set 0

()kλ λ← , 0λ being a known arbitrary large initial step length;

 compute ()() () ()

()
k k k

kx fy xλ− ∇= ;

 repeat

 () () / 2k kλ λ← ;

 compute ()ky , where ()() () ()

()
k k k

kx fy xλ− ∇← ;

 until () () () 2()() () ()

2
kk k kf y f x f x

λ
− ≤ − ∇ ;

() ()k kyx ← , 1k k← + ;

end while

print ()kx , ()()kf x and k, the number of iterations at which the solution is found;

end

S. D. Jabeen and A. K. Bhunia

 181

In this method, a large step length 0λ is set up to find out the optimal or close-to-optimal

value of λ in each iteration. Then halving this length consecutively the optimal step length is

obtained but, how much the initial step length should be set is unknown. In this connection, it

is to be noted that for higher value of0λ , the inner loop for calculation of best 0λ in each

iteration of the algorithm will be executed more. On the other hand, for smaller value of0λ ,

the outer loop be executed more to extract an appropriate step length. So, alternatively this

difficulty can be overcome by applying a heuristic method for finding the best found step

length. Among the heuristic methods Genetic Algorithm (GA) may be used to overcome the

difficulties raised in both the methods of Bazaraa et al., (1979) due to Cauchy and Armijo

(1996).

3. GA-based approach for step length computation

To find the optimal or near to optimal value of the step length using GA, an initial population

(0)p having N individuals/chromosomes is first created. The gene of these

individuals/chromosomes represents the step length (λ) with intuitive step length values

which is chosen randomly from a predefined range. The fitness value of each chromosome is

computed from the fitness function which is defined as ()()f x f xλ− ∇ where x denotes the

approximate solution vector x = (x1, x2, x3,…, xm) ∈ S and S is the n dimensional box

constraints i.e., S = {x = (x1, x2, x3,…, xm) ∈Rn: ai ≤ xi ≤ bi, i = 1, 2,…, m}. After the

evaluation of fitness value of each chromosome, reproduction/ selection operator selects the

above average chromosomes (sometimes multiple copies of better chromosomes) for the next

generation. Then highly fitted chromosomes take place in the crossover operation and

produce offspring exchanging some of the genetic materials of the parents. Mutation is then

applied by altering the gene in order to prevent the premature convergence. The evolution

process continues till the maximum number of generation is reached. The algorithm of this

heuristic method for step length computation is as follows.

Algorithm 3

begin

set 0t ← ;

S. D. Jabeen and A. K. Bhunia

 182

create an initial population ()p t (at t-th generation) with N individuals, whose genes are the step

length λ chosen randomly ;

evaluate the fitness of each individual of the initial population ()p t ;

find the best individual and its gene value from()p t ;

repeat

 (i) 1t t← + ;

 (ii) select ()p t from (1)p t − by any selection process;

 (iii) produce offspring using genetic operators like crossover and mutation and remove the

corresponding parents those who have taken part in the said operation;

(iv) evaluate the fitness value of each individual of the improved population()p t ;

 (v) find the best individual and its gene value from ()p t ;

until termination condition is satisfied

find the best found value of the gene (λ));

end

To implement the above algorithm, the following three GA operators have been considered.

(i) Exponential ranking selection operator.

(ii) Multi-parent whole arithmetical crossover operator with variable probability rate.

(iii) Non-uniform mutation operator with variable probability rate.

The primary objective of selection operator is to emphasize on the above average solutions

and eliminate the below average solutions from the population for the next generation. The

popularly known selection operators are ranking selection, roulette wheel selection,

truncation selection, tournament selection and stochastic universal sampling selection, etc. In

our work, we have applied exponential ranking selection operator.

From the mating pool, two or more chromosomes are then selected at random and crossed

to reshuffle the genetic material and create better offspring. The crossover can be done in

many different ways using different crossover operators. In our work, we have used multi

parent whole arithmetical crossover with a variable probability rate which is a decreasing

function of population age. Initially, it takes the higher prescribed value [say, pc(0)], then

decreases consecutively to obtain the lowest final value [say, pc(m_gen)]. Hence the variable

probability rate pc(t) at the t-th generation of population has the following form;

 pc(t) = pc(0)exp(-αt)

S. D. Jabeen and A. K. Bhunia

 183

where
(_)1

log
_ (0)

c

c

p m gen

m gen p
α

 
=  

 

clearly, 0 < pc(t) < 1 as 0 < pc(0) < 1 and 0 < exp(-αt) < 1 and it will be constant when

pc(m_gen) = pc(0).

In the t-th generation, the different steps for crossover operation are given below.

Step-1: Find the rounding off integral value of the product of pc (t) and p_size and store it in N.

Step-2: Generate a random number r in [0, 1].

Step-3: Select randomly N number of chromosomes for crossover operation.

Step-4: Again, select three chromosomes from the earlier selected N chromosomes and arrange

themin descending order according to their fitness values.

Step-5: Produce two offspring, keeping the chromosome with higher fitness value as same.

Amongthese two offspring, one will be generated by the convex combination of the first two

chromosomes with higher weightage of first parent. Similarly, the other one will be

produced by the convex combination of all the three parent chromosomes taking higher

weightage of first two parents.

 After crossover operation, the offspring will be as follows:

 *
1 1λ λ=

 ()*
2 1 21λ βλ β λ= + −

 ()*
3 1 2 31λ γλ δλ γ δ λ= + + − −

where , ,α β γ are real numbers in (0,1) and 0.5β > , 1γ δ+ < , 1γ δ γ δ> > − −

Step-6: Repeat the steps 4 and 5 for either N/3 times (if N is divisible by 3) or (N/3+1) times.

Step-7: Stop.

It is to be noted that in every generation there is an improvement in the quality of offspring.

As this operation is done several times, at the end of each generation highly energetic

offspring are created.

Another genetic operator used in the algorithm is the mutation operator. This operator

gently sharpens the selected chromosomes to bring diversity among the population avoiding

local convergence. In the existing GA literature, the popularly known mutation operators are

uniform mutation, whole mutation, boundary mutation, exponential mutation, non-uniform

mutation, etc. In our work, we have used the non-uniform mutation operator with the varying

S. D. Jabeen and A. K. Bhunia

 184

rate of probability lying between [pm (m_gen), pm (0)], where both pm(m_gen) and pm (0) are

prescribed. Initially it takes higher value and then decreases consecutively in the following

form.

 pm(t) = pm(0)exp(- β t)

where β =
1

m gen−

()
()log
0

m

m

p m gen

p
− 

 
 

, t being the generation number.

Clearly, the variable mutation rate is a proper fraction as 0 (0) 1mp< < and

0 exp() 1tβ< − < and it will be uniform when (_) (0)m mp m gen p= . This mutation operator is

dependent on the age of the population. If the element (gene) Vik of chromosome Vi is selected

for this operation and the domain of Vik is [],k kl u where lk and uk are the lower and upper

bounds of the variable corresponding to the gene Vik,, then the new value of Vik is represented

by

()
()

, , if the random digit is 0

, , if the random digit is 1

ik k ik

ik

ik ik k

V t u V
V

V t V l

+ ∆ −′ = 
− ∆ −

where k { }1,2,3,...,n∈ and (),t y∆ returns a value in the range [0,y].

In our experiment, we have used

 (),t y∆ = yr 1
_

b
t

m gen

 
− 

 

where r is a random real number in [0,1], t, the current generation and b(>0) (non- uniform

mutation parameter), a constant.

Using earlier mentioned advanced genetic algorithm for computation of step length, we

have modified the existing steepest descent method and proposed a method named as Genetic

Algorithm based Steepest Descent Method (GASDM). The algorithm of this method is as

follows:

Algorithm 4

begin

set 0k ← ;

create an initial approximate solution()kx randomly from the search domain;

S. D. Jabeen and A. K. Bhunia

 185

calculate the objective function value()()kf x and its gradient ()()kf x∇ ;

while (termination criterion not satisfied) do

 find the step length ()kλ from Algorithm 3;

 improve the solution by the iterative formula ()()(1) () ()kk k kx fx xλ+ = − ∇ and calculate the

improved function value()(1)kf x + ;

 set () (1)k kxx +← , 1kk ← + ;

end while

print ()(1)k
f x + , (1)kx + and k, the number of iterations at which the solution is obtained;

end

4. Population based steepest descent method (PSDM)

The solution found from Algorithm 4 may or may not always converge to the global

solution; the reason behind this is that, the method is sensitive to the initial approximation.

The idea of single-point approximation search has been extended to a multi-point

approximation search called population based steepest descent method (PSDM). The multiple

approximations produce a multiple search paths from among which at least one converges to

the global optimum. This method always consternates on the point which has higher

precession among all sequences generated differently at each iteration. The algorithm of this

method is given below.

Algorithm 5

begin

set 0k ← ;

create an initial approximation (population) ()kx , a set of individuals/chromosomes

() (= 1, 2,...,)k
jx j m whose each component/gene can be generated randomly from the search

domain(in case of unconstrained optimization problems, a large space is considered as search

domain);

compute the function values()()k
jf x for all j;

find the best value off from all ()()k
jf x along with ()k

jx and store it in ()k
oldf and ()k

oldX respectively;

S. D. Jabeen and A. K. Bhunia

 186

set 1kk ← + ;

while (termination criterion not satisfied) do

1j ← ;

repeat

 (i) find the best found value of step length λ using Algorithm 3 and store this value in()k
iλ ;

 (ii) compute ()() (1) (1) ()k k k k
j j i jx fx xλ− −= − ∇ and ()()k

jf x ;

 (iii) 1+← jj ;

until j = m;

find the best value off from all ()()k
jf x along with ()k

jx and store it in ()k
newf and ()k

newX respectively;

assign () ()k k
newoldf f← , () ()k k

newold xx ← ;

end while

print ()k
newf , ()k

newX and k, the number of iterations at which the solution is obtained;

end

5. Numerical Results and discussions

To demonstrate the performance of our proposed algorithm, numerical experiments have

been carried out independently 15 times (15 trials) considering five standard test functions (f1

to f5) available in the existing literature. For solving these test functions, the algorithms for

GASDM and PSDM have been coded in C programming and implemented on a Pentium IV,

2.66 GHZ with 512 MB RAM PC in LINUX environment. The results have been compared

with the same of hybrid Taguchi Genetic Algorithm (Tsai et al., 2004) and hybrid descent

method (Yiu et al., 2004) and displayed those in Table 2 and Table 3. In numerical

experiments, GA parameters (like crossover rate, mutation rate and maximum generation

numbers) of both GASDM and PSDM (for step length computation) are defined as follows:

crossover rate [pc(t)] ∈ [0.8, 0.9], mutation rate [pm(t)] ∈ [0.15,0.20], Maximum generation

(m_gen) = 5

On the other hand, the population sizes for step length computation in both the

methods are displayed in Table 1.

S. D. Jabeen and A. K. Bhunia

 187

Table 1. Population size (p_size) in GASDM and PSDM

The number of initial approximations (population) in PSDM for test functions f1 to f4 is 20

and for f5, it is 15.

The details of test functions along with discussions are given below:

f1.
2

1 1

1
() cos 1

4000

nn
i

i
i i

x
f x x

i= =

 
= − + 

 
∑ ∏

This function has global minimum at ()* 0,0,0,.....,0x = with () 0* =xf . For both GASDM

and PSDM methods with n = 1000, the initial approximation(s) has been taken randomly

from[]nnn,− . In GASDM, 80% of the solutions converge to the global or close to global

optima and it takes on an average 70.83s performing 2461 function evaluations. However, in

PSDM method, 100% success rate has been found. It takes on an average 91.4s to converge

to global point, performing 61280 function evaluations. The time taken to converge to global

point is found to be far better than that obtained from HDM.

f2.
2

1() s in ()f x k y
n

π π= +
1

2 2 2
1

1

{() (1 sin ()} ())
n

i i n
i

y a k y y aπ
−

+
=

− + + −∑

1 0.25(1), -10 10, 1,2,...,i i iy x x i n= + − ≤ ≤ =

where the constant k and a are fixed at 10 and 1 respectively. This function has several local

minima, with only one global minimum at ()* 1,1,...,1x = with () 0* =xf irrespective of the

dimension of the problem. In GASDM method, the success rate of this function has been

found to be poor in case of higher dimension i.e., for n = 100, n = 1000 and much better in

lower dimension i.e., for n = 10. The PSDM method shows better performance giving 100%

success for n = 10 as well as n = 100 but, success rate is little down by 20% for n = 1000. The

time taken by each of these methods is comparatively lower than that of HDM except the

same for n = 10 in case of PSDM.

Test functions
Method

f1 f2 f3 f4 f5

GASDM 10 20 10 9 17

PSDM 10 20 10 20 15

S. D. Jabeen and A. K. Bhunia

 188

f3. ()
2

1 1

n i

j
i j

f x x
= =

 
=  

 
∑ ∑ , -100 ≤ xi ≤ 100, n = 30

This function has so many local minima. Therefore, it is challenging to obtain the global

solution. From Table 3, it is seen that the success rates in GASDM and PSDM methods are

87% and 100% respectively. In this case, the average number of function evaluations in

GASDM is much lower than HTGA whereas the same is much higher in PSDM.

f4. () 2

1

n

i
i

f x x
=

=∑ , -100 ≤ xi ≤ 100

This function has only one local minimum which is also global located at * (0,0,...,0)x =

with a function value *() 0f x = . In both the methods GASDM and PSDM with dimension n =

30, 100% success rates have been achieved. On the other hand, the average number of

function evaluations in each of these methods is much lower than HTGA.

f5. () () ()
1 2 22

1
1

100 1
n

j j j
i

f x x x x
−

+
=

 = − + −
  ∑ , -5≤ xi ≤ 10

The above function has a global minimum at * (1,1,1,....,1)x = with *() 0f x = . In both

GASDM and PSDM methods with dimension n = 100, 100% success has been found. These

methods take on average 11.05s and 26.12 minutes CPU times with 36110 and 325878

function evaluations respectively to reach the global value. In HTGA, the average number of

function evaluations is higher than that of GASPM but lower than PSDM.

Again, from Table 3, it is observed that the results of PSDM are either better or

encouraging than that of GASDM, HTGA and HDM for all test functions. In HTGA, the

average number of function evaluations is lower than the same in PSDM, for all test functions

except the test functions f4. However, the memory requirement for HTGA is higher than

PSDM as HTGA is a combined method of GA and well known Taguchi method which

creates a large array of orthogonal matrix for generating better chromosomes from randomly

selected two chromosomes. As a result, HTGA will take larger CPU time than that of PSDM.

So, in comparison of different methods in the context of different factors, it can be concluded

that the multi-point approximations approach PSDM is better than other methods mentioned

in this work.

S. D. Jabeen and A. K. Bhunia

 189

Table 2. Comparison of different methods

Test function Average number of function evaluations

(Frequency of occurrence of close to global solution [in %])

[Average CPU time]
(number

of variables)
PSDM GASDM HTGA HDM

61280 7392 - -

(100) (80) (-) (-) f1(1000)

[91.4s] [70.83] [-] [-]
 11336 5881 - -

(100) (73) (-) (-) f2 (10)

[3.18s] [1.73s] [-] [1.57-2.25s]
 77507 8834 - -

(100) (33) (-) (-) f2 (100)

[54.94s] [12.36s] [-] [183.4s-39.1s]
 457040 28279 - -

(80) (47) (-) (-) f2 (1000)

[36.25s] [363.63s] [-] [4.5 – 8.8h]
 96831 9726 26469 -

(100) (87) (-) (-) f3 (30)

[44.8s] [4.5s] [-] [-]
 115 42 20844 -

(100) (100) (-) (-) f4 (30)

[0.01s] [0.001s] [-] [-]
 325878 36110 60737 -

(100) (100) (-) (-) f5(100)

[26.12s] [11.05s] [-] [-]

S. D. Jabeen and A. K. Bhunia

 190

Table 3. Comparison of different methods

Test function Best found solution

(Worst found solution)

{Average solution}

[Standard Deviation]

(number

of variables)

PSDM GASDM HTGA HDM

0 0 - 0

0 (0.74 × 10-4) (-) (-)

{ 0 } {0.99 × 10-5} { - } { - }
f1(1000)

[0] [0.26 × 10-3] [-] [-]

 0 0 0 0

0 -0.9331 (-) (-)

{ 0 } {0.1659} { - } { - }

f2 (10)

[0] [0.3297] [-] [-]

 0 0 0 0

0 -0.3755 (-) (-)

{ 0 } {0.1206} { - } { - }

f2 (100)

[0] [0.1500] [-] [-]

 0 0 - 0

(0.31 × 10-3) -0.0219 (-) (-)

{0.16 × 10-3} {0.42 × 10-4} { - } { - }
f2 (1000)

[0.83 × 10-4] [0.64 × 10-4] [-] [-]

 0 0 0 0

0 (0.40 × 10-8) (-) (-)

{ 0 } {0.4 × 10-9} { - } { - }
f3 (30)

[0] [0.11 × 10-8] [-] [-]

 0 0 0 0

0 0 (-) (-)

{ 0 } { 0 } { - } { - }
f4 (30)

[0] [0] [-] [-]

 0 0 0 0

0 0 (-) (-)

{ 0 } { 0 } { - } { - }
f5 (100)

[0] [0] [-] [-]

S. D. Jabeen and A. K. Bhunia

 191

6. Concluding remarks

In this paper, we have modified the existing steepest descent method (due to Cauchy, Armijo

and others) by introducing an efficient heuristic method, called Genetic algorithm for finding

the step length in each iteration. Then to overcome the difficulties faced in the steepest

descent method, we have developed population based steepest descent method (PSDM)

considering a set of points as initial approximations. As the method PSDM is a multipoint

approximation method, it requires more time and more function evaluations than single point

approximation methods. In the proposed PSDM, decent method is incorporated for each

approximation. Due to the random selection of initial approximations from the search space,

the proposed PSDM possesses the merits of global exploration, fast convergence and

robustness and statistical soundness. The computational experiments show that the proposed

PSDM can find the global or close to global optimal solutions and it takes lesser time and

memory space than HTGA as well as HDM to solve the problem by computer. Due to this

feature, this method is more efficient. However, for a particular type of problem with one

global optimum point surrounded by large number of local optima, this method does not

work properly. In most of the trials, it gets stuck to the local optima instead of global.

 As both the methods are gradient based, the methods will be applicable only to those

problems where the search space is continuous and the objective function is differentiable in

nR , n being the number of decision variables. Clearly, in solving some real life problems

like; structural optimization, inventory control, numerical optimization, image processing,

robotics, circuit design the proposed methods may be applied.

Acknowledgement

The authors would like to acknowledge the support under DRS Phase-III Programme

provided by the UGC, India for conducting this research.

References

[1] Armijo, L. (1996), Minimization of functions having Lipschitz continuous first partial

derivatives. Pacific Journal of Mathematics, 16, 1-3.

[2] Barzilai, J., Borwein, J. M. (1988). Two point step size gradient methods, IMA Journal of

Numerical Analysis, 8, 141-148.

[3] Tsai, J.-T., Liu, T.-K., Chou, J.-H. (2004) Hybrid Taguchi - Genetic Algorithm for Global

S. D. Jabeen and A. K. Bhunia

 192

Numerical Optimization, IEEE Transactions on evolutionary computation, 8(4) 365-377.

[4] Vrahatis, M. N., Androulakis, G. S., Lambrinos, J. N., Magoulas, G. D. (2000), A class of

gradient unconstrained minimization algorithms with adaptive stepsize. Journal of

Computational and Applied Mathematics, 114, 367-386.

[5] Yiu, K. F. C., Liu,Y., Teo, K. L. (2004), A Hybrid Descent Method for Global

Optimization. Journal of Global Optimization, 28, 229-238.

[6] Bazaraa, M. S., Sherali, H. D., Shetty, C. M. (1979). Non linear programming, theory and

algorithms, John Wiley and Sons.

