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Abstract

In this paper, two approaches based on steepestrdemethod for solving unconstrained
or bound constrained optimization problems haviogtiouously differentiable objective
functions have been proposed. In the first approachefficient heuristic method, viz.
Genetic Algorithm is applied for finding the stemgth in each iteration of steepest descent
method. Then, this idea has been extended toa satlti-point approximations instead of
single point approximation to avoid the convergemdethe existing method at local
optimum point of multi-modal objective functions dara new method (we call it as
population based steepest descent method) hapbgewsed to find the global or close-to-
global optima. Finally, to demonstrate the perfanoea of both the proposed methods,
several multi-dimensional standard test functiomailable in the literature have been
solved. The results have been compared with thee s#mmecently developed two hybrid
algorithms with respect to different comparativetdas like; functions evaluations, number
of iterations, CPU time (computational time) andquency of occurrence of close-to-
global solution.

Keywords unconstrained optimization, steepest descentodedind genetic algorithm.

1. Introduction

During several decades, optimization is an actasearch area due to the introduction of
competitive market situation as well as globalmatof market. At present, in the different

sectors of any country, most of the real life peoh are of increasingly complex
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optimization problems. Due to complexity of theselpems, more efficient and powerful
optimization algorithms are to be derived to obtie global solution of them. Though the
gradient based iterative method is a very oldeghatk but it is still a useful optimization
procedure. This method exploits the derivative imfation of a function and is usually faster
search method. Among the gradient based methodsstdepest descent method due to
Cauchy (1847) is one of the oldest and most willeywn minimization schemes (Bazaraa et
al., 1979) for unconstrained optimization of conbasly differentiable functions.

According to the existing literature, there exighey several steepest descent
procedures. Armijo (1996) developed a modified @mtsé descent method which
automatically adapts the step size. M. N. Vrahateal. (2000) derived a steepest descent
method with adaptive step size using the locahegton of Lipschitz constant. Banzilai and
Borwein (1988) proposed a gradient method usinfgmdiht strategies for choosing the step
length. Yiu et al. (2004) proposed a hybrid descesethod (HDM) for global optimization of
multi-dimensional non-convex functions. This metlewdploys gradient based techniques for
local neighbourhood improvement and the simulatedealing technique to by-pass local
solutions. Tsai et al. (2004) proposed a hybrid hoet[called Hybrid Taguchi genetic
algorithm (HTGA)] to solve global numerical optimtion problems with continuous
variables.

This paper deals with two approaches based opesedescent method to solve the
unconstrained or bound constrained minimization blegms having continuously
differentiable objective functions. In the first@pach, the step length in each iteration of
this method is computed by a heuristic method, @enetic Algorithm. Then this idea is
incorporated to a set of multi-points approximasionstead of single point approximation
and a new method (called population based steelessent method, PSDM) is proposed to
find the global or close-to-global minima. Finallp demonstrate the effectiveness of our
proposed methods, several multi-dimensional testtians are solved and the results are
compared with the Armijo’s modified steepest desgrathods, HTGA (Tsai et al., 2004)
and HDM (Yiu et al., 2004).

2. Cauchy’s steepest descent method and modificati®

The Cauchy's steepest descent method is one afldest and most widely known simplest

method for solving unconstrained minimization pesbt as follows:
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Minimize f (x) (1)
where f 11" - 0 is continuously differentiable function. This is éerative method which

generates a sequence of poirf8, x, x?, ... belonging to the domain of definition 6{x),

for which f (x*) " ask - . The algorithm for solving Eq. (1) is as follows:

Algorithm 1

begin

inputx®, the initial approximation of x;
setk «1;

repeat

computélf (x‘k'“) ;
obtain the optimal value of step lengthby minimizing f (x‘k’l’ - AOf (x(“’)) i.e.,,g(4) and

store iM®;
assignx® — x* - A0f (x(k'”) ;
increase Kby 1i.eKk - K+1;
until termination criterion is satisfied;
print the last approximation of x along witt{x) ;

end

For the termination criterion mentioned above, ang condition of following can be used to

terminate the iterative process in tigorithm 1:

(i)  When the change in function value in two congie iterations is very small i.e.,
F00_ 50

new old
(k)
fold

<g

(i)  When the norm of the gradient bis very small i.e.,

|Of|| <&,

(i) When the change in the vector in two consa®uiterations is very small i.e.,
k k

|Xr(1e3/v_ X(olgl

wheres, (i=1,2,3) being very small positive numbers.

<&,
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In the Cauchy’s method, the main task is to fingl diptimal step length for getting the better
approximations of the decision variables in eaetation. In the k-th iteration this step length

is computed by solving another optimization probksrfollows:

Minimize f (x(""l) —0f (x<k-1>)) ,

where x*™® being thek-1) th approximation

i.e, Minimize g () whereg (/)= f(x*®-A0f (X)) 2)

A necessary and sufficient condition farto be optimal in Eq. (2) is thaf'(1) =0 which is

a nonlinear equation and can be solved by any rddtke Newton-Raphson, Regula-Falsi,
fixed point iteration method, etc. The main disatages for using this method is to find out
the location of root in the iteration of descenttimoel. To overcome this difficulty, Armijo
(1996) proposed an alternative approach for findingoptimal step length. It is known as
modified steepest descent method which is presemi&igdorithm 2.

Algorithm 2

begin
inputx®, the initial approximation;
setk - 0;
compute the objective function valtfx®) andcf (x(k)) :
while (termination criterion not satisfiedjo
setd,, - A°, A°being a known arbitrary large initial step length;
computey™ =x" - A, Of (x‘k’) :
repeat

Ay < A !2;

computey®, wherey®  x® = ,,0f (x?);
) A 2
ot 1)) =2

X(k) - y(k), k < k+1;
end while

print x| f (x‘k))and k, the number of iterations at which the soluiis found:

end
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In this method, a large step leng#i is set up to find out the optimal or close-to-opl
value of A in each iteration. Then halving this length conseely the optimal step length is
obtained but, how much the initial step length $tidae set is unknown. In this connection, it

is to be noted that for higher valueAdf the inner loop for calculation of bedf in each

iteration of the algorithm will be executed moren @e other hand, for smaller valueldt
the outer loop be executed more to extract an apjate step length. So, alternatively this
difficulty can be overcome by applying a heurigtiethod for finding the best found step
length. Among the heuristic methods Genetic Algont(GA) may be used to overcome the
difficulties raised in both the methods of Bazaeaal., (1979) due to Cauchy and Armijo
(1996).

3. GA-based approach for step length computation

To find the optimal or near to optimal value of gtep length using GA, an initial population

p(0) having N individuals/chromosomes is first createdlhe gene of these

individuals/chromosomes represents the step le(ithwith intuitive step length values

which is chosen randomly from a predefined rande fitness value of each chromosome is

computed from the fitness function which is defirsedf (x—ADf (x)) wherex denotes the

approximate solution vectot = (X1, X, X3,..., %) O S and S is then dimensional box
constraints i.e.S={Xx = (X1, %, X,..., %) OR" &< x < by, i = 1, 2,...,m}. After the
evaluation of fitness value of each chromosomerodpction/ selection operator selects the
above average chromosomes (sometimes multiple £opieetter chromosomes) for the next
generation. Then highly fitted chromosomes takecelan the crossover operation and
produce offspring exchanging some of the genetiteriads of the parents. Mutation is then
applied by altering the gene in order to preveet phemature convergence. The evolution
process continues till the maximum number of ger@ras reached. The algorithm of this

heuristic method for step length computation ifoflews.
Algorithm 3

begin
sett - 0;
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create an initial populatiop(t) (at t-th generation) with N individuals, whose gerare the step
length 4 chosen randomly ;
evaluate the fitness of each individual of theiahpopulationp(t) ;
find the best individual and its gene value frpf) ;
repeat
) t—t+1;
(i) selectp(t) from p(t-1) by any selection process;
(iif) produce offspring using genetic operatorikel crossover and mutation and remove the
corresponding parents those who have taken pattarsaid operation;
(iv) evaluate the fitness value of each individofathe improved populatiop(t) ;
(v) find the best individual and its gene vdioem p(t) ;
until termination condition is satisfied

find the best found value of the gehg){

end

To implement the above algorithm, the followingeilGA operators have been considered.
0] Exponential ranking selection operator.
(i) Multi-parent whole arithmetical crossover opgtr with variable probability rate.
(i) Non-uniform mutation operator with variablegbability rate.

The primary objective of selection operator is topbasize on the above average solutions
and eliminate the below average solutions frompbpulation for the next generation. The
popularly known selection operators are rankinged@n, roulette wheel selection,
truncation selection, tournament selection andhstsiic universal sampling selection, etc. In
our work, we have applied exponential ranking selamperator.

From the mating pool, two or more chromosomeslar telected at random and crossed
to reshuffle the genetic material and create bettispring. The crossover can be done in
many different ways using different crossover ofmeg In our work, we have used multi
parent whole arithmetical crossover with a varigptebability rate which is a decreasing
function of population age. Initially, it takes tiégher prescribed value [sag,(0)], then
decreases consecutively to obtain the lowest finhle [sayp.(m_gen]. Hence the variable

probability ratepc(t) at thet-th generation of population has the following form
Kt) = p(O)exp(-at)
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p.(m_ ger)j
R(0)

clearly, 0 <pc(t) <1 as 0 P(0) < 1 and 0 < expft) < 1 and it will be constant when
Pc(m_gen) =pc(0).

1
where a :—Iog{
m_ gen

In thet-th generation, the different steps for crossoyaration are given below.

Step-1:  Find the rounding off integral valuetioé¢ product of p(t) and p_size and store it in N.

Step-2:  Generate a random number rin [0, 1].

Step-3:  Select randomly N number of chromosdanesossover operation.

Step-4:  Again, select three chromosomes frometiiber selected N chromosomes and arrange
themin descending order according to their fitneskies.

Step-5:  Produce two offspring, keeping the chramus with higher fitness value as same.
Amongthese two offspring, one will be generatethbyconvex combination of the first two
chromosomes with higher weightage of first pare®imilarly, the other one will be
produced by the convex combination of all the thpasent chromosomes taking higher
weightage of first two parents.

After crossover operation, the offspring will &g follows:

Al
BA+(1-B)A,
YA+ A, +(1-y=3) A,

A
A
Z

wherea, 3,y are real numbers in (0,1) an@>0.5,y+06<1,y>50>1-y-90

Step-6: Repeat the steps 4 and 5 for either Widgi(if N is divisible by 3) or (N/3+1) times.
Step-7: Stop.

It is to be noted that in every generation theranismprovement in the quality of offspring.
As this operation is done several times, at the eh@&ach generation highly energetic
offspring are created.

Another genetic operator used in the algorithmhis mutation operator. This operator
gently sharpens the selected chromosomes to bivegsdy among the population avoiding
local convergence. In the existing GA literatutee popularly known mutation operators are
uniform mutation, whole mutation, boundary mutatiexponential mutation, non-uniform

mutation, etc. In our work, we have used the noifieum mutation operator with the varying
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rate of probability lying between f{m_gen), g (0)], where both p(m_gen) and p (0) are

prescribed. Initially it takes higher value andritgecreases consecutively in the following

form.
Pm(t) = pm(0)ex(- £ 1)
where 8 = log pm(m_ ger) , t being the generation number.
m_gen p..(0)

Clearly, the variable mutation rate is a properctiom as 0<p,(0)<1 and
0<expEft )< Jand it will be uniform whenp, (m_ ger)= p,(0). This mutation operator is

dependent on the age of the population. If the etgrtgene)ix of chromosomé/; is selected

for this operation and the domain \gf is [Ik,uk] wherel, andui are the lower and upper

bounds of the variable corresponding to the géinethen the new value &fi is represented
by
v o {Vik +A(t,u -V, ),if the random digit is
“ Vi —A(tV, - 1), if the random digit is

where K1{1,2,3,...n} andA(t,y) returns a value in the range [0,y].

In our experiment, we have used

b
A(t,y) :yr(l— j
m_ gen
wherer is a random real number in [0,1],the current generation ab{>0) (non- uniform
mutation parameter), a constant.

Using earlier mentioned advanced genetic algoritbrmcomputation of step length, we
have modified the existing steepest descent methddoroposed a method named as Genetic
Algorithm based Steepest Descent Method (GASDM} &lgorithm of this method is as

follows:

Algorithm 4

begin
setk - 0;

create an initial approximate solutiofi” randomly from the search domain;
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calculate the objective function valtigx® ) and its gradientdf (x*);

while ( termination criterion not satisfieddo

find the step length®™ fromAlgorithm 3;

improve the solution by the iterative futmx(k”)=x(k)—/l‘k)Df(X(k))and calculate the
improved function value(x“”);

k+1

sek®™ o x*Y ko k+1:

end while

print f (x(“’) X% and k, the number of iterations at which the sotuts obtained;

end

4. Population based steepest descent method (PSDM)

The solution found fromAlgorithm 4 may or may not always converge to the global
solution; the reason behind this is that, the nabtisosensitive to the initial approximation.
The idea of single-point approximation search haenb extended to a multi-point
approximation search called population based sgtej@scent method (PSDM). The multiple
approximations produce a multiple search paths faomeng which at least one converges to
the global optimum. This method always consternaiesthe point which has higher
precession among all sequences generated differ@néach iteration. The algorithm of this

method is given below.

Algorithm 5

begin

setk - 0;

create an initial approximation (population)x®, a set of individuals/chromosomes

x}k) (=1,2,...m whose each component/gene can be generated raydivorh the search
domain(in case of unconstrained optimization praide a large space is considered as search

domain);

compute the function valuéix}k)) for all j;

find the best value dffrom all f (x}k’) along with X and store it inf (Y and X respectively;
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setk « k+1;

while ( termination criterion not satisfiedjo
j <1
repeat
(i) find the best found value of step lengtlusingAlgorithm 3 and store this value i ;

() computec® =/ ~ At (x)and 1 (x);
(i) j « J+1;
until j=m;

find the best value df from all f (x*)along with x*' and store itinf (), and X, respectively;

(K 0yl 0 .
assignf (& « £ X0 XK

new
end while
print frf'e‘\)\, , Xr(,QN and k, the number of iterations at which the goluts obtained;

end

5. Numerical Results and discussions

To demonstrate the performance of our proposedriiign numerical experiments have
been carried out independently 15 times (15 triadg)sidering five standard test functiofis (
to f5) available in the existing literature. For solvitigese test functions, the algorithms for
GASDM and PSDM have been coded in C programmingimptemented on a Pentium IV,
2.66 GHZ with 512 MB RAM PC in LINUX environmenth€& results have been compared
with the same of hybrid Taguchi Genetic Algorithiirsdi et al, 2004) and hybrid descent
method (Yiu et al, 2004) and displayed those in Table 2 and Tabldn3numerical
experiments, GA parameters (like crossover ratetatimn rate and maximum generation
numbers) of both GASDM and PSDM (for step lengtmpatation) are defined as follows:
crossover ratepf(t)] O [0.8, 0.9], mutation ratepf(t)] [J [0.15,0.20], Maximum generation
(m_gen)=5

On the other hand, the population sizes for stegtle computation in both the
methods are displayed in Table 1.
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Table 1. Population size (p_size) in GASDM and P3D

Method Test functions

fl f2 f3 f4 f5
GASDM 10 20 10 9 =
PSDM 10 20 10 20 e

The number of initial approximations (population)RSDM for test functiong to f; is 20
and forfs, it is 15.

The details of test functions along with discussiare given below:

f]_ f(X)—m I_IICO{\/—j‘l']

This function has global minimum at =(0,0,0,.....,) with f(x')=0. For both GASDM
and PSDM methods with = 1000, the initial approximation(s) has been takandomly
from[— n, n]”. In GASDM, 80% of the solutions converge to thebgll or close to global

optima and it takes on an average 70.83s perfor@ig. function evaluations. However, in
PSDM method, 100% success rate has been fourakds ton an average 91.4s to converge
to global point, performing 61280 function evaloas. The time taken to converge to global
point is found to be far better than that obtaifrech HDM.

fa. (x) = —kSln (ry, )+ IZl:{(y 9 °(L+ksin*(my. )} +( ¥ - )

y, =1+0.25( - 1), -1&x< 10,i= 1,2,.n

where the constalktanda are fixed at 10 and 1 respectively. This functias several local
minima, with only one global minimum at :(1,1,...,:)with f(x*)zo irrespective of the
dimension of the problem. In GASDM method, the ssscrate of this function has been
found to be poor in case of higher dimension fa.n = 100,n = 1000 and much better in
lower dimension i.e., fon = 10. The PSDM method shows better performancegit00%
success fon = 10 as well as = 100 but, success rate is little down by 20%mnfer1000. The

time taken by each of these methods is compargtiegler than that of HDM except the
same fom = 10 in case of PSDM.
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. 2
fs. f(x) :Z( xj} , -100< x,< 100,n = 30

i=1\ j=1
This function has so many local minima. Therefaotas challenging to obtain the global
solution. From Table 3, it is seen that the succates in GASDM and PSDM methods are
87% and 100% respectively. In this case, the aeeragnber of function evaluations in

GASDM is much lower than HTGA whereas the sameushrhigher in PSDM.

fa. f(x):zn:xz, -100< %< 100
i=1

This function has only one local minimum which iscaglobal located ax =(0,0,...,0

with a function valud (X') = 0. In both the methods GASDM and PSDM with dimension

30, 100% success rates have been achieved. Onthlike ltand, the average number of

function evaluations in each of these methods ishmbower than HTGA.

fs f(x)=ni[100(xj2— $a) (-9 ] Sex=10

i=1
The above function has a global minimum =&t=(111,....,dwith f(x')=0. In both
GASDM and PSDM methods with dimensior= 100, 100% success has been found. These
methods take on average 1k(ind 26.12 minutes CPU times with 36110 and 325878
function evaluations respectively to reach the glofalue. In HTGA, the average number of
function evaluations is higher than that of GASPM lower than PSDM.

Again, from Table 3, it is observed that the resuf PSDM are either better or
encouraging than that of GASDM, HTGA and HDM fof st functions. In HTGA, the
average number of function evaluations is lowentthee same in PSDM, for all test functions
except the test functions. However, the memory requirement for HTGA is highigan
PSDM as HTGA is a combined method of GA and welbwn Taguchi method which
creates a large array of orthogonal matrix for gatneg better chromosomes from randomly
selected two chromosomes. As a result, HTGA wietlarger CPU time than that of PSDM.
So, in comparison of different methods in the centé different factors, it can be concluded
that the multi-point approximations approach PSBMetter than other methods mentioned

in this work.
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Table 2. Comparison of different methods

Test function

Average number of function evaluation

(Frequency of occurrence of close to global sotufio %])

(nur_nber [Average CPU time]
of variables)
PSDM GASDM HTGA HDM
61280 7392 - -
f,(1000) (100) (80) ) )
[91.4s] [70.83] [] [
11336 5881 - -
f2(10) (100) (73) ) )
[3.185] [1.73s] [-] [1.57-2.25s]
77507 8834 - -
f,(100) (100) (33) ) )
[54.945] [12.365] [-] [183.4s-39.15]
457040 28279 - -
f,(1000) (80) (47) ) ¢)
[36.25s] [363.635] [] [4.5 - 8.8h]
96831 9726 26469 -
f3(30) (100) (87) ) )
[44.85] [4.55] [-] [-]
115 42 20844 -
f4(30) (100) (100) ) Q)
[0.01s] [0.001s] [-] []
325878 36110 60737 -
f5(100) (100) (100) ) Q)
[26.125] [11.05s] [-] [-]
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Table 3. Comparison of different methods

Test function

( number
of variables )

Best found solution
(Worst found solution)

{Average solution}

[Standard Deviation]

PSDM GASDM HTGA HDM

0 0 - 0

£,(1000) 0 (0.74 x 1@ ) “)
{0} {0.99 x 10% {-} {-}

[0] [0.26 x 10] [-] [-]

0 0 0 0

f,(10) 0 -0.9331 ) A
{0} {0.1659} {-} {-)

[0] [0.3297] [-] [-]

0 0 0 0

f,(100) 0 -0.3755 ) )
{0} {0.1206} {-} {-}

[0] [0.1500] [-] [-]

0 0 - 0

f,(000) | @31 10:) 0.0219 () ()
{0.16 x 10°%} {0.42 x 10% {-} {-}

[0.83 x 10] [0.64 x 107 [-] [-]

0 0 0 0

5(30) 0 (0.40 x 15) () ()
{0} {0.4 x 10} {-} {-}

[0] [0.11 x 10] [-] [-]

0 0 0 0

£,(30) 0 0 ) )
{0} {0} {-} {-}

[0] [0] [-] [-]

0 0 0 0

f5 (100) 0 0 () ()
{0} {0} {-} {-}

[0] [0] [-] [-]
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6. Concluding remarks

In this paper, we have modified the existing steegescent method (due to Cauchy, Armijo
and others) by introducing an efficient heuristiethod, called Genetic algorithm for finding
the step length in each iteration. Then to overcdhee difficulties faced in the steepest
descent method, we have developed population bstempest descent method (PSDM)
considering a set of points as initial approximasioAs the method PSDM is a multipoint
approximation method, it requires more time anderfanction evaluations than single point
approximation methods. In the proposed PSDM, deosgthod is incorporated for each
approximation. Due to the random selection of ahiipproximations from the search space,
the proposed PSDM possesses the merits of globalbrexion, fast convergence and
robustness and statistical soundness. The commaaxperiments show that the proposed
PSDM can find the global or close to global optimalutions and it takes lesser time and
memory space than HTGA as well as HDM to solveptablem by computer. Due to this
feature, this method is more efficient. However, doparticular type of problem with one
global optimum point surrounded by large numbeiloafal optima, this method does not
work properly. In most of the trials, it gets stuokthe local optima instead of global.

As both the methods are gradient based, the metvdidbe applicable only to those
problems where the search space is continuoushendbjective function is differentiable in
R", n being the number of decision variables. Cledrysolving some real life problems
like; structural optimization, inventory controlumerical optimization, image processing,

robotics, circuit design the proposed methods neagydplied.
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