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Abstract

In this paper, we study how changes in the coefficients of objective func-
tion, the coefficients matrix and the right-hand-side vector of constraints of
the fuzzy linear programming problems with the fuzzy order relation in the
objective function and the constraints under ranking function affect the fuzzy
optimal solution. We consider separate cases when changes occur in the data
of the problem and derive bounds for parameter when the data are perturbed,
while the fuzzy optimal solution is invariant. Finally, we obtain the optimal
value function with fuzzy coefficients in each case and the results are described
by some numerical examples.
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1 Introduction

The concept of decision making in fuzzy environment proposed by Bellman and Zadeh
for the first time in [1]. The use of this concept in mathematical programming was pro-
posed by Tanaka et al [9]. The first formulation of fuzzy linear programming (FLP )
was given by Zimmermann [14]. Afterwards, many authors considered various types
of FLP problems and proposed several approaches for solving these problems
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[2, 3, 5, 7]. One of these approaches for solving FLP problems is based on the concept
of comparison of fuzzy numbers by use of ranking functions. In such methods authors
define a crisp model which is equivalent to the FLP problem and then use optimal
solution of the model as optimal solution of the FLP problem. The fuzzy dual
problem was defined by the help of parametric linear program and was showed that
the fuzzy primal and dual both have the same fuzzy solution under some suitable
conditions by Verdegay [10]. The fuzzy variable linear programming problem has
been explored by Zimmermann [15]. By using of certain linear ranking function for
ordering trapezoidal fuzzy numbers, defined the dual of a fuzzy linear programming
problem, then the duality results and complementary slackness have been given [8].

Sensitivity analysis is a basic tool for studying perturbations in optimization prob-
lems and it is one of the interesting researches in FLP problems. Sensitivity analysis
in FLP was first considered by Hamacher et al [6], where a functional relation be-
tween changes of parameters of the right-hand-side and those of the optimal value of
the primal objective function was derived for almost all conceivable cases. Fuller [4]
showed that the solution to FLP problems with symmetrical triangular fuzzy num-
bers is stable with respect to small changes of centers of fuzzy numbers. Perturbations
occur due to calculation errors or just to answer managerial questions “ What if · · · ”.
Such questions propose after the simplex method and the related research area refers
to as basis invariancy sensitivity analysis.

In addition, a lot of real-world problems have uncertainties in the data, coefficients
and/or parameters, which form the fuzzy environment, because they are a mixture of
measurements and perceptions, as described in [13]. In these cases, the values must
be estimated by a decision maker that knows about the problem. This vagueness
can be dealt with by stochastic process, approximate reasoning, chaos or fuzzy logic.
In this context, the concept of fuzzy linear programming emerges when uncertain
variables are used.

In this paper, we study basis invariancy sensitivity analysis for fuzzy linear pro-
gramming problems with uncertain variables when there exists an fuzzy order relation
under linear ranking function.

The paper is organized as follows: Section 2 states some basic concepts, namely,
basic feasible solution, ranking function and fuzzy linear programming. Section 3
shows study of the sensitivity analysis for fuzzy linear programming with fuzzy order
relation under ranking function, and obtaining lower and upper bounds for param-
eter when the problem data are perturbed. Any case is illustrated by an numerical
example.

2 Preliminaries

Let R denote the set of all real numbers. In this paper, a fuzzy number will be a
fuzzy set ã : R −→ [0, 1] with the following properties:

1. The membership function µã(x) is piecewise continuous,
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2. ã is fuzzy convex; that is, µã(λx + (1 − λ)y) ≥ min{µã(x), µã(y)}, ∀x, y ∈
R and λ ∈ [0, 1],

3. There exist three intervals [a, b], [b, c] and [c, d] such that µã is increasing on
[a, b], equal to 1 on [b, c], decreasing on [c, d] and equal to 0 elsewhere.

The set of fuzzy numbers ã = (aL, aU , α, β)LR, where aL ≤ aU , α > 0, β > 0 and
aL, aU , α, β ∈ R will be denoted by F (R). The arithmetic operations between fuzzy
numbers, or fuzzy number and classical number is described as follows:

1. x > 0, x ∈ R; xã = (xaL, xaU , xα, xβ),

2. x < 0, x ∈ R; xã = (xaU , xaL,−xβ,−xα),

3. ã + b̃ = (aL + bL, aU + bU , α + γ, β + θ).

In the sequel we define a ranking function that represents the fuzzy number by a
classical number.

2.1 Ranking function

One of the ways for solving mathematical programming problems in a fuzzy environ-
ment is to compare fuzzy numbers. The comparison between fuzzy numbers is done
by using a ranking function that attends some conditions described in [11]. An ap-
propriate approach for ordering the elements of F (R) is to define a ranking function
R : F (R) → R, which maps each fuzzy number into the real line, where a natural
order exists. Some orders on F (R) are defined as follows:

1. ã ≤f b̃ if and only if R(ã)≤R(b̃);

2. ã <f b̃ if and only if R(ã)<R(b̃);

3. ã =f b̃ if and only if R(ã)=R(b̃),

where ã and b̃ belong to F (R), R is a ranking function, and the symbol “ ≤f ”
represents the fuzzy fuzzy order relation.

We will restricted our attention to linear ranking functions; that is, a ranking
function R such that

R(kã + b̃) = kR(ã) +R(b̃), (1)

for any ã, b̃ ∈ F(R) and any k ∈ R.
According to this mind, we can choose a linear ranking function that satisfies

Equation (1) as

R(ã) = cLaL + cUaU + cαα + cββ, (2)
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where cL, cU , cα and cβ are arbitrary constants. A special form of the above ranking
function was first proposed by Yager [12]:

R(ã) =
aL + aU

2
+

β − α

4
. (3)

Remark 1. For any fuzzy number ã, the relation ã ≥f 0̃ holds, if there exist ε ≥ 0
and ξ ≥ 0 such that ã ≥f (−ε, ε, ξ, ξ). In this way, we have R(ã) ≥ 0 (we also assume
ã =f 0̃ if and only if R(ã) = 0). Hence, without loss of generality, we consider
0̃ = (0, 0, 0, 0) as a trapezoidal fuzzy zero.

2.2 Fuzzy linear programming

Consider the primal problem in standard form

min z̃ =f cx̃

s.t. Ax̃ =f b̃ (FLP )
x̃ ≥f 0̃,

with dual
max w̃ =f yb̃

s.t. yA ≤ c, (FLD)

where b̃ ∈ (F(R))m,A ∈ Rm×n, ct ∈ Rn are data, x̃ ∈ (F(R))n and y ∈ Rm are to be
determined, and R is a linear ranking function as defined by (3).

Definition 2. A trapezoidal fuzzy vector x̃ ≥f 0̃ is said to be a fuzzy feasible solution
for (FLP) if x̃ satisfies the constraints Ax̃ =f b̃.

Definition 3. A fuzzy feasible solution x̃∗ is called a fuzzy optimal solution for (FLP)
if for all fuzzy feasible solutions x̃, we have ctx̃∗ ≤f ctx̃.

Definition 4. Let A be the coefficient matrix of the FLP problem with full row
rank and B be a nonsingular sub-matrix m×m of A. Let {B1, . . . , Bm} ⊂ {1, . . . , n}
denote the index set of the columns of matrix B. Let N = {1, 2, . . . , n} \ B. In this
case, vector x̃ =f (x̃T

B, x̃T
N)T =f (B−1b̃, 0̃) is called a basic solution. If x̃B ≥f 0̃, then

the fuzzy basic solution x̃ is called a fuzzy basic feasible solution (FBFS) and the
corresponding fuzzy objective value is equal to z̃ =f cBx̃B, where cB = (cB1 , . . . , cBm).
Now corresponding to every index j, 1 ≤ j ≤ n, define zj = cByj = cBB−1A.j, which
A.j is jth column of A. Observe that for any basic index j = Bi, 1 ≤ i ≤ m, we
have B−1A.j = ej where ej = (0, . . . 0, 1, 0, . . . , 0)T , since Bej = A.j and so we have
zj − cj = 0.

In the following state a fundamental theorem which plays an important role for
sensitivity analysis in the FLP problem.
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Theorem 5. (Optimality conditions [8]) Assume the FLP problem with trapezoidal
fuzzy variables is non-degenerate and B is a feasible basis. A fuzzy basic feasible
solution x̃B =f B−1b̃, x̃N =f 0̃ is optimal to the FLP if and only if zj = cBB−1A.j ≤
cj for all j, 1 ≤ j ≤ n.

3 Sensitivity analysis

Consider the primal problem (FLP). Suppose that the simplex method produced an
optimal basis B. We shall describe how to make use of the optimality conditions
in order to find new optimal solution if some of the problem data change without
resolving the problem from scratch. In particular the following variations in the
primal problem will be considered:

• Change in the cost vector c,

• Change in the right hand side vector b̃,

• Change in the constraint matrix A,

• Addition of a new activity (trapezoidal fuzzy variable),

• Addition of a new constraint.

3.1 Change in the cost vector c

Given an optimal basic feasible solution, suppose that the cost coefficient of the fuzzy
variable x̃k is changed from ck to c

′

k, that c
′

k := ck + λ4ck. The effect of this change
on the final tableau will occur in the cost row. We are going to determine the λ that
make the old solution be still optimal. Consider the following two separation cases:

Case 1: x̃k is a non-basic variable.

In this case cB is not affected, and hence zj := cBB−1A.j is not changed for any j.
Thus zk − ck is replaced by zk − c

′

k. Now, to preserve optimality, we must have

zk − c
′

k = cBB−1A.k − ck − λ4ck ≤ 0,

this implies

λ


≥ zk − ck

4ck

, if 4ck > 0

≤ zk − ck

4ck

, if 4ck < 0
(4)

Hence for any change in ck, satisfying (4), the current optimal solution remains opti-
mal and the value of the objective function also does not change since x̃k =f 0̃.
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Case 2: x̃t is a basic variable, say x̃t := x̃Bk
.

Let cBk
be replaced by c

′
Bk

:= cBk
+ λ4cBk

. In this case the evaluations of zj :=
cBB−1A.j for all non-basic variables are affected by any change in ck and we should
have

z
′
j − cj = c

′
BB−1A.j − cj = (cB1 , . . . , c

′
Bk

, . . . , cBm)B−1A.j − cj

↑
kth

= cBB−1A.j − cj + (0, . . . , λ4cBk
, . . . , 0)B−1A.j

= cBB−1A.j − cj + λ4cBk

m∑
i=1

βkiAij ≤ 0, j ∈ N

where B−1 = (βij). This implies that

λ



≥ cj − zj

4cBk

m∑
i=1

βkiAij

, if 4cBk

m∑
i=1

βkiAij < 0

≤ cj − zj

4cBk

m∑
i=1

βkiAij

, if 4cBk

m∑
i=1

βkiAij > 0

(5)

Hence

max
j∈N

{ cj − zj

4cBk

m∑
i=1

βkiAij

: 4cBk

m∑
i=1

βkiAij < 0
}
≤ λ ≤

min
j∈N

{ cj − zj

4cBk

m∑
i=1

βkiAij

: 4cBk

m∑
i=1

βkiAij > 0
}

.

(6)

Thus if (6) is satisfied, changes in ck will not affect the original optimal basis or the
value of the optimal solution. The only change will occur in the optimal value of the
objective function z̃, and the new optimal value will be equal to

z̃
′

∗ =f c
′

BB−1b̃ =f cBB−1b̃ + (0, . . . , λ4cBk
, . . . , 0)B−1b̃

=f z̃∗ + λ4cBk

m∑
i=1

βkib̃i,

where is a fuzzy linear function with respect to λ.
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Example 1. Consider the following fuzzy linear programming problem .

min z̃ =f −x̃1 − x̃2 − 2x̃3

s.t : x̃1 + x̃2 + 2x̃3 + x̃4 =f (5, 8, 2, 5)
x̃1 − x̃2 + x̃5 =f (6, 10, 2, 6)
x̃1 + x̃2 + x̃3 + x̃6 =f (1, 6, 7, 8)

x̃1, x̃2, x̃3, x̃4, x̃5, x̃6 ≥f 0̃,

The final simplex tableau is given as follows

Basis x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 R.H.S. R

z̃ 0 0 0 −1 0 0 (−8,−5, 5, 2) − 29
4

x̃3
1
2

1
2 1 1

2 0 0 (5
2 , 4, 1, 5

2) 29
8

x̃5 1 −1 0 0 1 0 (6, 10, 2, 6) 9

x̃6
1
2

1
2 0 −1

2 0 1 (−3, 7
2 , 19

2 , 9) 1
8

The optimal solution is x̃∗1 =f (0, 0, 0, 0), x̃∗2 =f (0, 0, 0, 0), x̃∗3 =f (5
2
, 4, 1, 5

2
) and

z̃∗ =f (−8,−5, 5, 2).

Here the matrix of the optimal basis is

 2 0 0
0 1 0
1 0 1

 and its inverse B−1 =

 1
2 0 0
0 1 0
− 1

2 0 1

 .

If c3 = −2 → c
′
3 = −2 + 3λ, then by using (6) we get

λ ≤ 0,

and the optimal value function in this region is as follows

z̃(λ) =f (−8,−5, 5, 2) + (
15

2
, 12, 3,

15

2
)λ.

3.2 Change in the requirement vector b̃

Since optimality condition, zj − cj ≤ 0,∀j ∈ N , does not depend on the requirement
vector, any change in the requirement vector does not affect the optimality condition.
It however affects the values of the basic variables and hence the value of the objective
function. Thus if the magnitude of the change in the requirement vector be such that
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it preserves the feasibility of the optimal basis, then the original optimal basis remains
optimal.

Let the requirement vector b̃ be replaced by b̃
′
:=f b̃+λ4b̃, where 4b̃ is a constant

fuzzy vector. Then B−1b̃ will be replaced by B−1b̃
′
. The new right hand side can be

calculated without explicitly evaluating B−1b̃
′
. This is evident by noting that

B−1b̃
′
=f B−1b̃ + λB−14b̃. (7)

For maintaining the feasibility, we must have

B−1b̃ + λB−14b̃ ≥f 0̃,

which this is equivalent to

R(B−1b̃) + λR(B−14b̃) = B−1R(b̃) + λB−1R(4b̃) ≥ 0,

where R(b̃) = (R(b̃1), . . . ,R(b̃m))t and R(4b̃) = (R(4b̃1), . . . ,R(4b̃m))t,
or

m∑
i=1

βhiR(b̃i) + λ
m∑

i=1

βhiR(4b̃i) ≥ 0, h = 1, 2, . . . ,m.

The last relation implies that

λ



≥ −

m∑
i=1

βhiR(b̃i)

m∑
i=1

βhiR(4b̃i)

, if
m∑

i=1

βhiR(4b̃i) > 0

≤ −

m∑
i=1

βhiR(b̃i)

m∑
i=1

βhiR(4b̃i)

, if
m∑

i=1

βhiR(4b̃i) < 0

(8)

Thus the range for λ for which the optimal basis remains optimal is

max
1≤h≤m

{
−

m∑
i=1

βhiR(b̃i)

m∑
i=1

βhiR(4b̃i)

:
m∑

i=1

βhiR(4b̃i) > 0
}
≤ λ ≤

min
1≤h≤m

{
−

m∑
i=1

βhiR(b̃i)

m∑
i=1

βhiR(4b̃i)

:
m∑

i=1

βhiR(4b̃i) < 0
}

. (9)
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The new solution of the problem is given by (7) and the value of the objective function
is a fuzzy linear function with respect to λ:

z̃
′

∗ =f cBB−1(b̃ + λ4b̃) =f cBB−1b̃ + λcBB−14b̃ =f z̃∗ + λcBB−14b̃.

Example 2. Consider Example 1. Let 4b̃ =f ((4, 2, 1, 3), (3, 2, 5, 2), (1, 2, 3, 1))t be
perturbing direction, then by using (9) we get

max{−29

14
,−36

7
} ≤ λ ≤ min{1

6
}.

Therefore, the stability range of optimal solution is

−29

14
≤ λ ≤ 1

6
,

and the optimal value function in this region is as follows

z̃(λ) =f (−8,−5, 5, 2) + (−2,−4, 3, 1)λ.

3.3 Change in the constraint matrix

We now discuss the effect of changing some of the entries of the constraint matrix
A. Two cases are possible, namely, changes involving non-basic columns and changes
involving basic columns.

Case 1: Change in the non-basic columns

Suppose that some of the non-basic columns A.j, j ∈ N1 ⊆ N are replaced to
A

′
.j := A.j + λ4A.j, j ∈ N1, that 4A.js are the perturbation vectors. Then the

new updated columns are (
cBB−1A

′
.j − cj

B−1A
′
.j

)
, j ∈ N1.

It is clear that the feasibility condition is not distributed. To preserve the optimality
we must have,

z
′
j − cj = cBB−1A

′
.j − cj

= cBB−1(A.j + λ4A.j)− cj

= (zj − cj) + λcBB−14A.j

≤ 0, j ∈ N1.

This implies that

λ


≥ cj − zj

cBB−14A.j

, if cBB−14A.j < 0, j ∈ N1

≤ cj − zj

cBB−14A.j

, if cBB−14A.j > 0, j ∈ N1

(10)
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Thus the range for λ for which the optimal basis remains optimal is

max
j∈N1

{ cj − zj

cBB−14A.j

: cBB−14A.j < 0
}
≤ λ ≤

min
j∈N1

{ cj − zj

cBB−14A.j

: cBB−14A.j > 0
}

.
(11)

Example 3. Consider Example 1. If A
′
.1 = A.1 + λ4A.1 and A

′
.4 = A.4 + λ4A.4

where 4A.1 = (1, 2,−1)t and 4A.4 = (−3, 1, 2
3
) then by using (11) we have

0 ≤ λ ≤ 1

3
.

Case 2: Change in the basic column

In this part, our goal is to determine the lower and upper bounds for λ which guar-
antee that the replacement A.k by A

′

.k := A.k + λ4A.k, k ∈ B, does not affect the
optimal basis, and the original optimal solution x̃∗ remains feasible and optimal. By
taking this replacement, the optimal basis B will be replaced with B := B +λ4A.ke

t
k

where ej is a unit vector. The inverse matrix B is

B
−1

= B−1 − λ
B−14A.ke

t
kB

−1

1 + λet
kB

−14A.k

= B−1 − λ
B−14A.kβk.

1 + λ
m∑

i=1

βki4Aik

, 1 + λ
m∑

i=1

βki4Aik 6= 0,
(12)

by the Sherman-Morrison formulas, where B−1 = (βij) and βk. is the k-th row B−1.
This change of the basis matrix will affect the feasibility of vector x̃∗. However, it
may affect the optimality condition and the optimal value of the objective function
z̃. Therefore

x̃B =f B
−1

b̃

=f
(
B−1 − λ

B−14A.kβk.

1 + λ

m∑
i=1

βki4Aik

)
b̃

=f x̃B − λ
B−14A.kβk.b̃

1 + λ

m∑
i=1

βki4Aik

.

(13)

Now the i-th component of x̃B is given by

(x̃B)i =f

m∑
j=1

βij b̃j − λ

m∑
j=1

βij4Ajk

m∑
j′=1

βkj
′ b̃j

′

1 + λ

m∑
i′=1

βki′4Ai′k

, i = 1, 2, . . . ,m. (14)
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This new basic solution x̃B will be feasible if

m∑
j=1

βij b̃j − λ

m∑
j=1

βij4Ajk

m∑
j′=1

βkj′ b̃j′

1 + λ

m∑
i′=1

βki′4Ai′k

≥f 0̃, i = 1, 2, . . . ,m. (15)

Without loss of generality, assume that 1 + λ

m∑
i′=1

βki′4Ai′k > 0 and this implies

λ



> −1
m∑

i′=1

βki′4Ai′k

, if
m∑

i′=1

βki′4Ai′k > 0

< −1
m∑

i′=1

βki′4Ai′k

, if
m∑

i′=1

βki′4Ai′k < 0

(16)

Due to (16), the relation (15) satisfies if

λ
( m∑

j=1

βij b̃j

m∑
i′=1

βki′4Ai′k −
m∑

j=1

βij4Ajk

m∑
j′=1

βkj′ b̃j′

)
≥f −

m∑
j=1

βij b̃j.

Hence for maintaining feasibility, we must have

max
1≤i≤m

{−
m∑

j=1

βijR(b̃j)

Hi

: Hi > 0
}
≤ λ ≤ min

1≤i≤m

{−
m∑

j=1

βijR(b̃j)

Hi

: Hi < 0
}

,
(17)

where Hi =
m∑

j=1

βijR(b̃j)
m∑

i
′
=1

βki′4Ai′k −
m∑

j=1

βij4Ajk

m∑
j′=1

βkj′R(b̃j′ ), i = 1, 2, . . . ,m.

Now, to preserve optimality, we must have

z
′

j − cj = cBB
−1

A.j − cj = cB

(
B−1 − λ

B−14A.kβk.

1 + λ
m∑

i′=1

βki′4Ai′k

)
A.j − cj

= zj − cj − λ

m∑
i=1

m∑
j
′
=1

m∑
i
′
=1

cBi
βij′4Aj′kβki′Ai′j

1 + λ

m∑
i
′
=1

βki′4Ai′k

≤ 0, j ∈ N. (18)
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Since by (16), 1 + λ
m∑

i′=1

βki′4Ai′k > 0, (18) reduces to

λ
(
(zj − cj)

m∑
i′=1

βki′4Ai′k −
m∑

i=1

m∑
j′=1

m∑
i′=1

cBi
βij′4Aj′kβki′Ai′j

)
≤ cj − zj. (19)

Hence in order to maintain the optimality of the new solution, λ must satisfies

max
j∈N

{cj − zj

Mj

: Mj < 0
}
≤ λ ≤ min

j∈N

{cj − zj

Mj

: Mj > 0
}

, (20)

where Mj = (zj − cj)
m∑

i′=1

βki′4Ai′k −
m∑

i=1

m∑
j′=1

m∑
i′=1

cBi
βij′4Aj′kβki′Ai′j, j ∈ N .

Therefore, we have proved the following theorem:

Theorem 6. If λ satisfies (16), (17) and (20) then x̃∗ is an optimal solution of the
perturbed problem.

In the stability region of the Theorem 6, the optimal value function is a fuzzy
linear fractional function as follows

z̃(λ) =f z̃∗ − λ

m∑
i=1

m∑
j=1

m∑
j′=1

cBi
βij4Ajkβkj′ b̃j′

1 + λ
m∑

i′=1

βki′4Ai′k

.

Example 4. Consider Example 1. If A
′
.3 = A.3 +λ4A.3, where 4A.3 = (−1

4
, 0,−1)t,

then by using the Theorem 6 we obtain the following interval for λ

0 ≤ λ < 8,

and the optimal value function is a fuzzy linear fractional function as follows:

z̃(λ) =f (−8,−5, 5, 2)− λ

8− λ
(5, 8, 2, 5).

3.4 Adding a new activity

Suppose that a new activity x̃n+1 with unit cost cn+1 and consumption column an+1

is considered for possible production. Without resolving the problem, we can easily
determine wether producing x̃n+1 is worthwhile or not.

It is obvious that the original optimal solution is feasible to the modified prob-
lem. It also remains optimal if zn+1 − cn+1 ≤ 0. In this ways x̃∗n+1 =f 0̃. If however,
zn+1−cn+1 > 0, then x̃n+1 is introduced into the basis and the primal simplex method
may be applied to find an optimal solution to the modified problem.
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3.5 Adding a new constraint

Suppose that a new constraint is added to the problem after an optimal solution
has already been obtained. If the optimal solution to the original problem satisfies
the new constraint, it is obvious that it is also an optimal solution to the modified
problem. If it does not satisfy the new constraint, a new optimal solution has to be
found.

Suppose that B is the optimal basis before adding constraint am+1x̃ ≤f b̃m+1. The
corresponding tableau is shown below:

z̃ + (cBB−1N − cN)x̃N =f cBB−1b̃

x̃B + B−1Nx̃N =f B−1b̃. (21)

The constraint am+1x̃ ≤f b̃m+1 is rewritten as am+1
B x̃B + am+1

N x̃N + x̃n+1 =f b̃m+1,
where am+1 is decomposed into (am+1

B am+1
N ) and x̃n+1 is a nonnegative slack variable.

Multiplying equation (21) by am+1
B and subtracting from the new constraint gives the

following system:

z̃ + (cBB−1N − cN)x̃N =f cBB−1b̃

x̃B + B−1Nx̃N =f B−1b̃

(am+1
N − am+1

B B−1N)x̃N + x̃n+1 =f b̃m+1 − am+1
B B−1b̃.

These equations give us a basic solution of the new problem. The only possi-
ble violation of optimality of the new problem is the sign of b̃m+1 − am+1

B B−1b̃, if
b̃m+1 − am+1

B B−1b̃ ≥f 0̃, then the current solution is optimal. Otherwise, if b̃m+1 −
am+1

B B−1b̃ <f 0̃ then the dual simplex method [8] is used to restore feasibility.

Example 5. Consider the following fuzzy linear programming problem

min z̃ =f 6x̃1 + 10x̃2

s.t : −2x̃1 − 5x̃2 + x̃3 =f (−8,−5, 5, 2)
− 3x̃1 − 4x̃2 + x̃4 =f (−10,−6, 6, 2)

x̃1, x̃2, x̃3, x̃4 ≥f 0̃,

The final simplex table is given as follows
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Final

Basis x̃1 x̃2 x̃3 x̃4 R.H.S. R

z̃ 0 0 −6
7
−10

7
(−62

7
, 300

7
, 360

7
, 418

7
) 267

14

x̃2 0 1 −3
7

2
7

(−5
7
, 12

7
, 18

7
, 19

7
) 15

28

x̃1 1 0 4
7

−5
7

(−2
7
, 30

7
, 30

7
, 38

7
) 16

7

The optimal solution is x̃∗1 =f (−2
7
, 30

7
, 30

7
, 38

7
), x̃∗2 =f (−5

7
, 12

7
, 18

7
, 19

7
) and the opti-

mal value is equal to z̃ =f (−62
7
, 300

7
, 360

7
, 418

7
). Suppose that the constraint−1

4
x̃1 ≥f

(−2,−1, 3, 7) is added to the problem, then

a3
N − a3

BB−1N = [−1

7
,

5

28
],

b̃3 − a3
BB−1b̃ =f (− 1

14
,
29

14
,
117

14
,
57

14
).

So we have the following tableaus:

Basis x̃1 x̃2 x̃3 x̃4 x̃5 R.H.S. R

z̃ 0 1 −6
7 −10

7 0 (−62
7 , 300

7 , 360
7 , 418

7 ) 267
14

x̃2 0 1 −3
7

2
7 0 (−5

7 , 12
7 , 18

7 , 19
7 ) 15

28

x̃1 1 0 4
7 −5

7 0 (−2
7 , 30

7 , 30
7 , 38

7 ) 16
7

x̃5 0 0 −1
7

5
28 1 (− 1

14 , 29
14 , 117

14 , 57
14) − 1

14
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Basis x̃1 x̃2 x̃3 x̃4 x̃5 R.H.S. R

z̃ 0 0 0 −35
14 −6 (−149

7 , 303
7 , 531

7 , 769
7 ) 273

14

x̃2 0 1 0 −1
4 −3 (−97

14 , 27
14 , 207

14 , 389
14 ) 3

4

x̃1 1 0 0 0 4 (−4
7 , 88

7 , 264
7 , 152

7 ) 2

x̃3 0 0 1 −5
4 −7 (−29

2 , 1
2 , 57

2 , 117
2 ) 1

2

Therefore, the new optimal solution is x̃∗1 =f (−4
7
, 88

7
, 264

7
, 152

7
), x̃∗2 =f (−97

14
, 27

14
, 207

14
, 389

14
),

x̃∗3 =f (−29
2
, 1

2
, 57

2
, 117

2
) and the optimal value is equal to z̃∗ =f (−149

7
, 303

7
, 531

7
, 769

7
).

4 Conclusion

The fuzzy linear programming problems with fuzzy variables are proposed by using
ranking function in this paper. We then addressed the basis invariancy sensitivity
analysis under ranking function, and obtained lower and upper bounds for parameter.
Finally, we showed that the optimal value function is a fuzzy linear or a fuzzy linear
fractional function.
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