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Abstract 

    This paper deals with a special case of the well known airline crew-scheduling problem which has been formulated 

considering the day-to-day assignment of the technical crew members to their legal round-trip rotations for all the 

scheduled flights connecting only two cities that will minimize the overall service times (including rest times) of all 

the crews. In this problem, the service times of crews from their starting city to another city are imprecise in nature. 

This impreciseness is represented by intervals. For solving this problem, two different methods are proposed: (a) an 

elitist genetic algorithm (EGA) with interval valued fitness function and (b) EGA approach after converting it into a 

multi-objective assignment problem with crisp objectives considering the centre and width values of the 

corresponding intervals. However, for the second method, at first, the multi-objective assignment problem is 

transformed into a single objective optimization problem with the help of Global Criterion Method (GCM) and then 

the reformulated problem is solved by EGA. The experimental results of the proposed methods to a realistic airline 

crew-scheduling problem are compared. Finally, the effect of changes of different genetic parameters on success rate 

of both the methods, computation times and function evaluations is observed by sensitivity analysis taking one at a 

time.  
 

Keywords: Crew-scheduling, airline, combinatorial optimization, interval order relation, Global Criterion Method, 
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1    Introduction 
Airline crew-scheduling problem is a world wide NP-hard combinatorial optimization problem 

with considerable economic significance. The basic airline crew-scheduling problem concerns the 

daily assignment of the crew members to round-trips for all the scheduled flights so that the total 

service time is minimized. 

      In the past, a variety of approaches using exact methods and efficient heuristics have already 

been proposed for solving airline crew-scheduling problems. Also there were a large number of 

contributions on various extensions to the basic problem. 
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      Marsten and Shepardson (1981), Gershkoff (1989) and Barutt and Hull (1990) solved small 

size problems using LP relaxation method. Hoffman and Padberg (1993) proposed exact method 

like branch and cut to solve airline crew-scheduling problems. Levine (1996) developed a 

heuristic method like hybrid genetic algorithm consisting of a steady-state genetic algorithm and a 

local search heuristic to solve the same problem. Ozdemir and Mohan (2001) also proposed 

genetic algorithm for crew scheduling in airlines. A bi-criterion approach for the airline crew 

rostering problem was proposed by Moudani et al. (2001). In this approach, the solution is 

associated with acceptable satisfaction levels for the crew staff. Klabjan et al. (2001) developed an 

airline crew scheduling model that maximizes the repetition or regularity of crew itineraries over a 

weekly horizon in addition to minimizing cost. Cordeau et al. (2001) proposed simultaneous 

aircraft routing and crew scheduling based on Benders decomposition method for finding a 

minimum cost set of aircraft routes as well as crew pairings with some side constraints. Recently, 

Zeghal and Minoux (2005) studied a new approach to the crew assignment problem in airlines that 

formulated and solved the two sub-problems, viz. Crew Pairing Problem followed by the Working 

Schedules Construction Problem. Again Schaefer et al. (2005) developed better approximate 

solution method for airline crew scheduling under uncertainty due to disruptions where they 

provided a lower bound on the cost of an optimal crew schedule in operations. 

      To the best of our knowledge, among all the aforesaid works the coefficients or cost 

parameters have been specified precisely by fixed (deterministic) real numbers. However, in real-

life, there may be many diverse situations arising due to rainy/foggy/cloudy weather, etc. for 

which the time taken by a flight for a trip from one place to another will not be fixed and so the 

service times of crews from their starting city to another city will be imprecise in nature. To 

represent such imprecise numbers, stochastic, fuzzy and fuzzy-stochastic approaches may be used. 

In stochastic approach, the coefficients/parameters are viewed as random variables with known 

probability distributions. On the other hand, in fuzzy approach, the parameters, constraints and 

goals are viewed as fuzzy sets/fuzzy numbers. It is also assumed that their membership functions 

are known. Again, in fuzzy-stochastic approach, some parameters are viewed as fuzzy sets and 

others, as random variables. However, it is not always easy for a decision maker to specify the 

appropriate membership function for fuzzy approach, exact probability distribution of a parameter 

for stochastic approach and both for fuzzy-stochastic approach. For these reasons, in this 

approach, impreciseness has been represented by intervals (wherein  the  actual  service  times  are  
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expected to lie). To solve this type of interval valued crew-scheduling problem, order relations 

between interval numbers are essential. To the best of our knowledge, very few researchers 

defined the order relations between interval valued numbers. Among them, one may refer to the 

works of Moore (1979), Ishibuchi and Tanaka (1990) and Chanas and Kuchta (1996). However, 

their definitions are not complete. Sengupta and Pal (2000) proposed two different approaches 

(one is deterministic and another is fuzzy) to compare any two interval valued numbers with 

respect to the optimistic as well as pessimistic decision makers’ point of view. However, in some 

cases, both of their approaches fail to find out the order relation between two interval valued 

numbers. 

      Genetic Algorithm (GA) is a powerful computerized heuristic search and optimization method 

based on the well-known Darwin’s principle of evolution, viz. “Survival of the fittest”. Holland 

(1976) developed the primary concept of GA. After that, a number of researchers have contributed 

much to the development of GA. At present, there are several text books on GA. Among them, the 

books of Goldberg (1989), Mitchell (1996), Gen and Cheng (1997) and Michalewicz (1999) are 

worth mentioning.    

      In the present paper, an airline crew-scheduling problem with interval valued time parameters 

has been proposed considering the service time (including rest time) of each crew as interval. 

Here, the problem (with interval objective) has been formulated as an assignment problem using 

interval arithmetic and existing recently developed complete definitions due to Mahato and 

Bhunia (2006) of interval order relations with respect to the pessimistic decision makers’ 

preference. To solve this interval valued crew-scheduling problem, two different methods have 

been proposed:  

(i)   an elitist genetic algorithm (EGA) with interval valued fitness function and  

(ii) EGA approach after converting it into a multi-objective assignment problem with crisp 

objectives considering both the centre and width values of the corresponding intervals.  

For the method (ii), at first, the multi-objective assignment problem is transformed into a single 

objective optimization problem with the help of Global Criterion Method (GCM) and then the 

reformulated problem is solved by EGA. Finally, the results of the proposed methods have been 

compared with the help of an example and to study the effect of changes of various genetic 

parameters on the performances of both the methods, sensitivity analyses have been done.  
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2    Order relations between interval valued numbers 
An interval valued number is defined either by its lower and upper limits or by its centre and 

width as 

                               [ , ] { : , }L R L RA a a x a x a x R= = ≤ ≤ ∈  

                     ,c wa a= { : , }c w c wx a a x a a x R= − ≤ ≤ + ∈  

where La  and Ra  are the lower and upper limits respectively, , 

 are the centre and width of A and R, the set of all real numbers. 

( ) / 2c L Ra a a= +

( ) / 2w R La a a= −

      Next, we shall discuss the order relations for finding the decision maker’s preference between 

interval valued times of minimization problems. We shall restrict only to pessimistic decision 

making for our crew scheduling problem as this will be very much beneficial for airline company. 

Let the uncertain times from two alternatives be represented by two closed intervals 

[ , ] ,c wL RA a a a a= = and [ , ] ,c wL RB b b b b= =  respectively. It is also assumed that the time of 

each alternative lies in the corresponding interval. These two intervals A and B may be of the 

following three types:  
 

Type–I: Both the intervals are disjoint. 

Type–II: Intervals are partially overlapping. 

Type–III: One interval is contained in the other. 
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Fig. 1(b) Type II intervals 

Fig. 1(c) Type III intervals 
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The three types of intervals are shown in Fig. 1(a), 1(b) and 1(c) for different situations. 

     For pessimistic decision making, the decision maker expects the minimum cost/time for 

minimization problems according to the principle “Less uncertainty is better than more 

uncertainty”. 

      According to Mahato and Bhunia (2006) the order relations of interval numbers for 

minimization problems in case of pessimistic decision making are as follows: 

Definition 1. Let us define the order relation minp≤  between , ,c wL RA a a a a⎡ ⎤⎣ ⎦= = and 

[ ], ,L R c wB b b b b= =  as    

min cp cA B a b< ⇔ <  for Type-I and Type-II intervals 

       ( ) ( )min c c w wpA B a b a b< ⇔ ≤ ∧ <  for Type-III intervals. 

 

However, for Type–III intervals with ( ) ( )c c w wa b a b< ∧ > , the pessimistic decision cannot be 

taken. Here, the optimistic decision is to be considered. 
 

3    Formulation of the crisp problem 
Let us consider the following assignment problem with interval objective: 

        Minimize   ( )
1 1

[ , ]
ij ij

n n

ijL R
i j

F x a a
= =

=∑∑ x

]

                           (1) 

        subject  to  j=1,2,…,n                                   (2) 
1

1,   
n

ij
i

x
=

=∑

        and             i=1,2,…,n                                   (3) 
1

1,   
n

ij
j

x
=

=∑

        where           i,j=1,2,…,n                                (4) {0,1},ijx ∈

and [ ,
ij ijL Ra a  being an interval representing the uncertain time for the assignment problem. 

      Now we formulate the interval valued objective function in (1) of the earlier mentioned 

problem as a crisp multi-objective one using Definition 1. 
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Definition 2. /x S∈  is an optimal solution of (1) subject to the constraints (2), (3) and 

restrictions (4) if and only if there is no other solution x S∈  which satisfies ( ) ( )/
minpF x F< x , 

 being the set of all feasible solutions of the problem. S
      As the order relation of two interval valued numbers depends upon both the centre and width 

values of the corresponding intervals, the optimization of both of them is to be considered here for 

optimization of the interval objective.  

       The centre ( )cF x  and the width ( )wF x  of the interval objective function ( )F x  in (1) is  

                  ( )
1 1

ij

n n

c
i j

c ijF x a
= =

=∑∑ x

w ij

                                          (5) 

( )
1 1

ij

n n

w
i j

F x a
= =

=∑∑ x

]

                                         (6) 

where and are the centre and width respectively of the interval [ ,
ijca

ijwa
ij ijL Ra a . 

      The solution set of (1) subject to the constraints (2), (3) and restrictions (4) defined by 

Definition 2 can be obtained from the following crisp multi-objective problem: 

                  Minimize{ },c wF F                                                   (7)  

subject to the constraints (2), (3) and restrictions (4). 
 

4    Assumptions and notations 
The following assumptions and notations are used in developing the proposed crew-scheduling 

problem. 

Assumptions 

(1) The flight service between two cities  and  of an airline company is considered. 1C 2C

(2) Running time of a flight from a city to another city lies in an interval. 

(3) Rest time of the crew in a city away from his starting city as well as his service time lie within 

intervals. 

(4) Every crew should be provided with more than  hours of rest before the return trip again and 

should not rest for more than ( ) hours for the return trip. 

1t

2t 1t>

(5) The airline company has residential facilities for the crews at both cities  and . 1C 2C
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Notations 

1 1

1 2[ , ]:i it t   time (hours) taken by the -th flight for a trip from city  to another city , 1i 1C 2C

2 2

2 1[ , ]:i it t   time (hours) taken by the -th flight for return trip via a different route, 2i

1 1
:

iC Dt
     

departure time of -th flight from , 1i 1C

2 2
:

iC Dt     departure time of -th flight from , 2i 2C

2 1
:

iC At      arrival time of -th flight at , 1i 2C

1 2
:

iC At      arrival time of -th flight at , 2i 1C

1 2,i i :      flight index i.e., 1, 2, ..., n, 

 n :          number of flights/crews, 

:ijx         decision variables. 

        The task is to find the optimal assignment schedule of the crews for a single day which 

minimizes the total service time (including rest time). 
 

5    Formulation of the problem 
To formulate the problem, the following two cases may arise: 

Case – 1: 

If all the crew is asked to reside at city  (so that they start from  and come back to  with 

minimum rest time at ), then the total service time (including the rest time at ) for different 

flights (i.e., corresponds to ) are given by the following  n × n matrix: 

1C 1C 1C

2C 2C

1i 2i

             ( )(1) (1)
1 [ , ]

ij ij

S
S ST a b=                                     

where      

     =  interval representing total service time (including rest time at ) for crew 

starting from  with transport vehicle  in the up direction and transport 

vehicle  in the down direction 

(1) (1)[ ,
ij ijS Sa b ] 2C

1C 1i

2i

                     =    
1 12 1

C A C Di i
t t−
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Case – 2: 

If all the crew is asked to reside at city  (so that they start from  and come back to  with 

minimum rest time at ), then the total service time (including the rest time at ) for different 

flights (i.e.,  corresponds to ) are similarly (as in Case – 1) given by the following  n × n  

matrix: 

2C 2C 2C

1C 1C

2i 1i

             ( )(2) (2)
2 [ , ]

ij ij

S
S ST a b=                                  

where 

        
2 21 2

(2) (2)[ , ]
ij ijS S C A C Di i

a b t t= −

      As a crew can reside either at city  or at , the minimum total service times (including 

rest times) can be obtained for different flights by choosing minimum value out of two interval 

times from  and , using interval order definition, viz.  Definition 1.  

1C 2C

1
ST 2

ST

         Thus we get the following n × n matrix: 

                   ( )[ , ]
ij ij

S S S
L RT t t=

where 

 [ , ]
ij ij

S S
L Rt t = minimum of  and , if both the rest times (at  and at  

)  

(1) (1)[ ,
ij ijS Sa b ] ]

]

(2) (2)[ ,
ij ijS Sa b 1C

2C 1 2,t t⎡ ⎤⎣ ⎦∈

               =  , if the rest time (at ) (1) (1)[ ,
ij ijS Sa b 1C 1 2,t t⎡ ⎤⎣ ⎦∉  

               =  , if the rest time (at ) (2) (2)[ ,
ij ijS Sa b ] 2C 1 2,t t⎡ ⎤⎣ ⎦∉  

Then the crew-scheduling problem will be as follows: 

              Minimize 
1 1

[ , ]
ij ij

n n
S S S

ijL R
i j

Z t t x
= =

=∑∑                               (8) 

subject to  j=1,2,…,n                              (9) 
1

1,   
n

ij
i

x
=

=∑
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              and            i=1,2,…,n                          (10) 
1

1,   
n

ij
j

x
=

=∑

              where   ∀ i,j=1,2,…,n                       (11) {0,1},ijx ∈

Our objective is to find the optimal assignment of crews by solving the above minimization 

problem. 
 

6    Solution Procedure 
Now, to solve the above mentioned constrained minimization problem with interval objective we 

shall develop two different methods M-1 and M-2 with the help of Elitist Genetic Algorithm 

(EGA). These methods are as follows: 

    M-1:  Elitist Genetic Algorithm (EGA) with interval valued fitness function and 

    M-2: Elitist Genetic Algorithms (EGA) after converting it into the following crisp multi-        

objective problem using equation (7): 

      Crisp Problem: 

                      Minimize { S
cZ , S

wZ }                                    (12) 

subject to the constraints (9) and (10) together with the restrictions (11),  

where 
1 1

ij

n n
S
c

i j

S
c ijZ t x

= =
=∑∑   and    

1 1
ij

n n
S S
w w

i j
ijZ t x

= =
=∑∑  

ij

S
ct , being centre and width of the interval valued coefficient in (8) respectively. 

ij

S
wt

      In the first method M-1, we shall solve the problem (8) – (11) using interval valued fitness 

function and interval order relations with respect to pessimistic decision maker’s point of view. 

On the other hand, for the second method M-2, we shall, at first, transform the above multi-

objective optimization problem (12) into a single objective optimization problem with the help of 

Global Criterion Method (GCM) as follows:  
 

Global Criterion Method (GCM) 
In this method, the ideal objective vector is used as a reference point. An objective vector 

minimizing each of the objective functions is called an ideal objective vector. To transform the 

problem (12) into the single objective optimization problem, the following steps are followed: 
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Step-1.  Solve the problem: 

 Minimize 
1 1

ij

n n
S S
c c

i j
ijZ t x

= =
=∑∑  

 subject to 

  
1

1, 1,2, ,
n

ij
i

x j n
=

= =∑  

  
1

1, 1,2, ,
n

ij
j

x i n
=

= =∑  

 where { }0,1 , , 1,2, ,ijx i j n∈ ∀ = . 

and obtain the optimum value, say, S
cZ ′ . Similarly, minimize the other objective function 

S
wZ  separately subject to the same constraints and restrictions and obtain the optimum 

value, say, S
wZ ′ . Thus, the ideal objective vector is ,S S

c wZ Z⎛ ⎞
⎜ ⎟
⎝ ⎠

′ ′ . 

Step-2. Now, using the above reference point, formulate the normalized distance function Z as 

                                    

1

 

p p p
S S S S
c c w w

S S
c w

Z Z Z ZZ
Z Z

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

′ ′− −= +
′ ′

 

Step-3. Thus the problem is to solve the following auxiliary problem: 
 

               Minimize   Z   ( of Step-2 )                                     (13) 
 

 subject to the same constraints and restrictions as in Step-1. 
 

      The exponent 1
p

 may be dropped. Problem with or without the exponent 1
p

 are equivalent 

for 1 , since problem in Step-3 is an increasing function of the corresponding problem 

without the exponent. Generally,  p is taken as 2. The solution say, 

p≤ < ∞

( )* *,S S
c wZ Z  of the problem (13) 

in Step-3 is Pareto optimal (Miettinen, 1999). 

      In each of the constrained minimization problems in Step-1 and Step-3, EGA has been 

developed for  integer variables 2n ijx  (whose values are either 0 or 1). 
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Implementation of Elitist Genetic Algorithm (EGA) 
The working steps of the elitist GA (EGA) have been given in Majumdar and Bhunia (2006). We 

shall now discuss the different processes/operators like initialization of chromosomes, genetic 

operators and elitism in details. 

      In our developed GA, a chromosome has been represented by a matrix (of order n) containing 

 genes 2n ijx  (i, j =1,2,…,n) whose values are either 0 or 1 (see Majumdar and Bhunia, 2007). 

This representation ensures that the constraints (9) and (10) are automatically satisfied. 

      Next, an initial population of GA consisting of sizep  (population size) chromosomes has been 

generated using a random initialization scheme (Majumdar and Bhunia, 2007) where ‘0’s have 

been set to all the  genes of a chromosome and then for a randomly chosen gene of this 

chromosome, a ‘1’ has been set in each row and in each column. 

2n

      As in our case, the fitness value of each chromosome is interval valued, usual ranking 

selection has been used here following the definition (Definition 1) for comparing interval valued  

numbers from the view point of pessimistic decision maker. The probability of the i -th 

chromosome being selected in this selection method is defined by 
 

P( select the -th chromosome ) =i 1(1 )ip p −−  

where ‘ p ’ is the probability of selecting the best chromosome and ‘i ’, the rank of the 

chromosome. 

      Here matrix binary crossover (MBX) (Majumdar and Bhunia, 2007) has been used which is an 

extension of the conventional 2-point crossover on strings that deals with column positions rather 

than bit positions. In this crossover scheme, two crossover sites are selected and marked from two 

randomly selected chromosomes of the population and all the entries of the selected chromosomes 

determined by the crossover sites are exchanged.  

      Due to the above crossover operation, some infeasible chromosomes (solutions) may generate. 

To avoid this possibility, a repair procedure (Majumdar and Bhunia, 2007) has been embedded 

after the crossover operation. 

      In our GA, inversion mutation (Gen and Cheng, 1997) has been used as in (Majumdar and 

Bhunia, 2007) in which two positions within a randomly chosen chromosome are selected at 

random and then the sub-matrix specified by these two positions is inverted. 
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      To maintain monotonic non-degradation of the best solution in subsequent generations as well 

as to add good quality chromosomes for mating, an elitist strategy has been proposed in our GA 

that preserves the best chromosome of the previous generation. If the best found solution of the 

current generation is worse than that of the previous generation, the latter one would replace the 

worst result of the current generation. 
 

7    Experimental Results and discussion 
In this section, the computational results of our proposed methods separately on a realistic airline 

crew-scheduling problem have been presented. The developed algorithm has been coded in C 

programming and implemented on a Pentium IV 3.0 GHz with 1 GB RAM PC under LINUX 

environment. For all the experiments, we have performed 50 trials with different sets of random 

numbers.  

      To illustrate our proposed methods, the following numerical example has been considered. 

The arrival and departure times of the problem have not been selected from any case study, but 

the values considered here are all realistic. 
 

Example: A small airline company, owing six planes operates on all the seven days of a week. 

Flights between the two cities  and  has the typical time table given in Table 1. 1C 2C

Table 1. Time table 

C1 → C2 C2 → C1

 Flight  

 No. 
Departure Arrival 

Flight 

No. 
Departure Arrival 

A 06-00 11-45 to 12-00 I 05-30 10-30 to 10-45 

B 09-45 16-00 to 16-15 II 09-30 15-00 to 15-15 

C 14-00 20-00 to 20-15 III 13-45 18-45 to 19-15 

D 19-15 01-15 to 01-30 IV 16-45 22-15 to 22-30 

E 22-00 03-30 to 04-00 V 21-15 02-30 to 02-45 

F 00-30 06-00 to 06-15 VI 23-45 04-30 to 04-45 

 

The cost of providing this service by the airline company partially depends upon the time spent by 

 152



Solving Airline Crew-Scheduling Problem with imprecise service time 
_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

the crew (pilots and officers) away from their places in  addition  to  service  times. There are six 

crews. Every crew must have a minimum and maximum rest times of 4 hours and 24 hours 

respectively before the return trip again. The airline company has residential facilities for the 

crews at city  as well as at . Find the optimal schedule (pairing of flights and base city) of 

the crews minimizing the overall service time (including rest time). 

1C 2C

         For this problem, the best found objective function values for ( ),S S
c wZ Z  together with the 

best found solution SZ  obtained using two different methods M-1 and M-2 have been presented 

in Table-2 and also the best found schedule for the crews has been displayed in  Table-3. 
          

Table 2.  Best found objective values 

Method S
cZ  S

wZ  
Best found Objective value 

( SZ  ) 

M-1 102.5 0.75 
 

[101.75,103.25] 

M-2 102.5 0.75 
 

[101.75,103.25] 

 

Table 3.  Best found Schedule 

Service 

Schedule 

(Flight No.) 
Crew 

Residence 

at 

Up Down 

Minimum 

Service time 

(including rest time)

 

Minimum Total Service time 

(including rest time) 

1 C1 A IV [16.25,16.5]  

2 C1 B V [16.75, 17]  

3 C2 VI C [20.25,20.5] [101.75,103.25] 

4 C1 D I [15.25,15.5]  

5 C1 E II [17,17.25]  

6 C2 III F [16.25,16.5]  
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      The earlier mentioned problem is used to study the effect of the changes of the GA parameters 

sizep , genm (maximum number of generations), (probability of crossover) and  (probability  

of mutation) on the success rate (SR) of the trials, CPU times (in seconds) and objective function 

evaluations per trial (Fn-Count). In each case, the results are obtained from 50 trials by changing 

one parameter at a time and keeping the others as their original values. The results of these 

analyses have been displayed in Table 4-7. 

cp mp

      In Table-4 and Table-5, sensitivity analyses of sizep  and genm  for M-1 and M-2 respectively 

with respect to SR, minimum, maximum and average CPU times and Fn-Count have been 

reported  (taking =0.8 and =0.1). cp mp
             

Table 4.  Sensitivity analyses of  psize and mgen on M-1 (where pc= 0.8 and pm= 0.1) 

CPU Time Fn-Count 
psize mgen SR 

Min Max Avg. Min Max Avg. 

200 100 0.01 0.04 0.020 400 1200 688 

300 100 0.02 0.04 0.028 600 1200 936 

400 100 0.01 0.02 0.012 400 400 400 
200 

500 100 0.01 0.02 0.011 400 400 400 

200 100 0.02 0.07 0.035 600 1500 834 

300 100 0.02 0.03 0.023 600 600 600 

400 100 0.02 0.23 0.054 600 3900 1170 

 

300 

 
500 100 0.02 0.25 0.051 600 5700 1140 

200 100 0.04 0.32 0.075 800 5200 1352 

300 100 0.04 0.22 0.059 800 4400 1160 

400 100 0.04 0.05 0.043 800 800 800 
400 

500 100 0.04 0.21 0.064 800 2800 1064 

200 100 0.06 0.27 0.119 1000 3000 1600 

300 100 0.06 0.37 0.146 1000 4500 1830 

400 100 0.06 0.13 0.071 1000 1500 1060 
500 

500 100 0.05 0.17 0.088 1000 2000 1260 
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Table 5.  Sensitivity analyses of  psize and mgen on M-2 (where pc= 0.8 and pm= 0.1) 
 CPU Time Fn-Count 

psize mgen SR 
Min Max Avg. Min Max Avg. 

200 80 0 0.27 0.058 400 40200 8360 

300 90 0 0.39 0.045 400 60200 6380 

400 94 0 0.51 0.039 400 80200 5188 
200 

500 98 0 0.01 0.020 400 100200 2396 

200 88 0.01 0.47 0.069 600 60300 7764 

300 94 0.01 0.68 0.055 600 90300 5982 

400 96 0.01 0.90 0.052 600 120300 5388 

 

300 

 
500 100 0.01 0.02 0.016 600 600 600 

200 96 0.02 0.69 0.051 800 80400 3984 

300 98 0.02 0.03 0.043 800 120400 3192 

400 98 0.02 1.37 0.105 800 160400 10376 
400 

500 100 0.02 0.03 0.025 800 800 800 

200 94 0.03 0.96 0.090 1000 100500 6970 

300 100 0.03 0.04 0.033 1000 1000 1000 

400 100 0.03 0.04 0.034 1000 1000 1000 
500 

500 100 0.03 2.34 0.082 1000 250500 5990 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      From the results of Table-4 and Table-5 it is observed that the best solution is found for all 

combinations using method M-1 and generally found using method M-2 as seen from SR 

columns of the corresponding tables. Also the method M-1 and M-2 take a minimum CPU time of 

less than 0.07 seconds and 0.04 seconds, a maximum CPU time of less than 0.4 seconds and 2.4 

seconds and an average of less than 0.15 seconds and 0.2 seconds respectively for all the 

combinations. The minimum and maximum number of objective function evaluations for M-1 and 

M-2 are reported to be 400 & 400 and 5700 & 250500 respectively. Moreover, the average 

number of objective function evaluation per trial for M-1 is generally smaller than those  for  M-2 
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excepting for only four cases. 

      In the interest of fair comparison of the methods on the basis of  and , sensitivity 

analyses are performed keeping 

cp mp

sizep  and genm  fixed at 200 and 500 respectively. The results are 

presented in Table-6 and Table-7.     
       

Table 6.  Sensitivity analyses of  pc  and  pm on M-1 (where psize = 200 and mgen = 500) 

          CPU Time Fn-Count 
pc pm SR 

Min Max Avg. Min Max Avg. 

0.1 100 0.01 0.02 0.111 400 400 400 

0.15 100 0.02 0.08 0.049 800 2000 1320 0.8 

0.2 100 0.03 0.07 0.049 600 1600 1364 

0.1 100 0.01 0.05 0.029 400 1400 848 

0.15 100 0.01 0.04 0.017 400 1200 576 

 

0.85 

 0.2 100 0.01 0.02 0.011 400 400 400 

0.1 100 0.02 0.05 0.029 800 1400 896 

0.15 100 0.02 0.06 0.038 1000 1400 1152 0.9 

0.2 100 0.01 0.03 0.015 400 600 468 

0.1 100 0.01 0.04 0.017 400 800 520 

0.15 100 0.01 0.07 0.032 400 1600 952 0.95 

0.2 100 0.01 0.02 0.011 400 400 400 

 

 

 

 

 

 

 

 

 

 

 

 

 

      It is seen that the SR values of M-1 are 100 while those of M-2 are 90 or more for all the 

combinations. Again, M-1 and M-2 take an average CPU time of less than 0.05 seconds and 0.8 

seconds respectively. Furthermore, the average objective function evaluation for M-2 is reported 

to be higher than those for M-1 excepting for a single case when =0.95 and =0.15. cp mp

      Further, it is observed from our computational tests that both the methods M-1 and M-2 

generally found best solution within the first 10 iterations (generations). 

      Overall, the method M-1 is proved comparatively better than the method M-2 in all respects. 
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Table 7.  Sensitivity analyses of  pc  and  pm on M-2 (where psize = 200 and mgen = 500) 

 CPU Time Fn-Count 
pc pm SR 

Min Max Avg. Min Max Avg. 

0.1 98 0 0.01 0.020 400 100200 2396 

0.15 98 0 0.67 0.021 400 100200 2396 0.8 

0.2 98 0 0.69 0.022 400 100200 2396 

0.1 98 0 0.64 0.021 400 100200 2396 

0.15 92 0 0.68 0.062 400 100200 8384 

 

0.85 

 0.2 96 0 0.69 0.035 400 100200 4392 

0.1 96 0 0.64 0.034 400 100200 4392 

0.15 90 0 0.68 0.075 400 100200 10380 0.9 

0.2 94 0 0.70 0.049 400 100200 6388 

0.1 96 0 0.65 0.034 400 100200 4392 

0.15 100 0 0.01 0.008 400 400 400 0.95 

0.2 96 0 0.71 0.036 400 100200 4392 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8    Conclusions 
In this paper, for the first time a special realistic day-to-day airline crew-scheduling problem has 

been formulated assuming imprecise total service time (including rest time) of each crew. This 

impreciseness has been represented by interval valued numbers that is more general than other 

representations, like stochastic, fuzzy and fuzzy-stochastic. Here, the problem has been solved by 

our proposed two different methods based on elitist genetic algorithm (EGA). In these methods, 

interval ranking for pessimistic decision makers’ preference has been considered in order to avoid 

more uncertainty that will be much more beneficial for the airlines authority. Due to the heuristic 

nature of the proposed two methods (M-1 and M-2) the performances of those methods have been 

investigated with the help of sensitivity analyses. These analyses show that our proposed methods 

perform well and in fact, the performance of the first method M-1 are better compared with the 

second method M-2 in the context of success rate, CPU time and function evaluation. 
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      For future research, one may consider the case where the total service time including rest time 

is more than 24 hours. In that case, the scheduling can be done for a period (like 

week/fortnight/month) considering weekly day-off(s) and other extendable benefits for the crews. 

Further study can be to solve the same problem where there is a constraint like limitation of the 

residential facilities for the crews at any one city under consideration. Another extension of this 

work can be to develop a multi-objective crew-scheduling problem minimizing the total rest time 

and total service time (including rest time) of crews separately.  
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