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Abstract 
 In this paper, a set of real coded genetic algorithms has been considered for solving optimization problems with 

continuous variables to study the performance of different evolutionary and genetic operators like selection, 

crossover and mutation operators. For these purposes, these algorithms have been tested with two benchmark 

functions and the computational results have been compared on generation size, objective function value, function 

evaluation and CPU time.  

Keywords : Genetic Algorithm, Selection, Crossover, Mutation.  

 

1. Introduction  
Algorithms for solving optimization problems are of increasing importance in many practical situations with 

respect to global perspective. However, in case of modern engineering design and system operations, solving 

optimization problems is a formidable task in the context of global issue. Generally, these types of problems are 

non-convex (or non-concave), multimodal and high dimensional with several local optima. To overcome these 

difficulties, several stochastic search and optimization methods based on natural evolution and genetics have been 

suggested to obtain the global optimum. These are usually heuristic in nature.  Among these, Genetic algorithm 

(GA) has become very popular. This algorithm (GA) was developed by Holland (1975). According to Goldberg 

(1989), Michalewicz (1996), Sakawa (2002), Mitchell (1996), Gen and Cheng (1997), GA is a computerized 

stochastic search and optimization algorithm based on the mechanics of natural evolution and genetics. Initially 

some research works have been started for the development of initialization process, chromosome representation 

and GA operators ( like selection / reproduction, crossover and mutation operators). In the development of this 

subject different types of operators was developed by various researchers. 
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 In this context, one may refer to the works of Baker (1985), Deb (2000), Miettinen (2003), Chelouah and Siary 

(2000), Yiu et al. (2004), Jana and Biswal (2004), Deb et al. (2002). In this paper, we have developed a set of GAs 

with real coding for solving optimization problems with continuous variables combining different evolutionary 

and genetic operators to test the performance of those operators. Then these algorithms have been tested with two 

benchmarks functions and compared the computational results with respect to GA characteristics like average 

generation size, objective function value, function evaluation and CPU time.  

 

2. Problem definition 
Let us consider a bound constrained minimization problem 

  Minimize  f(x) 

                          subject to  l x u≤ ≤  

where 1 2( , ,..., ,... )i nx x x x x= is a variable vector in ,   ( )nR f x  is the objective function and 

1 2 1 2( , ,..., ,..., )  and  ( , ,..., ,..., )i n i nl l l l l u u u u u= = . We denote the domain of  by  [ , ]i i ix l u  and the feasible solution 

space by [ , ].l u  

 

3. Genetic Algorithm 

Genetic Algorithm (GA) is an exhaustive search algorithm based on the mechanics of natural evolution and 

genetics. It has been successfully applied to different types of optimization problems, for its several advantages 

over conventional optimization methods. Holland [cf. Holland (1975)] was inspired by the well known Darwin's 

theory about natural evolution and constructed an evolutionary algorithm based on the fundamental principle of 

the Darwin’s theory: ‘Survival of the fittest’. This algorithm is known as genetic algorithm. The theoretical basis 

for the GA is the Schema Theorem, which states that individual chromosomes with short, low-order, highly fit 

schemata or building blocks receive an exponentially increasing number of trials in successive generations. From 

the natural genetics, we know that chromosomes are the main carriers of hereditary information from parent to 

offspring and those genes, which represent hereditary factors, are lined up on chromosomes. At the time of 

reproduction, crossover and mutation take place among the parent chromosomes. In this way, hereditary factors of 

parents are mixed-up and carried to their offspring. Again according to Darwinian principle, only the fittest 

animals can survive in nature. So a pair of fittest parent normally reproduces a better offspring. The same 

phenomenon is followed to create a genetic algorithm for solving an optimization problem. In this algorithm, 

potential solutions of the problem are analogous with the chromosomes and chromosome of better offspring with 

the better solution of the problem. Different genetic operators viz., crossover and mutation happen among a set of 

potential solutions to get a new set of solutions and it continues until a termination criterion is satisfied. 
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A GA for a particular problem must have the following components. 

(a) GA parameters 

(b) Chromosome representation for potential solutions to the problem 

(c) Initialization of chromosomes 

(d) Evaluation of fitness function 

(e) Selection process. 

(f) Genetic operators – crossover and mutation. 

There are different parameters used in the genetic algorithm, viz. population size (p_size), maximum number of 

generations (m_gen), crossover rate/probability of crossover (p_cross) and mutation rate/probability of mutation 

(p_mute). There is no hard and fast rule for choosing the population size for GA. However, if the population size is 

considered to be large, storing of data in the intermediate steps of GA may create some problems at the time of 

computation with the help of computer. On the other hand, for very small population size, some genetic operations 

cannot be implemented. Particularly, mutation operator does not work properly as the mutation rate is very low.  

Regarding the maximum number of generations, there is no clear indication for considering this value. Generally, 

it depends upon the number of variables, number of constraints and the size of search space of the optimization 

problems. Again, from the natural genetics, it is well known that the crossover rate is always greater than that of 

mutation rate. Usually, the crossover rate varies from 0.6 to 0.95 whereas the mutation rate as 0.1 to 0.15. 

Sometimes, the mutation rate is considered as 1/n where n is the number of genes of the individuals. 

For proper and successful functioning of GA, the designing of an appropriate chromosome of solutions to the 

problem is an important task. In the initial implementation of GAs, the chromosomes were represented by the 

strings of binary numbers. These GAs are called binary GAs. These are found to be robust search technique to 

avoid the local optima but the computational cost is very high as compared to the deterministic optimization 

technique. However, for the problems having large search space and seeking high precession, there arises a 

number of difficulties in these methods. To overcome these difficulties, real numbers are used to represent the 

chromosomes in GAs. In this case, a chromosome is coded in the form of vector/matrix of integer/floating point 

numbers and every component of that chromosome represents a decision variable of the problem. This type of 

Genetic Algorithm is known as real coded genetic algorithm (RCGA). 

After the selection of chromosome representation, the next step is to initialize the chromosomes which will take 

part in the artificial genetic operations. This procedure produces population size number of chromosomes in which 

every component is randomly generated within the bounds of the corresponding decision variable. However, in 

constrained optimization problems, especially for the non-linear constrained optimization problems, the domains 

of the variables cannot be obtained precisely. So, each chromosome vector is created randomly within its domain 
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until all constraints are satisfied by applying Repair algorithm (RA). The RA varies from problem to problem. 

Alternatively, constrained optimization problem can be solved converting it into unconstrained optimization 

problem using penalty function technique. 

After initialization of chromosome representation, the next step is to check the characteristics of each chromosome 

whether they are highly fitted or not. For this purpose, the fitness value for each chromosome is calculated. 

Chromosomes with higher fitness will receive larger probabilities of inheritance in subsequent generations, while 

chromosomes with lower fitness will more likely be eliminated. The selection of a good and accurate fitness 

function is thus a key to the success of solving any problem quickly.  In most of the cases, the objective function 

of the problem is considered as the fitness function.  
 

3.1. Selection 

The selection process is one of the most important factors in the genetic algorithm. This process is stochastic and 

biased towards the best solution. It depends on the evolutionary principle “Survival of the fittest.” The primary 

objective of this operator is to emphasize on the above average solutions and eliminate the below average 

solutions from the population for the next generation. This is achieved by performing the following tasks:  

• Identify good (usually above-average) solutions in a population. 

• Make multiple copies of good solutions.  

• Eliminate bad solutions from the population so that multiple copies of good solutions can be placed in the 

population.  

 

There are several selection schemes, such as roulette wheel selection, ranking selection, elitist preserving 

selection, stochastic universal sampling selection, truncation selection, tournament selection, etc. Here we shall 

discuss some of these schemes only. 

 

3.1.1. Ranking selection 

In this selection, the ranking order of the individuals with respect to their corresponding fitness value determines 

the probability of the selection within the current population. The population is actually sorted from the best to 

worst fashion. The selection probability of each individual is determined according to the ranking rather than their 

fitness value. There are various methods for assigning the selection probability for each individual on the basis of 

ranking, including linear and nonlinear ranking methods. 

The linear ranking method was proposed by Baker (1985) where each individual in the population is assigned a 

rank in the increasing order of fitness and the selection probability of i-th individual in the population is calculated 

by following formula: 
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             ( )max max min
1 1 )

_ _ 1i
ip f f f

p size p size
⎛ ⎞−

= − −⎜ ⎟−⎝ ⎠
                                                               

where  maxf  and minf  denote the maximum and minimum fitness values of the chromosomes of the population 

respectively. 

 

On the otherhand, Michalewicz (1996) proposed a non-linear ranking method, also known as exponential ranking 

method with selection probability ip  of the individual with rank i  obtained as  

( ) 11 [0,1].i
ip c c where c−
= − ∈     

 

3.1.2. Tournament selection 

In this selection, a group of chromosomes (individuals) from the population is chosen randomly and the best 

individual in this group is selected as parents for the next generation which takes part in the genetic operations like 

crossover and mutation. This process will be repeated until the population size numbers of chromosomes selected. 

The parameter for the tournament selection is the tournament size Tour.  Tour takes the values ranging from 2 to 

p_size. This selection method with size two is based on the following assumptions: 

For unconstrained optimization problems: 

(i) Among two selected chromosomes, the chromosome with better fitness value is selected. 

For constrained optimization problems:  

(i) When two chromosomes (individuals) are feasible then the individual with better fitness value is selected. 

(ii) When one chromosome (individual) is feasible and another is infeasible then the feasible one is selected. 

(iii) When two chromosomes (individuals) are infeasible with unequal constraints violation, then the 

chromosome with less constraint violation is selected. 

(iv) When two chromosomes (individuals) are infeasible with equal constraints violation, then any one 

chromosome (individual) is selected. 
 
3.2. Crossover 

After the selection process, the resulting chromosomes will take part in the crossover operation to produce the 

better offspring to improve the current population. This operation operates on two or more parent solutions at a 

time and produces offspring by combining the features of the parent solutions. In this operation, expected 

[p_cross*p_size] (* denotes the product and [ ] denotes the integral value) number of chromosomes will take part. 

Hence in order to perform this operation, [p_cross*p_size] numbers of chromosomes are selected. The selection 

process is as follows: 

(i) Select two or more chromosomes randomly from the current population.  
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(ii) Produce offspring by crossover technique. 

(iii) Repeat the steps (i) and (ii) for appropriate times as per applied crossover technique. 

There are several types of crossover operators, viz. uniform crossover, arithmetic crossover, whole arithmetical 

crossover, Blend crossover, Laplace crossover etc. Here, we shall discuss some of these operators only. 

 

3.2.1. Whole arithmetical crossover 

In this crossover, two different linear combinations of two parent chromosomes (vectors) are considered to 

produce the offspring.  

At t-th. generation, if the parent chromosomes t
vS  and t

wS  are selected randomly from the population for 

crossover operation, then the produced offspring will be as follows: 

       1 * (1 )*t t t
v w vS a S a S+ = + −  and 1 * (1 )*t t t

w v wS a S a S+ = + −   
where a is a proper fraction which can be chosen randomly. 
Alternatively, the proper fraction a can be chosen in the following way: 

  a = pmax / (pmax + pmin)  

           where   pmax = max {pj, j=1, 2…, p_size },  

             pmin = min { pj, j=1,2,…, p_size }. 

            and jp  denotes the fitness value of j-th chromosome. 

Here, this operator uses a simple static parameter [ ]0, 1a∈ , as it always guarantees closure property. If a  is 

constant, then the crossover is called uniform arithmetical crossover. Otherwise, it is known as non-uniform 

arithmetical crossover.  

 

3.2.2. Blend Crossover 
 
Eshelman and Schaffer (1993) introduced the solution of interval schemata which is similar to the principle to the 

virtual alphabets. They suggested a crossover operator for real-parameter GAs known as single parameter Blend 

crossover ( )BLX α− . Blend crossover creates offspring randomly within a hyper-rectangular box defined by the 

parent points. In case of i-th component of parent chromosomes 1
iS  and 2

iS , the BLX α−  randomly chooses a 

solution in the range ( )1 2,i i i iS D S Dα α− +  where  2 1
i i iD S S= −  and it is assumed that 2 1

i iS S< . Thus the resulting 

offspring can be alternatively represented as follows: 

 ( ) 1 21i i i i iS S Sµ µ′ = − +         (A) 

where ( )1 2i irµ α α= + −  and [ ]( 0,1 )ir ∈  is a random number. 

From the investigation with some test problems previously, it is observed that BLX α−  performs better with 

0.5α = . If α  is zero, this crossover produces a random solution in the range ( )1 2,i iS S . 
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In this crossover, the location of the offspring directly depends on the difference of the parent chromosomes. This 

conception can easily be understood if we rewrite the equation (A) in the following manner. 

 ( )1 2 1
i i i i iS S S Sµ′− = −  

 i.e., if the diversity in the parent solution is large, then a large diversity in an offspring solution is expected 

and vice-versa. 

 On the otherhand, in case of another type of crossover known as two parameters Blend crossover 

( BLX α β− − ), an offspring is created by choosing a solution randomly from the range ( )1 2,i i i iS D S Dα β− + , 

where α  and β  are the two positive real numbers. Fig.-1 shows one-dimensional case of Blend crossover. 

 

 

 

 

 
 
 

 

 

 

 
 

3.2.3. Laplace crossover 

       

           Deep and Thakur (2007) first proposed this operator based on Laplace distribution of probability theory. 

The density and distribution functions of Laplace distribution are given by 

 1( ) exp ,
2

x a
f x x

b b
⎛ ⎞−

= −∞ < < ∞⎜ ⎟
⎝ ⎠

  

 1( ) exp ,
2

x a
F x x a

b
⎛ ⎞−⎧= ≤⎨ ⎜ ⎟

⎩ ⎝ ⎠
               

where a R∈  and b > 0. Here, a and b are known as location and scale parameters respectively. 

      In this operation, randomly selected two parent chromosomes 

  { }1 2, , ,v nS v v v= L  and { }1 2, , ,w nS w w w= L          
          produce two offspring as follows: 

  { }1 2, ,...,v nS v v v′ ′ ′ ′=  and  { }1 2, ,...,v nS w w w′ ′ ′ ′=                 

            with i i i iv v v wα′ = + −  

Fig.-1:  Blend crossover in one-dimensional case  

2
iS  1

iS

iDβ
iD  iDα  
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                 and     , 1, 2,....,i i i iw v v w i nα′ = + − =         

where α , a random number, follows the Laplace distribution and it is generated by inverting the distribution 

function of  Laplace distribution as follows: 

          

            
( )

log , 0.5

log , 0.5

r
e
r

e

a b r

a b r
α

⎧ − ≤⎪= ⎨
+ >⎪⎩

   

where, ( )0,1r∈  is a uniformly distributed random number. 
 
 

3.3. Mutation 

       The main objective of the mutation operator is to introduce the genetic diversity of the population. This 

operator is used to enhance the fine-tuning capabilities of the system. This is implemented to a single chromosome 

only with lower probability. 

          The general algorithm of mutation is as follows: 

(i) Calculate the integral value of p_mute * p_size and store it in N. 

(ii) Select a chromosome randomly from population and then select a gene of that chromosome   in random. 

(iii) Produce a new gene corresponding to the selected gene by mutation operation. 

(iv)  Repeat the steps (ii) to (iii) for N times. 

Now, we shall discuss some commonly used mutation operator like, Non-uniform mutation and      Exponentiation 

mutation. 

 

3.3.1. Non-uniform Mutation   

 In this operation, if { }1 2, , ,v nS v v v= L  be a selected chromosome and [ ],k k kv l u∈ , where lk and uk are the 

lower and upper bounds of vk respectively, be the element to be mutated in t-th generation, the resulting 

chromosome can be represented as { }1 2, , , , ,v k nS v v v v′ ′= L L  with 1 k n≤ ≤  and  

  
( )
( )

,  if a random digit is 0

,   if a random digit is 1
k k k

k
k k k

v t u v
v

v t v l

+ ∆ −⎧⎪′ = ⎨
− ∆ −⎪⎩

 

where the function ( ),t y∆  returns a value in the range [0, 1] such that the probability of ( ),t y∆  being close to 0 

(zero) as t increases. Initially, this property causes this operator to search the space uniformly (when t is small) and 

very locally at later stage. The function ( ),t y∆  is considered as follows either ( ) ( )( )1 /, 1
br Tt y y r −∆ = −  

     or, ( ) ( ), 1 / bt y y r t T∆ = × −  
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where r is a random number from [0, 1], T,  the maximum generation number, t,  the current generation number 

and b, the system parameter determining the degree of non-uniformity. 

 

3.3.2. Exponential Mutation 

Makinen et. al. (1999) proposed a mutation operator to solve some multidisciplinary shape optimization problems 

using GA in aerodynamics and electromagnetics.  Meittinen et. al. (2003) used this operator in a GA to solve the 

large set of constrained optimization problem. Deep and Thakur (2007) in their work used this operator and 

named it Makinen, Periaux and Toivanen Mutation (MPTM). In this mutation, if the element (component) vk of a 

chromosome { }1 2, , ,...,v k nS v v v v=  is selected for this mutation (domain of vk is [ ],k kl u ) the resulting chromosome 

will be a vector { }1 2, ,..., ,...,v k nS v v v v′ ′=  with 1 k n≤ ≤  and ( )ˆ ˆ1k k kv t l tu′ = − + , 

where    

( )

,

ˆ ,

1 ,
1

b

b

t rt t if r t
t

t t if r t

r tt t if r t
t

⎧ −⎛ ⎞− <⎪ ⎜ ⎟
⎝ ⎠⎪⎪= =⎨

⎪
−⎛ ⎞⎪ + − >⎜ ⎟⎪ −⎝ ⎠⎩

 

 

and 

           ,k

k

x lt
u x
−

=
−

 

where r be a uniformly distributed random number between 0 and 1.              

 

4. Algorithm 

The working procedure of GA is given in the following algorithm:  

Step-1: Initialize the parameters of Genetic Algorithm, bounds of variables. 

Step-2: 0t = [ t  represents the number of current generation.]   

Step-3: Initialize ( )P t [ ( )P t  represents the population at t -th generation.] 

Step-4: Evaluate the fitness function for each chromosome of ( )P t .  

Step-5: Find the best found result from ( )P t with respect to the fitness value of a chromosome. 

Step-6:  t is increased by unity. 

Step-7: If ( t >maximum generation number) go to Step-14.  
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Step-8: Select ( )P t from ( )1P t −  by any selection process like Rowlett wheel selection, ranking selection, 

tournament selection, etc.  

Step-9: Alter ( )P t  by crossover and mutation operations. 

Step-10: Evaluate the fitness function for each chromosome of ( )P t .  

Step-11: Find best found result from ( )P t  with respect to the fitness value of a chromosome. 

  .Step-12: Compare the results of ( )P t and ( )1P t −    and store better one.  

Step-13: Go to step-6.  

Step-14: Print the best found result.  

Step-15: Stop.  
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No 

Yes 

Fig.-2: Flow-chart of simple GA 

Start 

Initialization 

t = 0 (t = Current Generation) 

Evaluate P (t) 

Find the best result from P (t)

t = t + 1 

t > Max-Gen ? 

Select P (t) from P(t – 1) 
by any selection process 

Alter P (t) by crossover 
and mutation 

Evaluate P (t) 

Find the best result from P (t)  

Compare P (t) and P(t – 1) with respect 
to their best result and accept better one  

Print the Result

Stop 
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Fig.-2 shows the flow-chart of simple Genetic Algorithm. In our work, we have considered a set of genetic 

algorithms GAABC 
  where A, B and C represent the selection, crossover and mutation operators used 

respectively. In these algorithms, we have used two selection operators, viz. Ranking selection (R) and 

Tournament selection (T), three crossover operators, viz. Whole-arithmetical crossover (W), Blend crossover 

(B) and Laplace crossover (L) and two mutation operators, viz. Non-uniform mutation (N) and  Exponential 

mutation (E). 

 

5. Numerical Example 
To compare the performance of different GA operators, we have proposed different GAs with two benchmark test 

problems having dimensions 10 and 5 which has been coded in C/C++ and tested those on a Pentium IV (3.0 GHz 

processor, 1 GB RAM) PC under LINUX environment. For this purpose, we have considered the following GA 

parameter values: 

p_size=100, p_cross=0.8, p_mute=0.15 for both non-uniform mutation and  exponential mutation, b = 5 

Here, the first termination criteria “The best individual does not improve over specified generations” has been 

used with the specified generations as 10. 

In this work, 20 independent runs have been performed by each proposed GA to obtain the best, mean and worst 

function value, average generation, average function evaluation, CPU time and also the standard deviation of 

objective function value  which have been displayed in the following Table-1 and Table-2 . 

 
1. De Jong function  (5 variables): 

 ( )1 2 3 4 53 , , , ,F x x x x x 2

1

n

i
i

x
=

= ∑  

          :  5.12 5.12,  1, 2,3,4,5.isearch domain x i− ≤ ≤ =  

 
2. Rosenbrock (R10) function (10 variables):  

              
4

2 2 2 2
10 j 1

1
( ) [100(x ) ( 1) ]j j

j
R x x x+

=

= − + −∑   

               : 5 10, 1, 2,3, 4,5,6,7,8,9,10.jsearch domain x j− < < =   
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Table-1: Result of minimization of Rosenbrock’s (R10) function 
 

GAs 
Average 

Generatio
n 

Average 
Objective 
Function 

Best 
objective 
function 

value 

Worst 
objective 
function 

value 

Standard 
Deviation 
(Objective 
function)  

Average 
function 
evaluati

on 

Average 
CPU 
time 

GARWN 21204 9.5 x 10-8 9.0 x 10-8 1.0 x 10-7 5.12989 x 10-9 4241170 26.596 
GARLN 21185 9.7 x 10-8 9.0 x 10-8 1.0 x 10-7 4.70162 x 10-9 4237370 38.750 
GARBN 21228 9.75 x 10-8 9.0 x 10-8 1.0 x 10-7 5.5012 x 10-9 4245800 50.832 
GARWE 6320 9.9 x 10-8 9.0 x 10-8 1.0 x 10-7 3.07794 x 10-9 1264280 8.408 
GARLE 4979 0.1 x 10-8 0.1 x 10-8 1.0 x 10-7 0.0  996110 13.393 
GARBE 5523 9.95 x 10-8 9.0 x 10-8 1.0 x 10-7 2.23607 x 10-9 1104780 17.758 
GATWN 21585 9.6 x 10-8 9.0 x 10-8 1.0 x 10-7 5.02625 x 10-9 4317310 60.880 
GATLN 21493 0.1 x 10-8 0.1 x 10-8 1.0 x 10-7 0.0 4298830 119.244 
GATBN 21423 9.75 x 10-8 9.0 x 10-8 1.0 x 10-7 4.44262 x 10-9 4284930 127.668 
GATWE 9271 1.0 x 10-7 1.0 x 10-7 1.0 x 10-7 0.0 1854430 42.199 
GATLE 7888 9.9 x 10-8 9.0 x 10-8 1.0 x 10-7 3.07794 x 10-9 1577920 43.709 
GATBE 7008 9.85 x 10-8 9.0 x 10-8 1.0 x 10-7 3.66348 x 10-9 1401810 45.844 
 

Table-2: Result of minimization of De Jong’s function 
 

GAs 

Avera
ge 

Gener
ation 

Average 
Objective 
Function 

value 

Best 
objective 
function 

value 

Worst 
objective 
function 

value 

Standard 
Deviation 
(Objective 
function)  

Average 
function 
evaluati

on 

Average 
CPU 
time 

GARWN 1667 7.05 x 10-8 1.0 x 10-8 9.0 x 10-8 2.74293 x 10-8 166825 0.366 
GARLN 1100 2.4 x 10-8 0.0 9.0 x 10-8 3.13553 x 10-8 110165 0.269 
GARBN 906 3.4 x 10-8 0.0 9.0 x 10-8 3.64764 x 10-8 90715 0.366 
GARWE 157 3.55 x 10-8 0.0 8.0 x 10-8 3.72014 x 10-8 15810 0.038 
GARLE 106 2.35 x 10-8 0.0 7.0 x 10-8 3.06551 x 10-8 10740 0.046 
GARBE 91 3.2 x 10-8 0.0 7.0 x 10-8 2.44088 x 10-8 9275 0.051 
GATWN 1417 2.45 x 10-8 0.0 6.0 x 10-8 3.42552 x 10-8 141860 0.353 
GATLN 762 3.1 x 10-8 0.0 9.0 x 10-8 4.05099 x 10-8 76330 0.363 
GATBN 1215 2.2 x 10-8 0.0 9.0 x 10-8 3.01924 x 10-8 121690 0.630 
GATWE 201 5.0 x 10-8 0.0 9.0 x 10-8 3.26061 x 10-8 20155 0.132 
GATLE 151 3.65 x 10-8 0.0 8.0 x 10-8 2.79614 x 10-8 15220 0.130 
GATBE 113 4.15 x 10-8 0.0 8.0 x 10-8 2.53969 x 10-8 11385 0.118 
 
From Table-1 and Table-2, it is observed that GARWE (i.e., Genetic Algorithm with ranking selection, whole-

arithmetic crossover and exponential mutation) performs best over others with respect to the objective function 

value, function evaluation, average generation size and CPU time. However, other two GA versions like, GARLE 

and GARBE produce the quite same results.  

5. Conclusion 
In this paper, we have shown the performance analysis of various GA versions using different GA operators with 

two benchmark test problems. From this analysis, it is clear that GARWE  is the best GA version whereas other two 
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versions GARLE and GARBE are moderate.  So, one may use any one of these three algorithms alternatively in every 

operational aspect for solving realistic optimization problems.   
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