

 AMO - Advanced Modeling and Optimization, Volume 12, Number 2, 2010

291

On Genetic Operators for Unconstrained Optimization Problems

A. K. Bhuniaa *, P. Palb *, S. Chattopadhyayc, B. K. Medyad

aDepartment of Mathematics, Burdwan University, Burdwan-713104 , India
bDepartment of Computer Science & Engineering, Hooghly Engineering & Technology College , Hooghly-712103, West Bengal, India.

cDepartment of Information Technology, Jadavpur University, India
dDepartment of Information Technology, N.I.T., Kolkata, India

Abstract
 In this paper, a set of real coded genetic algorithms has been considered for solving optimization problems with

continuous variables to study the performance of different evolutionary and genetic operators like selection,

crossover and mutation operators. For these purposes, these algorithms have been tested with two benchmark

functions and the computational results have been compared on generation size, objective function value, function

evaluation and CPU time.

Keywords : Genetic Algorithm, Selection, Crossover, Mutation.

1. Introduction
Algorithms for solving optimization problems are of increasing importance in many practical situations with

respect to global perspective. However, in case of modern engineering design and system operations, solving

optimization problems is a formidable task in the context of global issue. Generally, these types of problems are

non-convex (or non-concave), multimodal and high dimensional with several local optima. To overcome these

difficulties, several stochastic search and optimization methods based on natural evolution and genetics have been

suggested to obtain the global optimum. These are usually heuristic in nature. Among these, Genetic algorithm

(GA) has become very popular. This algorithm (GA) was developed by Holland (1975). According to Goldberg

(1989), Michalewicz (1996), Sakawa (2002), Mitchell (1996), Gen and Cheng (1997), GA is a computerized

stochastic search and optimization algorithm based on the mechanics of natural evolution and genetics. Initially

some research works have been started for the development of initialization process, chromosome representation

and GA operators (like selection / reproduction, crossover and mutation operators). In the development of this

subject different types of operators was developed by various researchers.

* AMO – Advanced Modeling and Optimization. ISSN: 1841-4311

Corresponding Author: p5_pal@yahoo.co.in (P. Pal)

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

292

 In this context, one may refer to the works of Baker (1985), Deb (2000), Miettinen (2003), Chelouah and Siary

(2000), Yiu et al. (2004), Jana and Biswal (2004), Deb et al. (2002). In this paper, we have developed a set of GAs

with real coding for solving optimization problems with continuous variables combining different evolutionary

and genetic operators to test the performance of those operators. Then these algorithms have been tested with two

benchmarks functions and compared the computational results with respect to GA characteristics like average

generation size, objective function value, function evaluation and CPU time.

2. Problem definition
Let us consider a bound constrained minimization problem

 Minimize f(x)

 subject to l x u≤ ≤

where 1 2(, ,..., ,...)i nx x x x x= is a variable vector in , ()nR f x is the objective function and

1 2 1 2(, ,..., ,...,) and (, ,..., ,...,)i n i nl l l l l u u u u u= = . We denote the domain of by [,]i i ix l u and the feasible solution

space by [,].l u

3. Genetic Algorithm

Genetic Algorithm (GA) is an exhaustive search algorithm based on the mechanics of natural evolution and

genetics. It has been successfully applied to different types of optimization problems, for its several advantages

over conventional optimization methods. Holland [cf. Holland (1975)] was inspired by the well known Darwin's

theory about natural evolution and constructed an evolutionary algorithm based on the fundamental principle of

the Darwin’s theory: ‘Survival of the fittest’. This algorithm is known as genetic algorithm. The theoretical basis

for the GA is the Schema Theorem, which states that individual chromosomes with short, low-order, highly fit

schemata or building blocks receive an exponentially increasing number of trials in successive generations. From

the natural genetics, we know that chromosomes are the main carriers of hereditary information from parent to

offspring and those genes, which represent hereditary factors, are lined up on chromosomes. At the time of

reproduction, crossover and mutation take place among the parent chromosomes. In this way, hereditary factors of

parents are mixed-up and carried to their offspring. Again according to Darwinian principle, only the fittest

animals can survive in nature. So a pair of fittest parent normally reproduces a better offspring. The same

phenomenon is followed to create a genetic algorithm for solving an optimization problem. In this algorithm,

potential solutions of the problem are analogous with the chromosomes and chromosome of better offspring with

the better solution of the problem. Different genetic operators viz., crossover and mutation happen among a set of

potential solutions to get a new set of solutions and it continues until a termination criterion is satisfied.

On Genetic Operators for Unconstrained Optimization Problems

293

A GA for a particular problem must have the following components.

(a) GA parameters

(b) Chromosome representation for potential solutions to the problem

(c) Initialization of chromosomes

(d) Evaluation of fitness function

(e) Selection process.

(f) Genetic operators – crossover and mutation.

There are different parameters used in the genetic algorithm, viz. population size (p_size), maximum number of

generations (m_gen), crossover rate/probability of crossover (p_cross) and mutation rate/probability of mutation

(p_mute). There is no hard and fast rule for choosing the population size for GA. However, if the population size is

considered to be large, storing of data in the intermediate steps of GA may create some problems at the time of

computation with the help of computer. On the other hand, for very small population size, some genetic operations

cannot be implemented. Particularly, mutation operator does not work properly as the mutation rate is very low.

Regarding the maximum number of generations, there is no clear indication for considering this value. Generally,

it depends upon the number of variables, number of constraints and the size of search space of the optimization

problems. Again, from the natural genetics, it is well known that the crossover rate is always greater than that of

mutation rate. Usually, the crossover rate varies from 0.6 to 0.95 whereas the mutation rate as 0.1 to 0.15.

Sometimes, the mutation rate is considered as 1/n where n is the number of genes of the individuals.

For proper and successful functioning of GA, the designing of an appropriate chromosome of solutions to the

problem is an important task. In the initial implementation of GAs, the chromosomes were represented by the

strings of binary numbers. These GAs are called binary GAs. These are found to be robust search technique to

avoid the local optima but the computational cost is very high as compared to the deterministic optimization

technique. However, for the problems having large search space and seeking high precession, there arises a

number of difficulties in these methods. To overcome these difficulties, real numbers are used to represent the

chromosomes in GAs. In this case, a chromosome is coded in the form of vector/matrix of integer/floating point

numbers and every component of that chromosome represents a decision variable of the problem. This type of

Genetic Algorithm is known as real coded genetic algorithm (RCGA).

After the selection of chromosome representation, the next step is to initialize the chromosomes which will take

part in the artificial genetic operations. This procedure produces population size number of chromosomes in which

every component is randomly generated within the bounds of the corresponding decision variable. However, in

constrained optimization problems, especially for the non-linear constrained optimization problems, the domains

of the variables cannot be obtained precisely. So, each chromosome vector is created randomly within its domain

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

294

until all constraints are satisfied by applying Repair algorithm (RA). The RA varies from problem to problem.

Alternatively, constrained optimization problem can be solved converting it into unconstrained optimization

problem using penalty function technique.

After initialization of chromosome representation, the next step is to check the characteristics of each chromosome

whether they are highly fitted or not. For this purpose, the fitness value for each chromosome is calculated.

Chromosomes with higher fitness will receive larger probabilities of inheritance in subsequent generations, while

chromosomes with lower fitness will more likely be eliminated. The selection of a good and accurate fitness

function is thus a key to the success of solving any problem quickly. In most of the cases, the objective function

of the problem is considered as the fitness function.

3.1. Selection

The selection process is one of the most important factors in the genetic algorithm. This process is stochastic and

biased towards the best solution. It depends on the evolutionary principle “Survival of the fittest.” The primary

objective of this operator is to emphasize on the above average solutions and eliminate the below average

solutions from the population for the next generation. This is achieved by performing the following tasks:

• Identify good (usually above-average) solutions in a population.

• Make multiple copies of good solutions.

• Eliminate bad solutions from the population so that multiple copies of good solutions can be placed in the

population.

There are several selection schemes, such as roulette wheel selection, ranking selection, elitist preserving

selection, stochastic universal sampling selection, truncation selection, tournament selection, etc. Here we shall

discuss some of these schemes only.

3.1.1. Ranking selection

In this selection, the ranking order of the individuals with respect to their corresponding fitness value determines

the probability of the selection within the current population. The population is actually sorted from the best to

worst fashion. The selection probability of each individual is determined according to the ranking rather than their

fitness value. There are various methods for assigning the selection probability for each individual on the basis of

ranking, including linear and nonlinear ranking methods.

The linear ranking method was proposed by Baker (1985) where each individual in the population is assigned a

rank in the increasing order of fitness and the selection probability of i-th individual in the population is calculated

by following formula:

On Genetic Operators for Unconstrained Optimization Problems

295

 ()max max min
1 1)

_ _ 1i
ip f f f

p size p size
⎛ ⎞−

= − −⎜ ⎟−⎝ ⎠

where maxf and minf denote the maximum and minimum fitness values of the chromosomes of the population

respectively.

On the otherhand, Michalewicz (1996) proposed a non-linear ranking method, also known as exponential ranking

method with selection probability ip of the individual with rank i obtained as

() 11 [0,1].i
ip c c where c−
= − ∈

3.1.2. Tournament selection

In this selection, a group of chromosomes (individuals) from the population is chosen randomly and the best

individual in this group is selected as parents for the next generation which takes part in the genetic operations like

crossover and mutation. This process will be repeated until the population size numbers of chromosomes selected.

The parameter for the tournament selection is the tournament size Tour. Tour takes the values ranging from 2 to

p_size. This selection method with size two is based on the following assumptions:

For unconstrained optimization problems:

(i) Among two selected chromosomes, the chromosome with better fitness value is selected.

For constrained optimization problems:

(i) When two chromosomes (individuals) are feasible then the individual with better fitness value is selected.

(ii) When one chromosome (individual) is feasible and another is infeasible then the feasible one is selected.

(iii) When two chromosomes (individuals) are infeasible with unequal constraints violation, then the

chromosome with less constraint violation is selected.

(iv) When two chromosomes (individuals) are infeasible with equal constraints violation, then any one

chromosome (individual) is selected.

3.2. Crossover

After the selection process, the resulting chromosomes will take part in the crossover operation to produce the

better offspring to improve the current population. This operation operates on two or more parent solutions at a

time and produces offspring by combining the features of the parent solutions. In this operation, expected

[p_cross*p_size] (* denotes the product and [] denotes the integral value) number of chromosomes will take part.

Hence in order to perform this operation, [p_cross*p_size] numbers of chromosomes are selected. The selection

process is as follows:

(i) Select two or more chromosomes randomly from the current population.

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

296

(ii) Produce offspring by crossover technique.

(iii) Repeat the steps (i) and (ii) for appropriate times as per applied crossover technique.

There are several types of crossover operators, viz. uniform crossover, arithmetic crossover, whole arithmetical

crossover, Blend crossover, Laplace crossover etc. Here, we shall discuss some of these operators only.

3.2.1. Whole arithmetical crossover

In this crossover, two different linear combinations of two parent chromosomes (vectors) are considered to

produce the offspring.

At t-th. generation, if the parent chromosomes t
vS and t

wS are selected randomly from the population for

crossover operation, then the produced offspring will be as follows:

 1 * (1)*t t t
v w vS a S a S+ = + − and 1 * (1)*t t t

w v wS a S a S+ = + −
where a is a proper fraction which can be chosen randomly.
Alternatively, the proper fraction a can be chosen in the following way:

 a = pmax / (pmax + pmin)

 where pmax = max {pj, j=1, 2…, p_size },

 pmin = min { pj, j=1,2,…, p_size }.

 and jp denotes the fitness value of j-th chromosome.

Here, this operator uses a simple static parameter []0, 1a∈ , as it always guarantees closure property. If a is

constant, then the crossover is called uniform arithmetical crossover. Otherwise, it is known as non-uniform

arithmetical crossover.

3.2.2. Blend Crossover

Eshelman and Schaffer (1993) introduced the solution of interval schemata which is similar to the principle to the

virtual alphabets. They suggested a crossover operator for real-parameter GAs known as single parameter Blend

crossover ()BLX α− . Blend crossover creates offspring randomly within a hyper-rectangular box defined by the

parent points. In case of i-th component of parent chromosomes 1
iS and 2

iS , the BLX α− randomly chooses a

solution in the range ()1 2,i i i iS D S Dα α− + where 2 1
i i iD S S= − and it is assumed that 2 1

i iS S< . Thus the resulting

offspring can be alternatively represented as follows:

 () 1 21i i i i iS S Sµ µ′ = − + (A)

where ()1 2i irµ α α= + − and [](0,1)ir ∈ is a random number.

From the investigation with some test problems previously, it is observed that BLX α− performs better with

0.5α = . If α is zero, this crossover produces a random solution in the range ()1 2,i iS S .

On Genetic Operators for Unconstrained Optimization Problems

297

In this crossover, the location of the offspring directly depends on the difference of the parent chromosomes. This

conception can easily be understood if we rewrite the equation (A) in the following manner.

 ()1 2 1
i i i i iS S S Sµ′− = −

 i.e., if the diversity in the parent solution is large, then a large diversity in an offspring solution is expected

and vice-versa.

 On the otherhand, in case of another type of crossover known as two parameters Blend crossover

(BLX α β− −), an offspring is created by choosing a solution randomly from the range ()1 2,i i i iS D S Dα β− + ,

where α and β are the two positive real numbers. Fig.-1 shows one-dimensional case of Blend crossover.

3.2.3. Laplace crossover

 Deep and Thakur (2007) first proposed this operator based on Laplace distribution of probability theory.

The density and distribution functions of Laplace distribution are given by

 1() exp ,
2

x a
f x x

b b
⎛ ⎞−

= −∞ < < ∞⎜ ⎟
⎝ ⎠

 1() exp ,
2

x a
F x x a

b
⎛ ⎞−⎧= ≤⎨ ⎜ ⎟

⎩ ⎝ ⎠

where a R∈ and b > 0. Here, a and b are known as location and scale parameters respectively.

 In this operation, randomly selected two parent chromosomes

 { }1 2, , ,v nS v v v= L and { }1 2, , ,w nS w w w= L
 produce two offspring as follows:

 { }1 2, ,...,v nS v v v′ ′ ′ ′= and { }1 2, ,...,v nS w w w′ ′ ′ ′=

 with i i i iv v v wα′ = + −

Fig.-1: Blend crossover in one-dimensional case

2
iS 1

iS

iDβ
iD iDα

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

298

 and , 1, 2,....,i i i iw v v w i nα′ = + − =

where α , a random number, follows the Laplace distribution and it is generated by inverting the distribution

function of Laplace distribution as follows:

()

log , 0.5

log , 0.5

r
e
r

e

a b r

a b r
α

⎧ − ≤⎪= ⎨
+ >⎪⎩

where, ()0,1r∈ is a uniformly distributed random number.

3.3. Mutation

 The main objective of the mutation operator is to introduce the genetic diversity of the population. This

operator is used to enhance the fine-tuning capabilities of the system. This is implemented to a single chromosome

only with lower probability.

 The general algorithm of mutation is as follows:

(i) Calculate the integral value of p_mute * p_size and store it in N.

(ii) Select a chromosome randomly from population and then select a gene of that chromosome in random.

(iii) Produce a new gene corresponding to the selected gene by mutation operation.

(iv) Repeat the steps (ii) to (iii) for N times.

Now, we shall discuss some commonly used mutation operator like, Non-uniform mutation and Exponentiation

mutation.

3.3.1. Non-uniform Mutation

 In this operation, if { }1 2, , ,v nS v v v= L be a selected chromosome and [],k k kv l u∈ , where lk and uk are the

lower and upper bounds of vk respectively, be the element to be mutated in t-th generation, the resulting

chromosome can be represented as { }1 2, , , , ,v k nS v v v v′ ′= L L with 1 k n≤ ≤ and

()
()

, if a random digit is 0

, if a random digit is 1
k k k

k
k k k

v t u v
v

v t v l

+ ∆ −⎧⎪′ = ⎨
− ∆ −⎪⎩

where the function (),t y∆ returns a value in the range [0, 1] such that the probability of (),t y∆ being close to 0

(zero) as t increases. Initially, this property causes this operator to search the space uniformly (when t is small) and

very locally at later stage. The function (),t y∆ is considered as follows either () ()()1 /, 1
br Tt y y r −∆ = −

 or, () (), 1 / bt y y r t T∆ = × −

On Genetic Operators for Unconstrained Optimization Problems

299

where r is a random number from [0, 1], T, the maximum generation number, t, the current generation number

and b, the system parameter determining the degree of non-uniformity.

3.3.2. Exponential Mutation

Makinen et. al. (1999) proposed a mutation operator to solve some multidisciplinary shape optimization problems

using GA in aerodynamics and electromagnetics. Meittinen et. al. (2003) used this operator in a GA to solve the

large set of constrained optimization problem. Deep and Thakur (2007) in their work used this operator and

named it Makinen, Periaux and Toivanen Mutation (MPTM). In this mutation, if the element (component) vk of a

chromosome { }1 2, , ,...,v k nS v v v v= is selected for this mutation (domain of vk is [],k kl u) the resulting chromosome

will be a vector { }1 2, ,..., ,...,v k nS v v v v′ ′= with 1 k n≤ ≤ and ()ˆ ˆ1k k kv t l tu′ = − + ,

where

()

,

ˆ ,

1 ,
1

b

b

t rt t if r t
t

t t if r t

r tt t if r t
t

⎧ −⎛ ⎞− <⎪ ⎜ ⎟
⎝ ⎠⎪⎪= =⎨

⎪
−⎛ ⎞⎪ + − >⎜ ⎟⎪ −⎝ ⎠⎩

and

 ,k

k

x lt
u x
−

=
−

where r be a uniformly distributed random number between 0 and 1.

4. Algorithm

The working procedure of GA is given in the following algorithm:

Step-1: Initialize the parameters of Genetic Algorithm, bounds of variables.

Step-2: 0t = [t represents the number of current generation.]

Step-3: Initialize ()P t [()P t represents the population at t -th generation.]

Step-4: Evaluate the fitness function for each chromosome of ()P t .

Step-5: Find the best found result from ()P t with respect to the fitness value of a chromosome.

Step-6: t is increased by unity.

Step-7: If (t >maximum generation number) go to Step-14.

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

300

Step-8: Select ()P t from ()1P t − by any selection process like Rowlett wheel selection, ranking selection,

tournament selection, etc.

Step-9: Alter ()P t by crossover and mutation operations.

Step-10: Evaluate the fitness function for each chromosome of ()P t .

Step-11: Find best found result from ()P t with respect to the fitness value of a chromosome.

 .Step-12: Compare the results of ()P t and ()1P t − and store better one.

Step-13: Go to step-6.

Step-14: Print the best found result.

Step-15: Stop.

On Genetic Operators for Unconstrained Optimization Problems

301

No

Yes

Fig.-2: Flow-chart of simple GA

Start

Initialization

t = 0 (t = Current Generation)

Evaluate P (t)

Find the best result from P (t)

t = t + 1

t > Max-Gen ?

Select P (t) from P(t – 1)
by any selection process

Alter P (t) by crossover
and mutation

Evaluate P (t)

Find the best result from P (t)

Compare P (t) and P(t – 1) with respect
to their best result and accept better one

Print the Result

Stop

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

302

Fig.-2 shows the flow-chart of simple Genetic Algorithm. In our work, we have considered a set of genetic

algorithms GAABC
 where A, B and C represent the selection, crossover and mutation operators used

respectively. In these algorithms, we have used two selection operators, viz. Ranking selection (R) and

Tournament selection (T), three crossover operators, viz. Whole-arithmetical crossover (W), Blend crossover

(B) and Laplace crossover (L) and two mutation operators, viz. Non-uniform mutation (N) and Exponential

mutation (E).

5. Numerical Example
To compare the performance of different GA operators, we have proposed different GAs with two benchmark test

problems having dimensions 10 and 5 which has been coded in C/C++ and tested those on a Pentium IV (3.0 GHz

processor, 1 GB RAM) PC under LINUX environment. For this purpose, we have considered the following GA

parameter values:

p_size=100, p_cross=0.8, p_mute=0.15 for both non-uniform mutation and exponential mutation, b = 5

Here, the first termination criteria “The best individual does not improve over specified generations” has been

used with the specified generations as 10.

In this work, 20 independent runs have been performed by each proposed GA to obtain the best, mean and worst

function value, average generation, average function evaluation, CPU time and also the standard deviation of

objective function value which have been displayed in the following Table-1 and Table-2 .

1. De Jong function (5 variables):

 ()1 2 3 4 53 , , , ,F x x x x x 2

1

n

i
i

x
=

= ∑

 : 5.12 5.12, 1, 2,3,4,5.isearch domain x i− ≤ ≤ =

2. Rosenbrock (R10) function (10 variables):

4

2 2 2 2
10 j 1

1
() [100(x) (1)]j j

j
R x x x+

=

= − + −∑

 : 5 10, 1, 2,3, 4,5,6,7,8,9,10.jsearch domain x j− < < =

On Genetic Operators for Unconstrained Optimization Problems

303

Table-1: Result of minimization of Rosenbrock’s (R10) function

GAs
Average

Generatio
n

Average
Objective
Function

Best
objective
function

value

Worst
objective
function

value

Standard
Deviation
(Objective
function)

Average
function
evaluati

on

Average
CPU
time

GARWN 21204 9.5 x 10-8 9.0 x 10-8 1.0 x 10-7 5.12989 x 10-9 4241170 26.596
GARLN 21185 9.7 x 10-8 9.0 x 10-8 1.0 x 10-7 4.70162 x 10-9 4237370 38.750
GARBN 21228 9.75 x 10-8 9.0 x 10-8 1.0 x 10-7 5.5012 x 10-9 4245800 50.832
GARWE 6320 9.9 x 10-8 9.0 x 10-8 1.0 x 10-7 3.07794 x 10-9 1264280 8.408
GARLE 4979 0.1 x 10-8 0.1 x 10-8 1.0 x 10-7 0.0 996110 13.393
GARBE 5523 9.95 x 10-8 9.0 x 10-8 1.0 x 10-7 2.23607 x 10-9 1104780 17.758
GATWN 21585 9.6 x 10-8 9.0 x 10-8 1.0 x 10-7 5.02625 x 10-9 4317310 60.880
GATLN 21493 0.1 x 10-8 0.1 x 10-8 1.0 x 10-7 0.0 4298830 119.244
GATBN 21423 9.75 x 10-8 9.0 x 10-8 1.0 x 10-7 4.44262 x 10-9 4284930 127.668
GATWE 9271 1.0 x 10-7 1.0 x 10-7 1.0 x 10-7 0.0 1854430 42.199
GATLE 7888 9.9 x 10-8 9.0 x 10-8 1.0 x 10-7 3.07794 x 10-9 1577920 43.709
GATBE 7008 9.85 x 10-8 9.0 x 10-8 1.0 x 10-7 3.66348 x 10-9 1401810 45.844

Table-2: Result of minimization of De Jong’s function

GAs

Avera
ge

Gener
ation

Average
Objective
Function

value

Best
objective
function

value

Worst
objective
function

value

Standard
Deviation
(Objective
function)

Average
function
evaluati

on

Average
CPU
time

GARWN 1667 7.05 x 10-8 1.0 x 10-8 9.0 x 10-8 2.74293 x 10-8 166825 0.366
GARLN 1100 2.4 x 10-8 0.0 9.0 x 10-8 3.13553 x 10-8 110165 0.269
GARBN 906 3.4 x 10-8 0.0 9.0 x 10-8 3.64764 x 10-8 90715 0.366
GARWE 157 3.55 x 10-8 0.0 8.0 x 10-8 3.72014 x 10-8 15810 0.038
GARLE 106 2.35 x 10-8 0.0 7.0 x 10-8 3.06551 x 10-8 10740 0.046
GARBE 91 3.2 x 10-8 0.0 7.0 x 10-8 2.44088 x 10-8 9275 0.051
GATWN 1417 2.45 x 10-8 0.0 6.0 x 10-8 3.42552 x 10-8 141860 0.353
GATLN 762 3.1 x 10-8 0.0 9.0 x 10-8 4.05099 x 10-8 76330 0.363
GATBN 1215 2.2 x 10-8 0.0 9.0 x 10-8 3.01924 x 10-8 121690 0.630
GATWE 201 5.0 x 10-8 0.0 9.0 x 10-8 3.26061 x 10-8 20155 0.132
GATLE 151 3.65 x 10-8 0.0 8.0 x 10-8 2.79614 x 10-8 15220 0.130
GATBE 113 4.15 x 10-8 0.0 8.0 x 10-8 2.53969 x 10-8 11385 0.118

From Table-1 and Table-2, it is observed that GARWE (i.e., Genetic Algorithm with ranking selection, whole-

arithmetic crossover and exponential mutation) performs best over others with respect to the objective function

value, function evaluation, average generation size and CPU time. However, other two GA versions like, GARLE

and GARBE produce the quite same results.

5. Conclusion
In this paper, we have shown the performance analysis of various GA versions using different GA operators with

two benchmark test problems. From this analysis, it is clear that GARWE is the best GA version whereas other two

 A. K. Bhunia, P. Pal, S. Chattopadhyay, B. K. Medya

304

versions GARLE and GARBE are moderate. So, one may use any one of these three algorithms alternatively in every

operational aspect for solving realistic optimization problems.

References
 [1] J.H. Holland, Adaptation of Natural and Artificial system, University of Michigan Press, Ann Arbor, 1975.

 [2] D. E. Goldberg, Genetic Algorithms: Search, Optimization and Machine Learning; Addison Wesley,

Reading: MA, 1989.

 [3] Z. Michalawicz, Genetic Algorithms + Data Structure= Evaluation Programs; Springer Verlag, Berlin,

1996.

 [4] M. Sakawa, Genetic Algorithms and fuzzy multiobjective optimization; Kluwer Academic Publishers,

USA, 2002.

 [5] M. Mitchell, Introduction to Genetic Algorithms, PHI, New Delhi, 1996.

 [6] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design, New York : Wiley, 1997.

 [7] J.E. Baker, “Adapted selection methods for genetic algorithms,” Proceedings of the first international

conference on Genetic Algorithms, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 101-111,1985

 [8] K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied

Mechanics and Engineering, vol. 186, pp. 311-338, 2000.

 [9] K. Meittinen, M.M. Makela and J. Toivanen, “Numerical comparison of some penalty based constraint

handling techniques in genetic algorithms,” Journal of Global Optimization, vol. 27, pp. 427- 446, 2003.

 [10] R. Chelouah and P. Siarry, “A continuous genetic algorithm designed for the global optimization of

multimodal functions,” J. Heuristics, vol. 6, pp. 191- 214, 2000.

 [11] K.F.C. Yiu, Y. Liu and K.L. Teo, “A hybrid descent Method for Global Optimization,” Journal of Global

Optimization, vol. 28, pp. 229-238, 2004.

 [12] R.K. Jana and M.P. Biswal, “Stochastic simulation based genetic algorithm for chance constraint

programming problems with continuous variable,” International Journal of Computer Mathematics, vol. 81,

pp. 1069-1076, 2004.

 [13] K. Deb, A. Anand and D. Joshi, “A computationally efficient evolutionary algorithm for real parameters

evolution,” Evolutionary Computation Journal, vol. 10, no. 4, pp. 371-395, 2002.

 [14] K. Deep and M. Thakur, “A new crossover operator for real coded genetic algorithms,” Applied

Mathematics and Computation, vol. 188, no. 1, pp. 895-911, 2007.

 [15] R.A.E. Makinen, J. Periaux and J. Toivanen, “Multidisciplinary shape optimization in aerodynamics and

electromagnetic using genetic algorithm,” International Journal for Numerical Methods in Fluids, vol. 30,

no. 2, pp. 149-159, 1999.

