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Abstract 
 

In this paper, two approaches based on steepest descent method for solving unconstrained 

or bound constrained optimization problems having continuously differentiable objective 

functions have been proposed. In the first approach, an efficient heuristic method, viz. 

Genetic Algorithm is applied for finding the step length in each iteration of steepest descent 

method. Then, this idea has been extended to a set of multi-point approximations instead of 

single point approximation to avoid the convergence of the existing method at local 

optimum point of multi-modal objective functions and a new method (we call it as 

population based steepest descent method) has been proposed to find the global or close-to-

global optima. Finally, to demonstrate the performance of both the proposed methods, 

several multi-dimensional standard test functions available in the literature have been 

solved. The results have been compared with the same of recently developed two hybrid 

algorithms with respect to different comparative factors like; functions evaluations, number 

of iterations, CPU time (computational time) and frequency of occurrence of close-to-

global solution.  

 

Keywords: unconstrained optimization, steepest descent method and genetic algorithm.   

 

1. Introduction 
 

During several decades, optimization is an active research area due to the introduction of 

competitive market situation as well as globalization of market. At present, in the different 

sectors of any country, most of the real life problems are of increasingly complex 
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optimization problems. Due to complexity of these problems, more efficient and powerful 

optimization algorithms are to be derived to obtain the global solution of them. Though the 

gradient based iterative method is a very oldest method, but it is still a useful optimization 

procedure. This method exploits the derivative information of a function and is usually faster 

search method. Among the gradient based methods, the steepest descent method due to 

Cauchy (1847) is one of the oldest and most widely known minimization schemes (Bazaraa et 

al., 1979) for unconstrained optimization of continuously differentiable functions.  

According to the existing literature, there exist other several steepest descent 

procedures. Armijo (1996) developed a modified steepest descent method which 

automatically adapts the step size. M. N. Vrahates et al. (2000) derived a steepest descent 

method with adaptive step size using the local estimation of Lipschitz constant. Banzilai and 

Borwein (1988) proposed a gradient method using different strategies for choosing the step 

length. Yiu et al. (2004) proposed a hybrid descent method (HDM) for global optimization of 

multi-dimensional non-convex functions. This method employs gradient based techniques for 

local neighbourhood improvement and the simulated annealing technique to by-pass local 

solutions. Tsai et al. (2004) proposed a hybrid method [called Hybrid Taguchi genetic 

algorithm (HTGA)] to solve global numerical optimization problems with continuous 

variables.  

 This paper deals with two approaches based on steepest descent method to solve the 

unconstrained or bound constrained minimization problems having continuously 

differentiable objective functions. In the first approach, the step length in each iteration of 

this method is computed by a heuristic method, viz. Genetic Algorithm. Then this idea is 

incorporated to a set of multi-points approximations instead of single point approximation 

and a new method (called population based steepest descent method, PSDM) is proposed to 

find the global or close-to-global minima. Finally, to demonstrate the effectiveness of our 

proposed methods, several multi-dimensional test functions are solved and the results are 

compared with the Armijo’s modified steepest descent methods, HTGA (Tsai et al., 2004) 

and HDM (Yiu et al., 2004). 

 
 

2. Cauchy’s steepest descent method and modifications 
 

The Cauchy’s steepest descent method is one of the oldest and most widely known simplest 

method for solving unconstrained minimization problems as follows: 
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  ( )Minimize f x                    (1) 

where : nf ℜ → ℜ  is continuously differentiable function. This is an iterative method which 

generates a sequence of points (0) (1) (2), , ,...x x x  belonging to the domain of definition of( )f x , 

for which ( )( ) *kf x f→  as k → ∞ . The algorithm for solving Eq. (1) is as follows: 

 

Algorithm 1 

begin 

input (0)x , the initial approximation of x; 

set 1K ← ; 

repeat 

   compute ( )( 1)kf x −∇ ; 

     obtain the optimal value of step length λ  by minimizing ( )( )( 1) ( 1)k kf x f xλ− −− ∇ i.e., ( )g λ  and 

store in ( )kλ ; 

  assign ( )( ) ( 1) ( 1)k k kxx f xλ− −← − ∇ ; 

         increase K by 1 i.e., 1K K← + ; 

until termination criterion is satisfied; 

print the last approximation of x along with( )f x ; 

end  

 

For the termination criterion mentioned above, any one condition of following can be used to 

terminate the iterative process in the Algorithm 1 : 

 

(i) When the change in function value in two consecutive iterations is very small i.e., 

           
( ) ( )

1( )

k k
new old

k
old

f f

f
ε− ≤  

(ii) When the norm of the gradient of f is very small i.e.,  

           2  f ε∇ ≤  

(iii) When the change in the vector in two consecutive iterations is very small i.e., 

 ( ) ( )
3

k k
new oldx x ε− ≤  

         where ( =1,2,3) i iε being very small positive numbers. 
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In the Cauchy’s method, the main task is to find the optimal step length for getting the better 

approximations of the decision variables in each iteration. In the k-th iteration this step length 

is computed by solving another optimization problem as follows: 

                  ( )( )( 1) ( 1)Minimize k kf x f xλ− −− ∇ , 

where  ( 1)kx −  being the (k-1) th approximation  

i.e, ( )Minimize   g λ  where ( ) ( )( )( 1) ( 1)k kg f x f xλ λ− −= − ∇                   (2) 

A necessary and sufficient condition for λ  to be optimal in Eq. (2) is that ( ) 0g λ′ =  which is 

a nonlinear equation and can be solved by any method like Newton-Raphson, Regula-Falsi, 

fixed point iteration method, etc. The main disadvantages for using this method is to find out 

the location of root in the iteration of descent method. To overcome this difficulty, Armijo 

(1996) proposed an alternative approach for finding an optimal step length. It is known as 

modified steepest descent method which is presented in Algorithm 2 . 

 

Algorithm 2 

begin 

input (0)x , the initial approximation; 

set 0k ← ;  

compute the objective function value( )( )kf x  and ( )( )kf x∇ ; 

while (termination criterion not satisfied) do 

        set 0

( )kλ λ← , 0λ being a known arbitrary large initial step length; 

           compute ( )( ) ( ) ( )

( )
k k k

kx fy xλ− ∇= ; 

             repeat  

  ( ) ( ) / 2k kλ λ← ; 

  compute ( )ky ,   where ( )( ) ( ) ( )

( )
k k k

kx fy xλ− ∇← ; 

             until ( ) ( ) ( ) 2( )( ) ( ) ( )

2
kk k kf y f x f x

λ
− ≤ − ∇ ; 

( ) ( )k kyx ← , 1k k← +  ; 

end while 

print ( )kx , ( )( )kf x and k, the number of iterations at which the solution is found; 

end 
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In this method, a large step length 0λ  is set up to find out the optimal or close-to-optimal 

value of λ  in each iteration. Then halving this length consecutively the optimal step length is 

obtained but, how much the initial step length should be set is unknown. In this connection, it 

is to be noted that for higher value of0λ , the inner loop for calculation of best 0λ  in each 

iteration of the algorithm will be executed more. On the other hand, for smaller value of0λ , 

the outer loop be executed more to extract an appropriate step length. So, alternatively this 

difficulty can be overcome by applying a heuristic method for finding the best found step 

length. Among the heuristic methods Genetic Algorithm (GA) may be used to overcome the 

difficulties raised in both the methods of Bazaraa et al., (1979) due to Cauchy and Armijo 

(1996).  

 
 

3. GA-based approach for step length computation 
 

To find the optimal or near to optimal value of the step length using GA, an initial population 

(0)p  having N individuals/chromosomes is first created. The gene of these 

individuals/chromosomes represents the step length (λ) with intuitive step length values 

which is chosen randomly from a predefined range. The fitness value of each chromosome is 

computed from the fitness function which is defined as ( )( )f x f xλ− ∇  where x denotes the 

approximate solution vector x = (x1, x2, x3,…, xm) ∈ S and S is the n dimensional box 

constraints i.e., S = {x = (x1, x2, x3,…, xm) ∈Rn: ai ≤ xi ≤ bi, i = 1, 2,…, m}. After the 

evaluation of fitness value of each chromosome, reproduction/ selection operator selects the 

above average chromosomes (sometimes multiple copies of better chromosomes) for the next 

generation. Then highly fitted chromosomes take place in the crossover operation and 

produce offspring exchanging some of the genetic materials of the parents. Mutation is then 

applied by altering the gene in order to prevent the premature convergence.  The evolution 

process continues till the maximum number of generation is reached. The algorithm of this 

heuristic method for step length computation is as follows.  

 

Algorithm 3 

begin 

set 0t ← ; 
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create an initial population ( )p t  (at t-th generation) with N individuals, whose genes are the step 

length  λ chosen randomly ; 

evaluate the fitness of each individual of the initial population ( )p t ; 

find the best individual and its gene value from( )p t ; 

repeat  

  (i)   1t t← + ; 

  (ii)  select ( )p t  from ( 1)p t − by any selection process; 

  (iii) produce offspring using genetic operators like crossover and mutation and remove the                                

corresponding parents those who have taken part in the said operation; 

(iv) evaluate the fitness value of each individual of the improved population( )p t ; 

   (v)  find the best individual and its gene value from ( )p t ; 

until termination condition is satisfied 

find  the best found value of the gene (λ )); 

end 

 
 
To implement the above algorithm, the following three GA operators have been considered. 

(i) Exponential ranking selection operator. 

(ii) Multi-parent whole arithmetical crossover operator with variable probability rate. 

(iii) Non-uniform mutation operator with variable probability rate. 

 

The primary objective of selection operator is to emphasize on the above average solutions 

and eliminate the below average solutions from the population for the next generation. The 

popularly known selection operators are ranking selection, roulette wheel selection, 

truncation selection, tournament selection and stochastic universal sampling selection, etc. In 

our work, we have applied exponential ranking selection operator.  

From the mating pool, two or more chromosomes are then selected at random and crossed 

to reshuffle the genetic material and create better offspring. The crossover can be done in 

many different ways using different crossover operators. In our work, we have used multi 

parent whole arithmetical crossover with a variable probability rate which is a decreasing 

function of population age. Initially, it takes the higher prescribed value [say, pc(0)],  then 

decreases consecutively to obtain the lowest final value [say, pc(m_gen)]. Hence the variable 

probability rate pc(t) at the t-th generation of population has the following form; 

                 pc(t) = pc(0)exp(-αt)  
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where  
( _ )1

log
_ (0)

c

c

p m gen

m gen p
α

 
=  

 
 

clearly, 0 < pc(t) < 1 as 0 < pc(0) < 1 and 0 < exp(-αt) < 1 and it will be constant when 

pc(m_gen) =  pc(0). 

  

In the t-th generation, the different steps for crossover operation are given below. 

 

Step-1:     Find the rounding off integral value of the product of pc (t) and p_size and store it in N. 

Step-2:     Generate a random number r in [0, 1]. 

Step-3:     Select randomly N number of chromosomes for crossover operation.  

Step-4:   Again, select three chromosomes from the earlier selected N chromosomes and arrange 

themin descending order according to their fitness values. 

Step-5:  Produce two offspring, keeping the chromosome with higher fitness value as same. 

Amongthese two offspring, one will be generated by the convex combination of the first two 

chromosomes with higher weightage of first parent. Similarly, the other one will be 

produced by the convex combination of all the three parent chromosomes taking higher 

weightage of first two parents. 

  After crossover operation, the offspring will be as follows: 

 

 *
1 1λ λ=  

 ( )*
2 1 21λ βλ β λ= + −    

 ( )*
3 1 2 31λ γλ δλ γ δ λ= + + − −  

 

where , ,α β γ are real numbers in (0,1) and 0.5β > , 1γ δ+ < , 1γ δ γ δ> > − −  

Step-6:  Repeat the steps 4 and 5 for either N/3 times (if N is divisible by 3) or (N/3+1) times. 

Step-7:   Stop. 

 

It is to be noted that in every generation there is an improvement in the quality of offspring. 

As this operation is done several times, at the end of each generation highly energetic 

offspring are created.  

Another genetic operator used in the algorithm is the mutation operator. This operator 

gently sharpens the selected chromosomes to bring diversity among the population avoiding 

local convergence. In the existing GA literature, the popularly known mutation operators are 

uniform mutation, whole mutation, boundary mutation, exponential mutation, non-uniform 

mutation, etc.  In our work, we have used the non-uniform mutation operator with the varying 
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rate of probability lying between [pm (m_gen), pm (0)], where both pm(m_gen) and pm (0) are 

prescribed. Initially it takes higher value and then decreases consecutively in the following 

form.  

                          pm(t) = pm(0)exp(- β t)   

where β  = 
1

m gen−

( )
( )log
0

m

m

p m gen

p
− 

 
 

,   t  being the generation number. 

Clearly, the variable mutation rate is a proper fraction as 0 (0) 1mp< <  and 

0 exp( ) 1tβ< − < and it will be uniform when ( _ ) (0)m mp m gen p= . This mutation operator is 

dependent on the age of the population. If the element (gene) Vik of chromosome Vi is selected 

for this operation and the domain of Vik is [ ],k kl u  where lk and uk are the lower and upper 

bounds of the variable corresponding to the gene Vik,, then the new value of Vik is represented 

by 

                      
( )
( )

, , if the random digit is 0

, ,  if the random digit is 1

ik k ik

ik

ik ik k

V t u V
V

V t V l

+ ∆ −′ = 
− ∆ −

  

where k { }1,2,3,...,n∈  and ( ),t y∆  returns a value in the range [0,y]. 

In our experiment, we have used  

                   ( ),t y∆  = yr 1
_

b
t

m gen

 
− 

 
  

where r is a random real number in [0,1], t,  the current generation and b(>0) (non- uniform 

mutation parameter), a constant. 

Using earlier mentioned advanced genetic algorithm for computation of step length, we 

have modified the existing steepest descent method and proposed a method named as Genetic 

Algorithm based Steepest Descent Method (GASDM). The algorithm of this method is as 

follows: 

 
Algorithm 4 

begin 

set 0k ← ; 

create an initial approximate solution( )kx  randomly from the search domain; 



S. D. Jabeen and A. K. Bhunia 

   185

calculate the objective function value( )( )kf x and its gradient ( )( )kf x∇ ;  

while ( termination criterion not satisfied ) do 

         find the step length ( )kλ  from Algorithm 3; 

         improve the solution by the iterative formula ( )( )( 1) ( ) ( )kk k kx fx xλ+ = − ∇ and calculate the 

improved function value( )( 1)kf x + ; 

          set ( ) ( 1)k kxx +←  , 1kk ← + ; 

end while 

print ( )( 1)k
f x +  , ( 1)kx +  and k, the number of iterations at which the solution is obtained; 

end 

 

 

4. Population based steepest descent method (PSDM) 
 
 

The solution found from Algorithm 4  may or may not always converge to the global 

solution; the reason behind this is that, the method is sensitive to the initial approximation. 

The idea of single-point approximation search has been extended to a multi-point 

approximation search called population based steepest descent method (PSDM). The multiple 

approximations produce a multiple search paths from among which at least one converges to 

the global optimum. This method always consternates on the point which has higher 

precession among all sequences generated differently at each iteration. The algorithm of this 

method is given below. 

 

Algorithm 5 

begin 

set 0k ← ; 

create an initial approximation (population) ( )kx , a set of individuals/chromosomes 

( )  (  = 1, 2,..., )k
jx j m  whose each component/gene can be generated randomly from the search 

domain(in case of unconstrained optimization problems, a large space is considered as search 

domain);  

compute the function values( )( )k
jf x  for all j; 

find the best value off from all ( )( )k
jf x along with ( )k

jx  and store it in ( )k
oldf  and ( )k

oldX  respectively; 
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set 1kk ← + ; 

while ( termination criterion not satisfied) do 

1j ← ; 

repeat  

    (i)  find the best found value of step length λ  using Algorithm 3 and store this value in( )k
iλ ; 

    (ii)  compute ( )( ) ( 1) ( 1) ( )k k k k
j j i jx fx xλ− −= − ∇ and    ( )( )k

jf x ; 

    (iii) 1+← jj ; 

until   j = m; 

find the best value off from all ( )( )k
jf x along with ( )k

jx  and store it in ( )k
newf  and ( )k

newX  respectively; 

assign ( ) ( )k k
newoldf f←  , ( ) ( )k k

newold xx ← ; 

end while 

print ( )k
newf  , ( )k

newX  and k, the number of iterations at which the solution is obtained; 

end 

 

 

5. Numerical Results and discussions 
    

To demonstrate the performance of our proposed algorithm, numerical experiments have 

been carried out independently 15 times (15 trials) considering five standard test functions (f1 

to f5) available in the existing literature. For solving these test functions, the algorithms for 

GASDM and PSDM have been coded in C programming and implemented on a Pentium IV, 

2.66 GHZ with 512 MB RAM PC in LINUX environment. The results have been compared 

with the same of hybrid Taguchi Genetic Algorithm (Tsai et al., 2004) and hybrid descent 

method (Yiu et al., 2004) and displayed those in Table 2 and Table 3. In numerical 

experiments, GA parameters (like crossover rate, mutation rate and maximum generation 

numbers) of both GASDM and PSDM (for step length computation) are defined as follows: 

crossover rate [pc(t)] ∈ [0.8, 0.9], mutation rate [pm(t)] ∈ [0.15,0.20], Maximum generation 

(m_gen) = 5 

On the other hand, the population sizes for step length computation in both the 

methods are displayed in Table 1.  
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Table  1. Population size (p_size) in GASDM and PSDM 
 

 

 

 

 

The number of initial approximations (population) in PSDM for test functions f1 to f4  is 20 

and for f5, it is 15.  

 

The details of test functions along with discussions are given below: 

 

f1. 
2

1 1

1
( ) cos 1

4000

nn
i

i
i i

x
f x x

i= =

 
= − + 

 
∑ ∏  

This function has global minimum at ( )* 0,0,0,.....,0x =  with ( ) 0* =xf . For both GASDM 

and PSDM methods with n = 1000, the initial approximation(s) has been taken randomly 

from[ ]nnn,− . In GASDM, 80% of the solutions converge to the global or close to global 

optima and it takes on an average 70.83s performing 2461 function evaluations. However, in 

PSDM method, 100% success rate has been found. It takes on an average 91.4s to converge 

to global point, performing 61280 function evaluations. The time taken to converge to global 

point is found to be far better than that obtained from HDM.  

 

f2. 
2

1( ) s in ( )f x k y
n

π π= +
1

2 2 2
1

1

{( ) (1 sin ( )} ( ) )
n

i i n
i

y a k y y aπ
−

+
=

− + + −∑  

 

1 0.25( 1),     -10 10,   1,2,...,i i iy x x i n= + − ≤ ≤ =  

where the constant k and a are fixed at 10 and 1 respectively. This function has several local 

minima, with only one global minimum at ( )* 1,1,...,1x = with ( ) 0* =xf  irrespective of the 

dimension of the problem. In GASDM method, the success rate of this function has been 

found to be poor in case of higher dimension i.e., for n = 100, n = 1000 and much better in 

lower dimension i.e., for n = 10. The PSDM method shows better performance giving 100% 

success for n = 10 as well as n = 100 but, success rate is little down by 20% for n = 1000. The 

time taken by each of these methods is comparatively lower than that of HDM except the 

same for n = 10 in case of PSDM. 

 

Test functions 
Method 

f1 f2 f3 f4 f5 

GASDM 10 20 10 9 17 

PSDM 10 20 10 20 15 
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f3. ( )
2

1 1

n i

j
i j

f x x
= =

 
=  

 
∑ ∑ , -100 ≤ xi ≤ 100, n = 30 

This function has so many local minima. Therefore, it is challenging to obtain the global 

solution. From Table 3, it is seen that the success rates in GASDM and PSDM methods are 

87% and 100% respectively. In this case, the average number of function evaluations in 

GASDM is much lower than HTGA whereas the same is much higher in PSDM.  

 

f4.   ( ) 2

1

n

i
i

f x x
=

=∑ ,  -100 ≤ xi ≤ 100  

This function has only one local minimum which is also global located at * (0,0,...,0)x =  

with a function value *( ) 0f x = . In both the methods GASDM and PSDM with dimension n = 

30, 100% success rates have been achieved. On the other hand, the average number of 

function evaluations in each of these methods is much lower than HTGA. 

 

f5.   ( ) ( ) ( )
1 2 22

1
1

100 1
n

j j j
i

f x x x x
−

+
=

 = − + −
  ∑ , -5≤ xi ≤ 10 

The above function has a global minimum at * (1,1,1,....,1)x = with *( ) 0f x = . In both 

GASDM and PSDM methods with dimension n = 100, 100% success has been found. These 

methods take on average 11.05s and 26.12 minutes CPU times with 36110 and 325878 

function evaluations respectively to reach the global value. In HTGA, the average number of 

function evaluations is higher than that of GASPM but lower than PSDM.  

Again, from Table 3, it is observed that the results of PSDM are either better or 

encouraging than that of GASDM, HTGA and HDM for all test functions. In HTGA, the 

average number of function evaluations is lower than the same in PSDM, for all test functions 

except the test functions f4. However, the memory requirement for HTGA is higher than 

PSDM as HTGA is a combined method of GA and well known Taguchi method which 

creates a large array of orthogonal matrix for generating better chromosomes from randomly 

selected two chromosomes. As a result, HTGA will take larger CPU time than that of PSDM. 

So, in comparison of different methods in the context of different factors, it can be concluded 

that the multi-point approximations approach PSDM is better than other methods mentioned 

in this work.  
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Table 2. Comparison of different methods 

Test function Average number of function evaluations 

(Frequency of occurrence of close to global solution [in %]) 

[Average CPU time] 
(number 

of variables) 
PSDM GASDM HTGA HDM 

61280 7392 - - 

(100) (80) (-) (-) f1(1000) 

[91.4s] [70.83] [-] [-] 
     11336 5881 - - 

(100) (73) (-) (-) f2 (10) 

[3.18s] [1.73s] [-] [1.57-2.25s] 
     77507 8834 - - 

(100) (33) (-) (-)  f2 (100) 

[54.94s] [12.36s] [-] [183.4s-39.1s] 
     457040 28279 - - 

(80) (47) (-) (-) f2 (1000) 

[36.25s] [363.63s] [-] [4.5 – 8.8h] 
     96831 9726 26469 - 

(100) (87) (-) (-) f3 (30) 

[44.8s] [4.5s] [-] [-] 
     115 42 20844 - 

(100) (100) (-) (-) f4 (30) 

[0.01s] [0.001s] [-] [-] 
     325878 36110 60737 - 

(100) (100) (-) (-) f5(100) 

[26.12s] [11.05s] [-] [-] 
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Table 3. Comparison of different methods 

Test function Best found solution 

(Worst found solution) 

{Average solution} 

[Standard Deviation] 

 
( number 

of variables ) 
 
 
 

PSDM GASDM HTGA HDM 

0 0 - 0 

0 (0.74 × 10-4) (-) (-) 

{ 0 } {0.99 × 10-5} { - } { - } 
f1(1000) 

[ 0 ] [0.26 × 10-3] [ - ] [ - ] 

     0 0 0 0 

0 -0.9331 (-) (-) 

{ 0 } {0.1659} { - } { - } 

 
f2 (10) 

 
 

[ 0 ] [0.3297] [ - ] [ - ] 

     0 0 0 0 

0 -0.3755 (-) (-) 

{ 0 } {0.1206} { - } { - } 

 
f2 (100) 

 
 

[ 0 ] [0.1500] [ - ] [ - ] 

     0 0 - 0 

(0.31 × 10-3) -0.0219 (-) (-) 

{0.16 × 10-3} {0.42 × 10-4} { - } { - } 
f2 (1000) 

[0.83 × 10-4] [0.64 × 10-4] [ - ] [ - ] 

     0 0 0 0 

0 (0.40 × 10-8) (-) (-) 

{ 0 } {0.4 × 10-9} { - } { - } 
f3 (30) 

[ 0 ] [0.11 × 10-8] [ - ] [ - ] 

     0 0 0 0 

0 0 (-) (-) 

{ 0 } { 0 } { - } { - } 
f4 (30) 

[ 0 ] [ 0 ] [ - ] [ - ] 

     0 0 0 0 

0 0 (-) (-) 

{ 0 } { 0 } { - } { - } 
f5 (100) 

[ 0 ] [ 0 ] [ - ] [ - ] 
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6. Concluding remarks 
 

In this paper, we have modified the existing steepest descent method (due to Cauchy, Armijo 

and others) by introducing an efficient heuristic method, called Genetic algorithm for finding 

the step length in each iteration. Then to overcome the difficulties faced in the steepest 

descent method, we have developed population based steepest descent method (PSDM) 

considering a set of points as initial approximations. As the method PSDM is a multipoint 

approximation method, it requires more time and more function evaluations than single point 

approximation methods. In the proposed PSDM, decent method is incorporated for each 

approximation. Due to the random selection of initial approximations from the search space, 

the proposed PSDM possesses the merits of global exploration, fast convergence and 

robustness and statistical soundness. The computational experiments show that the proposed 

PSDM can find the global or close to global optimal solutions and it takes lesser time and 

memory space than HTGA as well as HDM to solve the problem by computer. Due to this 

feature, this method is more efficient. However, for a particular type of problem with one 

global optimum point surrounded by large number of local optima, this method does not 

work properly. In most of the trials, it gets stuck to the local optima instead of global. 

 As both the methods are gradient based, the methods will be applicable only to those 

problems where the search space is continuous and the objective function is differentiable in 

nR , n being the number of decision variables. Clearly, in solving some real life problems 

like; structural optimization, inventory control, numerical optimization, image processing, 

robotics, circuit design the proposed methods may be applied. 
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