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A new alternating direction method for co-coercive

variational inequality problems with linear equality

and inequality constraints
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Abstract. In this paper, we propose a new alternating direction method for solving co-

coercive variational inequality problems VI(f, S) with both linear equality and inequality

constraints without the need to add any extra slack variables. We focus on the underlying

function f does not have an explicit form and only its function values can be employed in the

new method. Under the condition that the underlying function f is co-coercive, we prove the

convergence of the new method. Preliminary numerical experiments are included to illustrate

the efficiency of the new method.
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1 Introduction

Let S ⊂ Rn is a nonempty closed convex subset of Rn and f is a mapping from Rn into itself. The

variational inequality problem, is to find a vector x∗ ∈ S such that

(x − x∗)⊤f(x∗) ≥ 0, ∀x ∈ S.

Variational inequality problem serves as very general mathematical models of numerous applications

arising in economics, engineering, transportation, and so forth. It includes nonlinear complementarity

problems(when S = Rn
+) and system of nonlinear equations(when S = Rn). Thus, it has been extensively

investigated. There are substantial number of iterative methods including the projection method and

its variant forms[4-13], the linearized Jacobi method[15], Newton-type method[15-16], etc. We refer the

readers to the excellent monograph of Faccinei and Pang[1,2] and the references therein.
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In this paper, we will focus our attention on the following co-coercive variational inequality problem,

denoted by VI(f, S):

Find x∗ ∈ S such that (x − x∗)⊤f(x∗) ≥ 0, ∀x ∈ S, (1)

where the feasible set S includes not only linear equality constraints but also linear inequality constraints,

i.e.,

S = {x ∈ Rn|Ax = b, Cx ≤ d, x ∈ X}, (2)

where C ∈ Rl×n, d ∈ Rl and X is a simple nonempty closed convex subset of Rn. The concerned function

f is co-coercive on X . That is, it has the following property: there exists a constant µ > 0 such that

(x − x′)⊤(f(x) − f(x′)) ≥ µ‖f(x) − f(x′)‖2, ∀x, x′ ∈ X .

It is obvious that the co-coercivity (with modulus µ) implies the Lipschitz continuity (with constant

1/µ) and monotonicity (but not necessarily strongly monotonicity). This problem has several important

applications in many fields, such as the capacitated transportation problem[3], the capacitated traffic

assignment problem[17] and the packet routing in telecommunication with path and flow restrictions[18].

Note that the alternating direction methods in [4-7] can also be used to solve the variational inequality

problem VI(f, S) by introducing a slack vector z to the linear inequality constraints to transform structure

(2) to the following form:

S = {(x, z) ∈ Rn × Rl|Ax = b, Cx + z = d, x ∈ X , z ≥ 0}.

However, this will increase the dimension of the variational inequality problem from n to n + l, leading

to more computational complexity, especially when there are many inequality constraints in S.

Recently, Zhou, Chen and Han[11] proposed an extended alternating direction method for VI(f, S) to

handle both the linear equality and inequality constraints directly. At the same time, it retains the good

features of the modified alternating direction method[4,9,10]. However, the method requires an Armijo-

type line search procedure to obtain a proper parameter β with a new projection needed for each trial

point, and this can be very computationally expensive; Zhang and Han[6] gave an alternating direction

method for co-coercive variational inequality problems with S only including linear equality constraints,

which solves a series of small-scale easier problems to solving the original variational inequality problem,

and is simple provided that the feasible set is simple.

In this paper, we extend Zhang and Han’s method to solve the co-coercive VI(f, S), and a new

alternating direction method without line search is proposed which inherits all nice properties which

Zhang and Han’s method has.

The paper is organized as follows. In the next section, some basic definitions and properties used in

this paper are summarized. In Section 3, we formally present the new alternating direction method, and
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prove its global convergence. We report some preliminary computational results in Section 4 and some

final conclusions are given in the last section.

2 Preliminaries

In this section, we summarize some basic properties and related definitions which will be used in the

following discussions.

All matrices and vectors are real. For a vector x ∈ Rn and a matrix C ∈ Rn×n, we denote ‖x‖ =
√

x⊤x

as the Euclidean norm and ‖C‖ = sup{ ‖Cx‖
‖x‖ |‖x‖ 6= 0} as the induced matrix norm, where the transpose

of x is denoted by x⊤. The projection of a point x ∈ Rn onto the closed convex set K , denoted by

PK [x], is defined as the unique solution of the problem

min ‖x − y‖, subject to y ∈ K.

The following well-known property of the projection operator plays an important role in the convergence

analysis of our method.

Lemma 2.1. Let K be a nonempty closed convex subset of Rn. For any x, y ∈ Rn and any z ∈ K, the

following properties hold:

(x − PK [x])⊤(z − PK [x]) ≤ 0. (3)

‖PK [x] − PK [y]‖2 ≤ ‖x − y‖2 − ‖PK [x] − x + y − PK [y]‖2. (4)

From (4), we can see that the projection operator PK [·] is nonexpansive, that is,

‖PK [x] − PK [y]‖ ≤ ‖x − y‖. (5)

By appending a Lagrangian multiplier vector y ∈ Rm to the linear equality constraint Ax = b and

another Lagrangian multiplier vector z ∈ Rl to the linear inequality constraint Cx ≤ d, the equivalent

form of the variational inequality problem VI(f, S) can be expressed as follows, denoted by VI(Q,W):

Find a vector w∗ ∈ W , such that

(w − w∗)⊤Q(w∗) ≥ 0 ∀w ∈ W , (6)

where

w =









x

y

z









, Q(w) =









f(x) − A⊤y + C⊤z

Ax − b

d − Cx









,W = X × Rm ×Z,
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where Z = Rl
+.

It is well known[14] that problem VI(Q,W) is equivalent to finding zeros of

e(w, β) :=









e1(w, β)

e2(w, β)

e3(w, β)









=









x − PX [x − β(f(x) − A⊤y + C⊤z)]

β(Ax − b)

z − PZ [z − β(d − Cx)]









. (7)

In addition, we define

r(w, β) :=









r1(w, β)

r2(w, β)

r3(w, β)









=









x − PX [x − β(f(x) − A⊤(y − β(Ax − b)) + C⊤z)]

β(Ax − b)

z − PZ [z − β(d − Cx)]









. (8)

Therefore, from the second inequality of (7), solving VI(Q,W) is equivalent to finding a zero point of

r(w, β) for any β > 0. That is

w is a solution of VI(Q,W) ⇐⇒ e(w, β) = 0 ⇐⇒ r(w, β) = 0, ∀β > 0.

Hence, both ‖e(w, β)‖ and ‖r(w, β)‖ can be viewed as a residual function, which measures how much w

fails to be a solution point of VI(Q,W).

We make the following standard assumptions throughout this paper:

Assumptions. • f is a co-coercive function on X with modulus µ.

• The solution set of problem VI(Q,W), denoted by W∗, is nonempty.

• X is a simple closed convex set. That is, the projection onto the set is simple to carry out(e.g., X
is the nonnegative orthant Rn

+, or more generally, a box).

3 Algorithm and global convergence

In this section, we present the algorithm for solving VI(Q,W) and show its global convergence.

Algorithm 3.1. A New Alternating Direction Method for VI(Q,W)

Step 0. Given ε > 0, choose w0 = (x0, y0, z0)⊤ ∈ W , δ ∈ (0, 2), 0 < βL ≤ β0 ≤ βU < 4µ and set k:=0.

Step 1. Set

x̃k = PX [xk − ηkαk(e1(w
k, βk) − βkC⊤e3(w

k, βk))], (9)

ỹk = yk − ηkαk[e2(w
k, βk) − βkAe1(w

k, βk)], (10)

z̃k = PZ [zk − ηkαk(e3(w
k, βk) + βkCe1(w

k, βk))], (11)

where

αk =
1 − βk/(4µ)

1 + β2
k‖C⊤C‖ . (12)
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ηk =
δ(1 + β2

k‖C⊤C‖)(‖e1(w
k, βk)‖2 + ‖e3(w

k, βk)‖2)

(1 + β2
k‖C⊤C‖)(‖e1(wk, βk)‖2 + ‖e3(wk, βk)‖2) + ‖e2(wk, βk) − βkAe1(wk, βk)‖2

. (13)

Step 2. Set

d(w̃k, βk) =









(I + β2
kA⊤A)r1(w̃

k, βk) − βkC⊤r3(w̃
k, βk)

r2(w̃
k, βk) − βkAr1(w̃

k, βk)

βkCr1(w̃
k, βk) + r3(w̃

k, βk)









, (14)

where w̃k = (x̃k, ỹk, z̃k)⊤.Then compute step size tk by

tk =
(1 − βk/(4µ))‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2

‖d(w̃k, βk)‖2
. (15)

Step 3. Determine the next iterate wk+1 = (xk+1, yk+1, zk+1)⊤ via

wk+1 = PW [w̃k − δtkd(w̃k, βk)]. (16)

Step 4. If ‖r(w̃k, βk)‖ < ǫ, stop; otherwise, choose βk+1 ∈ [βL, βU ]. Set k := k + 1 and goto Step 1.

We begin our proof with the following lemma, which is motivated by Lemma 4.1 of [6].

Lemma 3.1. Let w∗ = (x∗, y∗, z∗)⊤ ∈ W∗, and let the function f be a co-coercive function with modulus

µ > 0. Then, for any β satisfying 0 ≤ β ≤ 4µ, we have

(x − x∗)⊤(e1 − βC⊤e3) + (y − y∗)⊤(e2 − βAe1) + (z − z∗)⊤(e3 + βCe1) ≥ (1 − β

4µ
)‖e1‖2 + ‖e3‖2, (17)

where e1 = e1(w, β), e2 = e2(w, β), e3 = e3(w, β).

Proof. Setting x := x − β[f(x) − A⊤y + C⊤z] and z := x∗ in (3), we have

(PX [x − β(f(x) − A⊤y + C⊤z)] − x∗)⊤(x − β[f(x) − A⊤y + C⊤z]

− PX [x − β(f(x) − A⊤y + C⊤z)]) ≥ 0.

Then from the definition of e1, we can get

(x − x∗ − e1)
⊤(e1 − β[f(x) − A⊤y + C⊤z]) ≥ 0. (18)

Similarly, setting x := z − β(d − Cx) and z := z∗ in (3), we have

(PZ [z − β(d − Cx)] − z∗)⊤(z − β(d − Cx) − PZ [z − β(d − Cx)]) ≥ 0,

that is

(z − z∗ − e3)
⊤(e3 − β(d − Cx)) ≥ 0. (19)

Furthermore, because w∗ ∈ W∗ is a solution of VI(Q,W), we have

(PX [x − β(f(x) − A⊤y + C⊤z)] − x∗)⊤[f(x∗) − A⊤y∗ + C⊤z∗] ≥ 0,
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i.e.,

β(x − x∗ − e1)
⊤[f(x∗) − A⊤y∗ + C⊤z∗] ≥ 0, (20)

and

Ax∗ − b = 0. (21)

(PZ [z − β(d − Cx)] − z∗)⊤(d − Cx∗) ≥ 0,

i.e.,

β(z − z∗ − e3)
⊤(d − Cx∗) ≥ 0. (22)

By adding (18) and (20) and using (21), it follows that

(x − x∗ − e1)
⊤[e1 − β(f(x) − f(x∗)) + βA⊤(y − y∗) − βC⊤(z − z∗)] ≥ 0,

which means that

(x − x∗)⊤e1 + (y − y∗)⊤(e2 − βAe1) + β(z − z∗)⊤(Ce1)

≥ ‖e1‖2 + β(x − x∗)⊤(f(x) − f(x∗)) − βe⊤1 (f(x) − f(x∗)) + β(Cx − Cx∗)⊤(z − z∗)

≥ ‖e1‖2 + βµ‖f(x) − f(x∗)‖2 − (βµ‖f(x) − f(x∗)‖2 + β
4µ
‖e1‖2)

+β(Cx − Cx∗)⊤(z − z∗)

= (1 − β
4µ

)‖e1‖2 + β(Cx − Cx∗)⊤(z − z∗),

(23)

where the second inequality follows from the inequality that for any two vectors a, b ∈ Rn,

a⊤b ≤ ̺‖a‖2 + ‖b‖2/(4̺), ∀̺ > 0,

and f is co-coercive with modulus µ. Similarly, by adding (19) and (22), we obtain

(z − z∗ − e3)
⊤(e3 + β(Cx − Cx∗)) ≥ 0.

That is

(z − z∗)⊤e3 − β(x − x∗)⊤(C⊤e3) ≥ ‖e3‖2 − β(Cx − Cx∗)⊤(z − z∗). (24)

Then adding (23) and (24), we get

(x − x∗)⊤(e1 − βC⊤e3) + (y − y∗)⊤(e2 − βAe1) + (z − z∗)⊤(e3 + βCe1)

≥ (1 − β

4µ
)‖e1‖2 + ‖e3‖2.

This completes the proof. Q.E.D.

Lemma 3.2. Let w∗ = (x∗, y∗, z∗)⊤ ∈ W∗, and let the function f be a co-coercive function with modulus

µ > 0. Then, for any β satisfying 0 ≤ β ≤ 4µ, we have

(x − x∗)⊤(r1 + β2A⊤Ar1) + (y − y∗)⊤(r2 − βAr1) + (z − z∗)⊤(βCr1 + r3)

≥ (1 − β

4µ
)‖r1‖2 + ‖r2‖2 + ‖r3‖2,

166



A New Alternating Direction Method for Variational Inequality Problems

where r1 = r1(w, β), r2 = r2(w, β), r3 = r3(w, β).

Proof. The proof of this lemma is much similar to that of the above lemma, so is omitted. Q.E.D.

Remark 3.1. In fact, Lemma 3.2 has proved that −d(w, β) is a descent direction of the merit function

1

2
||w − w∗||2 whenever w ∈ W is not a solution of VI(Q,W).

In the following, we assume that the Algorithm 3.1 generates an infinite sequence {wk}, otherwise,

an approximate solution wk ∈ W is obtained.

Lemma 3.3. Suppose that f is a co-coercive function with modulus µ > 0 and w∗ = (x∗, y∗, z∗)⊤ ∈
W∗. For given wk and 0 ≤ βk ≤ 4µ, let x̃k, ỹk and z̃k be defined by (9)-(11), respectively and w̃k =

(x̃k, ỹk, z̃k)⊤. Then

‖w̃k − w∗‖2 ≤ ‖wk − w∗‖2 − (2 − δ)ηkα2
k(1 + β2

k‖C⊤C‖)(‖e1‖2 + ‖e3‖2), (25)

where e1 = e1(w
k, βk), e2 = e2(w

k, βk), e3 = e3(w
k, βk).

Proof. From (9), we have

‖x̃k − x∗‖2

≤ ‖xk − x∗ − ηkαk(e1 − βC⊤e3)‖2 − ‖xk − ηkαk(e1 − βC⊤e3) − x̃k‖2

= ‖xk − x∗‖2 − 2ηkαk(xk − x∗)⊤(e1 − βC⊤e3) − ‖xk − x̃k‖2

+2ηkαk(xk − x̃k)⊤(e1 − βC⊤e3),

(26)

where the inequality follows from (4) and x∗ ∈ X . From(10),

‖ỹk − y∗‖2

= ‖yk − ηkαk(e2 − βkAe1) − y∗‖2

= ‖yk − y∗‖2 − 2ηkαk(yk − y∗)⊤(e2 − βkAe1) + η2
kα2

k‖e2 − βkAe1‖2.

(27)

Similarly, from (11), we have

‖z̃k − z∗‖2

≤ ‖zk − z∗ − ηkαk(e3 + βkCe1)‖2 − ‖zk − ηkαk(e3 + βkCe1) − z̃k‖2

= ‖zk − z∗‖2 − 2ηkαk(zk − z∗)⊤(e3 + βkCe1) − ‖zk − z̃k‖2

+2ηkαk(zk − z̃k)⊤(e3 + βkCe1),

(28)

where the inequality also follows from (4) and z∗ ∈ Z. Adding (26)-(28), it follows that

‖w̃k − w∗‖2

≤ ‖wk − w∗‖2 − ‖xk − x̃k‖2 − ‖zk − z̃k‖2

+2ηkαk(xk − x̃k)⊤(e1 − βkC⊤e3) + 2ηkαk(zk − z̃k)⊤(e3 + βkCe1) + η2
kα2

k‖e2 − βkAe1‖2

−2ηkαk[(1 − βk

4µ
)‖e1‖2 + ‖e3‖2]
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≤ ‖wk − w∗‖2 + η2
kα2

k(‖e1 − βkC⊤e3‖2 + ‖e3 + βkCe1‖2) + η2
kα2

k‖e2 − βkAe1‖2

−2ηkα2
k(1 + β2

k‖C⊤C‖)(‖e1‖2 + ‖e3‖2)

= ‖wk − w∗‖2 + η2
kα2

k[(1 + β2
k‖C⊤C‖)(‖e1‖2 + ‖e3‖2) + ‖e2 − βkAe1‖2]

−2ηkα2
k(1 + β2

k‖C⊤C‖)(‖e1‖2 + ‖e3‖2),

where the first inequality follows from Lemma 3.1, and the second inequality follows from Cauchy-

Schwartz inequality and the definition of αk. The assertion follows from the above inequality and the

definition of ηk immediately. This completes the proof. Q.E.D.

Similar to Lemma 4.3 of [6], we have:

Lemma 3.4. Suppose that f is a co-coercive function with modulus µ > 0 and w∗ = (x∗, y∗, z∗)⊤ ∈ W∗.

Let wk = (xk, yk, zk)⊤ be generated by Algorithm 3.1. Then

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − (2 − δ)ηkα2
k(1 + β2‖C⊤C‖)(‖e1(w

k, βk)‖2 + ‖e3(w
k, βk)‖2)

− δ(2 − δ)tk[(1 − βk

4µ
))‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2].

Proof. From the definition of wk+1 and w∗ ∈ W , it follows that

‖wk+1 − w∗‖2

≤ ‖w̃k − δtkd(w̃k, βk) − w∗‖2

= ‖w̃k − w∗‖2 + δ2t2k‖d(w̃, βk)‖2 − 2δtk(w̃k − w∗)⊤d(w̃, βk)

≤ ‖w̃k − w∗‖2 + δ2t2k‖d(w̃, βk)‖2 − 2δtk[(1 − βk

4µ
)‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2]

≤ ‖wk − w∗‖2 − (2 − δ)ηkα2
k(1 + β2

k‖C⊤C‖)(‖e1(w
k, βk)‖2 + ‖e3(w

k, βk)‖2)

−δ(2 − δ)tk[(1 − βk

4µ
)‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2],

where the first inequality follows from the nonexpansivity of the projection operator (5), and the second

inequality follows from Lemma 3.2, and the last inequality follows from (25) and the definition of the

step size tk. This completes the proof. Q.E.D.

The following lemma shows that the step size tk is bounded away from zero.

Lemma 3.5. For all k ≥ 0, we have

tk ≥ ς, (29)

where ς > 0 is a constant.

Proof. It follows from the definition of r(w̃k , βk) and βk ≤ βU that

‖(I + β2
kA⊤A)r1(w̃

k, βk) − βkC⊤r3(w̃
k, βk)‖ ≤ (1 + β2

U‖A⊤A‖ + βU‖C⊤‖)‖r(w̃k, βk)‖,

‖r2(w̃
k, βk) − βkAr1(w̃

k, βk)‖ ≤ (1 + βU‖A‖)‖r(w̃k, βk)‖,
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‖βkCr1(w̃
k, βk) + r3(w̃

k, βk)‖ ≤ (1 + βU‖C‖)‖r(w̃k, βk)‖.

The above three inequalities and the definition of d(w̃k, βk) imply

‖d(wk, µk)‖ ≤ c1‖r(w̃k, βk)‖, ∀k ≥ 0, (30)

where

c1 = 3 + βU (‖A‖ + ‖C‖ + ‖C⊤‖) + β2
U‖A⊤A‖.

On the other hand, from 0 < βL ≤ βk ≤ βU < 4µ, we have

(1 − βk

4µ
)‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2 ≥ c2‖r(w̃k, βk)‖2, (31)

where c2 = 1 − βU/(4µ) > 0. Therefore, from (30) (31) and the definition of tk, we have

tk ≥ ς,

where ς = c2/c2
1. This completes the proof. Q.E.D.

We are now ready to prove the global convergence of the sequence {wk} generated by our algorithm.

Theorem 3.1. Suppose that the function f is co-coercive with modulus µ and βL ≤ βk ≤ βU < 4µ for

all k ≥ 0. The sequence {wk} generated by Algorithm 3.1 converges to a solution of VI(Q, W ) globally.

Proof. Since δ ∈ (0, 2) and tk > 0, ηk > 0, it follows from Lemma 3.4 that

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 ≤ · · · ≤ ‖w0 − w∗‖2 < +∞,

which means that the sequence {wk} is bounded. Thus, it has at least one cluster point, denoted as

w∞ = (x∞, y∞, z∞)⊤. Again from Lemma 3.4, we have

(2 − δ)ηkα2
k(1 + β2

k‖C⊤C‖)(‖e1(w
k, βk)‖2 + ‖e3(w

k, βk)‖2) + δ(2 − δ)tk

[(1 − βk

4µ
)‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2]

≤ ‖wk − w∗‖2 − ‖wk+1 − w∗‖2.

Summarizing both sides of the above inequality, we get

∞
∑

k=0

{(2 − δ)ηkα2
k(1 + β2

k‖C⊤C‖)(‖e1(w
k, βk)‖2 + ‖e3(w

k, βk)‖2) + δ(2 − δ)tk

[(1 − βk

4µ
)‖r1(w̃

k, βk)‖2 + ‖r2(w̃
k, βk)‖2 + ‖r3(w̃

k, βk)‖2]}

≤
∞
∑

k=0

{‖wk − w∗‖2 − ‖wk+1 − w∗‖2}

≤ ‖w0 − w∗‖2

< +∞,
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which together with (29) and βk ≤ βU < 4µ imply that

lim
k→∞

ηkα2
k(‖e1(w

k, βk)‖2 + ‖e3(w
k, βk)‖2) = 0. (32)

lim
k→∞

‖r1(w̃
k, βk)‖ = lim

k→∞
‖r2(w̃

k, βk)‖ = lim
k→∞

‖r3(w̃
k, βk)‖ = 0. (33)

On the other hand, from the boundedness of {wk, } and {βk}, it is true that the dominator of ηk is

bounded. That is, there is a constant M > 0, such that

(1 + β2
k‖C⊤C‖)(‖e1(w

k, βk)‖2 + ‖e3(w
k, βk)‖2) + ‖e2(w

k, βk) − βkAe1(w
k, βk)‖2 < M, ∀k ≥ 0.

We therefore have that

ηkα2
k(‖e1(w

k, βk)‖2 + ‖e3(w
k, βk)‖2) ≥ δα2

k(‖e1(w
k, βk)‖2 + ‖e3(w

k, βk)‖2)2

M

≥ δ[1 − βU/(4µ)]2(‖e1(w
k, βk)‖2 + ‖e3(w

k, βk)‖2)2

(1 + β2
U‖C⊤C‖)2M ,

which together with (32) and βU < 4µ imply that

lim
k→∞

‖e1(w
k, βk)‖ = lim

k→∞
‖e3(w

k, βk)‖ = 0. (34)

From (9), we have

‖xk − x̃k‖

= ‖xk − PX [xk − ηkαk(e1(w
k, βk) − βkC⊤e3(w

k, βk))]‖

≤ ηkαk‖e1(w
k, βk) − βkC⊤e3(w

k, βk)‖

≤ δ(1 − βL

4µ
)(‖e1(w

k, βk)‖ + βU‖C⊤‖‖e3(w
k, βk)‖),

where the first inequality follows from the nonexpansivity of the projection operator and xk ∈ X . From

the above inequality and (34), we have

lim
k→∞

‖xk − x̃k‖ = 0. (35)

Similarly, we have

‖yk − ỹk‖

= ‖yk − yk + ηkαk[e2(w
k, βk) − βkAe1(w

k, βk)]‖

= ηkαk‖βk(Axk − b) − βkAe1(w
k, βk)‖

≤ δ(1 − βL

4µ
)(βk‖A‖‖xk − x̃k‖ + βk‖Ax̃k − b‖ + βU‖A‖‖e1(w

k, βk)‖)

≤ δ(1 − βL

4µ
)(βU‖A‖‖xk − x̃k‖ + ‖r2(w̃

k, βk)‖ + βU‖A‖‖e1(w
k, βk)‖).
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Therefore, from the above inequality and (33)-(35), we have

lim
k→∞

‖yk − ỹk‖ = 0. (36)

Similarly, from (5) (11) and zk ∈ Z, we obtain

‖zk − z̄k‖

= ‖zk − PZ [zk − ηkαk(e3(w
k, βk) + βkCe1(w

k, βk))]‖

≤ δ(1 − βL

4µ
)(βU‖C‖‖e1(w

k, βk)‖ + ‖e3(w
k, βk)‖).

From the above inequality and (34), we get

lim
k→∞

‖zk − z̃k‖ = 0. (37)

From (35)-(37) and the boundedness of the sequence {wk}, we can get that w∞ is also a cluster point

of {w̃k} .Therefore, there exists a subsequence {w̃kj} = (x̃kj , ỹkj , z̃kj)⊤ converging to it. Without loss of

generality we can assume that

lim
k→∞

βkj
= β∗.

Taking limit along such a sequence in (33), we have

‖r1(w
∞, β∗)‖ = ‖r2(w

∞, β∗)‖ = ‖r3(w
∞, β∗)‖ = 0.

So w∞ is a solution of VI(Q,W).

In the following we prove that the sequence {wk} has exactly one cluster point. Assume that ŵ is

another cluster point of {wk}. Then we have

δ := ‖w∞ − ŵ‖ > 0.

Because w∞ is a cluster point of the sequence {wk}, there is a k0 > 0 such that

‖wk0 − w∞‖ ≤ δ

2
.

On the other hand, since {‖wk−w∞‖} is monotonically non-increasing, we have ‖wk−w∞‖ ≤ ‖wk0−w∞‖
for all k ≥ k0, and it follows that

‖wk − ŵ‖ ≥ ‖w∞ − ŵ‖ − ‖wk − w∞‖ ≥ δ

2
, ∀k ≥ k0,

which contradicts the fact that ŵ is a cluster point of {wk}. This contradiction assures that the sequence

{wk} converges to its unique cluster point w∞, which is a solution of VI(Q,W). This completes the

proof. Q.E.D.
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4 Preliminary Computational Results

In this section, we illustrate the necessity and efficiency of our method. To this end, we also code the

algorithm proposed by Zhang and Han[6] and the algorithm proposed by Zhou, Chen and Han[11].

Example 4.1. The example used here is a modification of the test problem in paper[6], which

constraint set S and the mapping f are taken, respectively, as

S = {x ∈ R5
+|

5
∑

i=1

xi ≤ 10},

and

f(x) = Mx + ρC(x) + q,

where M is an R5×5 asymmetric positive matrix and Ci(x) = arctan(xi−2), i = 1, 2, · · · , 5. The parameter

ρ is used to vary the degree of asymmetry and nonlinearity. The data of example are illustrate as follows:

M =





















0.726 −0.949 0.266 −1.193 −0.504

1.645 0.678 0.333 −0.217 −1.443

−1.016 −0.225 0.769 0.943 1.007

1.063 0.587 −1.144 0.550 −0.548

−0.256 1.453 −1.073 0.509 1.026





















and

q = (5.308, 0.008 ,−0.938, 1.024, − 1.312)⊤.

Thus, in this experiment, A = 0, b = 0, C = (1, 1, 1, 1, 1), d = 10. For Algorithm 3.1, we take βk = 0.06,

δ = 1.35. For the method in [6], denoted by Zhang and Han’s method, we add slack variables z to

convert the inequality constraints to equality constraints and take βk = 0.05, δ = 1.35 when ρ = 10 and

βk = 0.06, δ = 1.35 when ρ = 20. For the method in [11], denoted by Zhou, Chen and Han’s method,

we take τ = 1.98, µ = 0.4, v = 0.6, δ = 0.6. In this experiment, we take the stopping criterion ε = 10−6,

z0 = 0 as the initial point. All programs are coded in Matlab 7.1. ‘IN’ denotes the number of iterations

and ‘CPU’ denotes the CPU time in seconds.

The results in the Table 1 and Table 2 indicate that the performance of the Algorithm 3.1 is better

than that of Zhang and Han’s method and Zhou, Chen and Han’s method in terms of number of iteration.

Example 4.2. To show the advantage of the new alternating direction method for large scale prob-

lems, we implement Algorithm 3.1 to a set of spatial price equilibrium problem, which is a modification
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Table 1: Numerical results for ρ = 10.

Starting point Method IN CPU

Zhang and Han’s method 35 0.01

Zhou, Chen and Han’s method 31 0.01

(0 2.5 2.5 2.5 2.5) Algorithm 3.1 9 0.01

Zhang and Han’s method 38 0.01

Zhou, Chen and Han’s method 49 0.01

(25 0 0 0 0) Algorithm 3.1 17 0.01

Zhang and Han’s method 46 0.01

Zhou, Chen and Han’s method 21 0.01

(10 0 0 0 0) Algorithm 3.1 12 0.01

Zhang and Han’s method 35 0.01

Zhou, Chen and Han’s method 54 0.01

(10 0 10 0 10) Algorithm 3.1 9 0.01

of the problem in [5] by adding some inequality constraints, as follows:

min

m
∑

i=1

n
∑

j=1

(cijxij +
1

2
hijx

2
ij).

s.t.

n
∑

j=1

xij = si, i = 1, 2, · · · , m,

m
∑

i=1

xij = dj , j = 1, 2, · · · , n,

xi1 ≤ 0.1si, i = 1, 2, · · · , m,

xij ≥ 0, i = 1, 2, · · · , m, j = 1, 2, · · · , n,

where si is the supply amount on the ith supply market, i = 1, · · · , m and dj the demand amount on the

jth demand market, j = 1, · · · , n. cij ∈ (1, 100), hij ∈ (0.005, 0.01), sj and dj are generated randomly

in (0, 100) for all i = 1, · · · , m and j = 1, · · · , n. We take βk = 0.4, δ = 1.65 for Algorithm 3.1, and

βk = 0.2, δ = 1.6 for Zhang and Han’s method. The calculations were started with w0 = 0 and stopped

when

‖r1(w̃
k, βk)‖ + ‖r2(w̃

k, βk‖ + ‖r3(w̃
k, βk)‖ ≤ ε,

for Algorithm 3.1. For Zhang and Han’s method, the stop criterion is

‖r1(u
k, βk)‖ + ‖r2(u

k, βk)‖ ≤ ε,
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Table 2: Numerical results for ρ = 20.

Starting point Method IN CPU

Zhang and Han’s method 48 0.01

Zhou, Chen and Han’s method 45 0.01

(0 2.5 2.5 2.5 2.5) Algorithm 3.1 6 0.01

Zhang and Han’s method 51 0.01

Zhou, Chen and Han’s method 98 0.01

(25 0 0 0 0) Algorithm 3.1 10 0.01

Zhang and Han’s method 51 0.01

Zhou, Chen and Han’s method 20 0.01

(10 0 0 0 0) Algorithm 3.1 7 0.01

Zhang and Han’s method 50 0.01

Zhou, Chen and Han’s method 104 0.02

(10 0 10 0 10) Algorithm 3.1 7 0.01

where r1(u
k, βk) and r2(u

k, βk) is defined in [6]. The computational results are given in Table 3 for some

m and n. The numerical results given in Table 3 show that Algorithm 3.1 outperforms Zhang and Han’s

method, and it is attractive in practice.

5 Conclusions

In this paper, we observe a new descent direction at each iteration, and present a new alternating direction

method for co-coercive VI(f, S). Total computational cost of the method is very tiny provided that the

projection is easy to implement. Thus, the new method is applicable in practice. Under some mild

conditions, we proved the global convergence of the method. Some preliminary computational results

illustrated the efficiency of the algorithm.
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