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Abstract

Asymmetry -and Symmetry- and their corresponding and dual degrees
are not only fundamental concepts, but also very promising tools on many
mathematical �elds. For instance, it will be a cornerstone of Modern
Science.

If we assume that a Complex System, or its representation, by Complex
Networks or Graphs may have a modi�able degree of symmetry, then it
is possible to simplify the equations that describe them.

For these reasons, there are a tenacious search for a uni�ed description
by the subjacent notion that a valid (and therefore, desirable) theory
would be the more symmetrical possible, by new results based on fuzzy
measures.

Keywords: Graph Theory, Complex Networks and Systems, Fuzzy
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1 Introduction

Usually we may distinguish four structural models [3, 9, 12, 19, 22, 23, 26] when
we describes Complex Systems by Complex Networks, i. e. using Graph Theory.
So, we can mentionate

- Regular Networks,

- Random Networks,

- Small-World Networks,

and

- Scale-free Networks

But also it is possible to introduce some new versions, according to the new
measures of Symmetry/Asymmetry Level Measures.
We introduce here some of the more necessary tools for such new advances.
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1.1 Analysis of Complex Network features

In Regular Networks, each node is connected to all other nodes. I.e. they are
fully connected.
Because of such a type of structure, they have the lowest path length (L),

and the lowest diameter (D), being

L = D = 1

Also they have the highest clustering coe¢ cient (C). So, it holds

C = 1

Furthermore, with the highest possible number of edges, given by

Card (E) = n (n-1)/2 s n2

As related to Random Graphs (RGs), we can say that each pair of nodes is
connected with probability p.
They have a low average path length, according to

L t (ln n) = ln hki w ln n; for n� 1

It is because the total network may be covered in <k> steps, from which

n _ hkiL

Moreover, they possess a low clustering coe¢ cient, when the graph is sparse.
Thus,

C = p = hki =n� 1

given that the probability of each pair of neighboring nodes to be connected is
precisely equal to p.
The Small-World e¤ect is observed on a network when it has a low average

path length. I.e.

L << n, for n >> 1

Recall the now famous "six degrees of separation", also called the

�small-world phenomenon�
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The subjacent idea is that two arbitrarily selected people may be connected
by only six degrees of separation (in average, and it is not much larger than this
value). Therefore, the diameter of the corresponding graph is not much larger
than six. For instance, on social connections. So, the Small-World property will
be interpreted as that despite its large size (of the corresponding graph), the
shortest path between two nodes is small, as e.g. on WWW, or on the Internet.

Self-similarity on network indicates that it is approximately similar to any
part of itself, and therefore, it is fractal. In many cases, the real networks possess
all these properties, i.e. they are Fractal, Small-World, and Scale-Free.
Fractal dimensions describe self-similarity of diverse phenomena: images,

temporal signals,... Such fractal dimension gives us an indication of how com-
pletely a fractal appears to �ll the space, as one zooms down to �ner and �ner
scales. It is, so, a statistical measure.
The most important of such measures are

- Rényi dimension,

- Hausdor¤ dimension,

and

- Packing dimension.

Fuzzy set approach also may produce some consistent models [16, 17].

In the case of the Watts-Strogatz Small-World model, proposed in 1998, it
represents a hybrid case between a Random Graph and a Regular Lattice [9,
24, 26].
So, Small-World models share with Random Graphs some common features,

such as
- the Poisson or Binomial degree distribution, near to Uniform type;
- network size: it does not grow;
- each node has approximately the same number of edges.
Therefore, it shows a homogeneous nature. Because their ease of implemen-

tation, the more usual procedures to compute such measures will be

correlation dimension

and

box counting

WS-models show the low average path length typical of Random Graphs,

L � ln n, for n >> 1

And also such models give us the usual high clustering coe¢ cient of Regular
Lattices, being

C � 0:75, for k >> 1
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In consequence, WS-models have a small-world structure, being well clus-
tered.
The Random Graphs coincide on the small-world structure, but they are

poorly clustered.
This model (WS) has a peak degree distribution, of Poisson type.
With reference to the last model [3, 9, 12, 16], called Scale-Free Network,

this appears when the degree distribution follows a Power-Law. I.e.

P (k) _ k�

In such a case, there exist a small number of highly connected nodes, called
Hubs,
which are the tail of the distribution.
On the other hand, the great majority of the sets of their nodes have few

connections, representing the head of such distribution.
Such a model was introduced by Albert-Laszló Barabási and Réka Albert,

in 1999. Some of their essential features are

- non-homogeneous nature, in the sense that some (few) nodes have many
edges from them, and the remaining nodes only have very few edges, or links.

- as related to the network size, it continuously grows;

and

- regarding to the connectivity, it obeys a Power-Law distribution.

Many massive graphs, such as the WWW graph, share certain characteris-
tics, described as such aforementioned Power-Law.

Bollobás and Riordan [9, 10] consider a Random Graph process in which
nodes are added to the graph one at a time, and joined to a �xed number of
earlier nodes, chosen with probability proportional to their degree.
After n steps, the resulting graph has diameter approximately

log n

This a¢ rmation is true for n = 1.
But for n � 2, the diameter value would be asymptotically

(logn) = log (log n)

Another very interesting mechanism is the so-called

Preferential Attachement process

(PA by acronym)

It will be any class of processes in which some quantity is distributed among
a number of sets (for instance, objects or individuals), according to how much
they already have, so that intuitively
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"the rich get richer"

(the more interrelated get more new connections than those who are not).
The principal scienti�c interest in PA is that it may produce interesting

power law distributions.
Analytic solutions for PA mechanism were showed by

Dogorotsev et al. (2000)

and then, by Krapivsky et al., working on an independent way.
But it was Bela Bollobás who proved this rigorously.

A very notable example of Scale-Free Network may be the World Wide Web.
As we know [1, 3, 14, 15], it is a collection of many possibly very di¤erent sub-
networks.

Related to the Web graph characteristics, we notice the Scale Invariance as
being very important [21, 26].
Another interesting feature is the possibility to obtain a measurement of the

World-Wide Web (its diameter, i.e. the shortest distance between any pair of
nodes into the system), or at least a bound, either a mean value, ...
The WWW representation is made by a very large digraph, whose nodes are

documents, and whose edges are links (URLs), pointing from one document to
another.
Réka Albert et al. found that the average of the shortest path between two

nodes will be

hdi = 0:35 + 2:06 logN

where N is the number of nodes in the Random Graph considered.
This shows that the Web is a Small-World network.
In particular, if we take

N = 8 x 10 8

we will obtain

hdWebi = 18:59

This important result means that two randomly chosen nodes (documents),
on the graph which represent the Web, are only on average nineteen clicks (or
steps into the Web graph) from each other.
For a given value of the number of nodes, N, the distribution associated to

d is of Gaussian type.
It will be also very remarkable the logarithmic dependence of such diameter

on the value of N. In this sense, R. Albert et al. indicate that the future
evaluation of hdi, with the increasing of the Web, would change from 19 to only
21.
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1.2 Fuzzy Asymmetry

Also it will be possible to introduce some new asymmetry and symmetry level
measures as by [16, 17].
Let (E, d) be a fuzzy metric space.

Note. Our results may also be applied to some di¤erent space classes.

We proceed to de�ne both new fuzzy measures.
Such functions might be de�ned as some of the type fLigi2fs;ag ;with i 2

fa; sg where s denotes symmetry, and a denotes asymmetry.
Suppose that from here we denote by c(A) the cardinal of a fuzzy set, A.
We denote by H (A) its entropy measure, and by Sp (A) its corresponding

speci�city measure.

Theorem 1. Let (E, d) be a fuzzy metric space, with A as a subset of E, and
let H and Sp be both fuzzy measures de�ned on (E, d).
Then, the function operating on A as

Ls (A) = Sp (A)
�
1�c(A)
1+c(A)

�
+ 1

1+H(A)

will be also a fuzzy measure.
This measure is called Symmetry Level Function.

Theorem 2. Let (E, d) be a fuzzy metric space, being A any subset of E,
and let H and Sp be both precedent fuzzy measures de�ned on (E, d).
Then, the function

La (A) = 1�
n
Sp (A)

�
1�c(A)
1+c(A)

�
+ 1

1+H(A)

o
This measure is called Asymmetry Level Function.

Corollary 1. In the precedent hypotheses, the Symmetry Level Function is
a Normal Fuzzy Measure.

Corollary 2. Also the Asymmetry Level Function will be a Normal Fuzzy
Measure.

Recall that the values of a fuzzy measure, Sp, decrease as the size of the
considered set increases. And that theRange of the Speci�city Measure, Sp, will
be [0, 1].

2 Conclusion

So, we hope to have achieved our initial purpose, that of attempting to provide a
comprehensive vision on the principal aspects, and essential properties, of Com-
plex Networks, from a new Mathematical Analysis point of view, and in partic-
ular show new promising results about the Functions of Symmetry/Asymmetry
Levels.

288



REFERENCES Complex Networks REFERENCES

2.1 References

References

[1] R. Albert, H. Jeong, and A.-L. Barabási (1999). Diameter of the Worl-Wide
Web. Nature. 401: 129-130.

[2] R. Albert, and A.-L. Barabási (2002). Statistical Mechanics of Complex
Networks. Reviews of Modern Physics. 74: 47-.

[3] A.-L. Barabási, and Bonabeau (2003). Scale-Free Networks. Scient. Am.
May 2003: 50-59.

[4] A.-L. Barabási (2004). Linked: How Everything is Connected to Everything
Else. Plume Publ.

[5] A. Barrat et al. (2008). Dynamical processes in Complex Networks. Cam-
bridge University Press.

[6] S. Bocaletti et al. (2006). Complex Networks: Structure and Dynamics.
Phys. Rep. 424: 175-308.

[7] B. Bollobás (2001). Random Graphs. Cambridge Studies in Advanced
Mathematics 73. Cambridge University Press.

[8] B. Bollobás (1998). Modern Graph Theory. Springer Verlag.

[9] B. Bollobás et al. (2009). Handbook of Large-Scale Random Networks.
(Bólya Society Mathematical). Springer Verlag.

[10] B. Bollobás et al. (2004). The diameter of a Scale-Free Random Graph.
Combinatorica, 24(1). Springer Verlag.

[11] S. Bornholdt, and H. G. Schuster, editors (2003). Handbook of Graphs and
Networks: From the Genome to the Internet. Wiley, Weinheim.

[12] G. Calderelli (2007). Scale-Free Networks. Oxford University Press.

[13] S. N. Dorogotsev, and J. F. F. Mendes (2002). Evolution of Networks. Adv.
Phys. 51: 1079-.

[14] S. N. Dorogotsev, and J. F. F. Mendes (2003). Evolution of Networks: From
biological networks to the Internet and WWW. Oxford University Press.

[15] S. N. Dorogotsev, A. V. Goltsev, and J. F. F. Mendes (2008). Critical
phenomena in Complex networks. Rev. Mod. Phys., 80:1275-.

[16] A. Garrido (2010). Asymmetry and Symmetry Level Measures. Symmetry
2010, MDPI publishers journal, Basel, 2(2): 707-721.

[17] A. Garrido (2009). Asymmetry level as a fuzzy measure. Acta Univ. Apu-
lensis Math. Inform., 18: 11-18.

289



REFERENCES Angel Garrido REFERENCES

[18] A. Mowshowitz, and V. Mitsou (2009). Entropy, Orbits, and Spectra of
Graphs. In Analysis of Complex Networks: From Biology to Linguistics.
Eds. M. Dehmer, and F. Emmert-Streib. Wiley, Weinheim.

[19] M. Newman (2003). The structure and function of Complex Networks.
SIAM Review, 45: 167-256.

[20] M. Newman et al. (2006). The structure and Dynamics of Complex Net-
works. Princeton University Press.

[21] R. Pastor-Satorras, and A. Vespignani (2004). Evolution and Structure of
the Internet: A Statistical Physics Approach. Cambridge University Press.

[22] R. Solé, and S. Valverde (2008). Information Theory of Complex Networks:
on Evolution and Architectural Constraints. Lect. Notes Phys. 650, 189.
Springer Verlag, Berlin.

[23] S. H. Strogatz (2001). Exploring Complex Networks. Nature 410: 268-276.

[24] D. J. Watts, and S. H. Strogatz (1998). Collective Dynamics of "small-
world" networks. Nature, 393: 440-442.

[25] D. J. Watts (2003). Six Degrees: The Science of a Connected Age. W. W.
Norton and Co.

[26] D. J. Watts (2003). Small Worlds: The Dynamics of Networks between
Order and Randomness. Princeton University Press.

290


