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Abstract: 
 
 The Maximum Independent Set Problem (MIS) is a classic graph optimization NP-hard 
problem with many real world applications. Given a graph G = (V, E), the independent set 
problem is that of finding a maximum-cardinality subset S of V such that no two vertices in S are 
adjacent. In this paper an efficient algorithm, called Vertex Support Algorithm (VSA), is 
designed to find the maximum independent set of a graph. Our algorithm was tested on a large 
number of random graphs with upto 5,000 vertices and on DIMACS benchmark graphs and the 
result shows that VSA algorithm decidedly outperforms other existing algorithms found in the 
literature for solving the MIS. 
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 1. Introduction: 
 
 An independent set of a graph is a subset of vertices in which no two vertices are 
adjacent. Given a set of vertices, the maximum independent set problem (MIS) calls for finding 
the independent set of maximum cardinality. The MIS is a classic one in computer science and in 
graph theory, and is known to be NP-hard [10]. MIS has many important applications, including 
combinatorial auctions [7], graph coloring, coding theory [9], geometric tiling, fault diagnosis, 
pattern recognition, molecular biology, and more recently its application in bioinformatics have 
become important [16].  
 The Minimum Vertex Cover (MVC) problem of a graph consists of identifying the vertex 
cover of the graph which has minimum cardinality. The MIS and MVC problems are related in 
that the maximum independent set contains all those vertices that are not in the minimum vertex 
cover of the graph. Due to computational intractability of the MIS (MVC) problem, many 
researchers have instead focused their attention on the design of approximation algorithm for 
delivering quality solutions in a reasonable time.    
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Pardalos and Xue [15] recently published a review with 260 references. Many algorithms for the 
MIS have been proposed [1, 4, 5, 6, 11, 17]. Recently, Ostergard [14] proposed a new maximum 
clique algorithm, which was supported by computational experiments. 

The MIS problem has a relation with the Maximum Clique Problem (MCP) i.e., an 
independent set of size k in a graph G (V, E) is a clique in the complemented graph )E V,(G and 
a graph has independent set of size k if and only if it has a vertex cover of size |V|-k. Clearly, S is 
an independent set of G if and only if it is a clique of G . In this paper we are concerned with the 
problem of finding a maximum independent set in G, that is, independent set of maximum size. 
Equivalently, this problem can be viewed as asking for a minimum vertex cover in G or 
maximum clique in G .  The MIS (MVC) of a graph is approximated by the new approach 
support of a vertex which is calculated by summing up all the degrees of the vertices which are 
adjacent to the vertex. 
 In this paper a competent algorithm called Vertex Support Algorithm (VSA) is presented 
to find the maximum independent set of the graph, which calculates the MIS through MVC by 
support of the vertices. We compared our algorithm with the other existing algorithm namely [1, 
4, 12]. The experimental result shows that our algorithm is very fast and yields better solutions 
than the compared algorithms for many random graphs and DIMACS benchmark graphs. 

The paper is organized as follows. Section 2 briefly describes the maximum independent 
set (MIS) problem and the minimum vertex cover problem (MVC) and its theoretical 
background. Section 3 outlines the proposed algorithm VSA. In Section 4 graph model used in 
the experiments is briefly described. Section 5 provides experiments done and their results. 
Section 6 summarizes and concludes the paper. 

2. Maximum Independent Set and Minimum Vertex Cover  
 
 Let G = (V, E) be an arbitrary undirected graph, where V = {1, 2, …, n} is the set of 
vertices and E ⊆ V × V (not in ordered pairs) is the set of edges. Two distinct vertices u and v 
are called adjacent if they are connected by an edge, an independent set S of G is a subset of V 
whose elements are pairwise non-adjacent. The MIS problem seeks to find an independent set 
with large number of vertices. The size of the maximum independent set of G is the stability 
number of G and is denoted by α. A vertex cover for G is a subset VC of V such that for each 
edge (u, v) ∈ E, at least one of u or v or both belongs to VC. The MVC problem consists of 
identifying the vertex cover VC of G which has minimum cardinality. The MIS and MVC 
problems are related in that the maximum independent set S of G contains all those vertices that 
are not in the minimum vertex cover VC of G. i.e. S = V – VC.                                                   
                                                               B  
                                            A  
                                                                                      D     MVC = {C, D} and MIS = {A, B, E, F} 
                                     C 
 
                                                    E         F 
                                                    Graph G(V, E)                                   
                                                       Figure 1. 
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Fig. 1 depicts the above statement briefly. There are two versions of the vertex cover 

problem: the decision and optimization versions. In the decision version, the task is to verify for 
a given graph G whether there exists a vertex cover of a specified size but in the optimization 
version the task is to find a vertex cover of minimum size. In this paper we consider the 
optimization version of the minimum vertex cover with the goal of obtaining optimum solution. 
Now the minimum vertex cover problem is formulated as an integer programming problem by 
using the following conditions: 
 Binary variables ija ( i = 1,2,3,…,n; j = 1,2,3,…,n ) form the adjacency matrix of the 
graph G. Each variable has only two values (1 or 0) according as an edge exists or not. In other 
words, if an edge ( ji v,v ) is in E then ija = 1 else ija = 0. The output of the program expresses the 
vertex iv  is in the independent set or not. vi = 1 if it is in the independent set otherwise vi = 0. 
Thus the number of vertices in the independent set can be expressed by ∑= ivZ and any one or 
none of the vertex of the edge ),( ji vv is included in the independent set, we can write the 
constrained condition of the MIS as 1≤+ ji vv . Thus the problem can be mathematically 
transformed into the following optimization integer programming problem as follows. 
 
  MIS:   Max ∑= ivZ  
     Subject to 
     1≤+ ji vv  Evv ji ∈∀ ),(  
     { } Vvv ii ∈∀∈ 1,0  
 

In this paper a competent algorithm VSA is proposed for the MIS (MVC) problems. The 
simulation results show that the new VSA can yield better solutions, to random graphs, than 
other existing algorithms. The iterations are much less than the original model. Moreover, for 
some DIMACS graphs, the new VSA can yield 100% convergence rate to optimal solutions. 

3. Terminologies & Proposed Algorithm   
 
Neighborhood of a vertex:   
 Let G = (V, E), V is a vertex set and E is an edge set, be an undirected graph and let 

.mEnV == and Then for each V v∈ , the neighborhood of v is defined by 
} voadjacent t isu /Vu{)v(N ∈=  and N[v] = v ∪ N(v).  

Degree of a vertex: 
 The degree of a vertex V v∈ , denoted by d (v) and is defined by the number of 
neighbors of v.  
Support of a vertex: 
 The support of a vertex V v∈ is defined by the sum of the degree of the vertices which 
are adjacent to v, i.e., support (v) = s (v) =∑ ∈N(v)u

d(u) . 
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3.1. Algorithm 
 
 The following algorithm is designed to find the maximum independent set of a graph G. 
Adjacency matrix A = (aij) of the given graph G of n vertices and m edges is given as the input of 
the program and the degree )v(d i , support )v(s i of the each vertex Vvi ∈ of the graph G are 
calculated. Support of the vertex Vv∈ is found by the relation∑ ∈N(v)u

d(u) . Add the vertex 

which has the maximum value of the support into the vertex cover VC. If one or more vertices 
have equal maximum value of the support, in this case if (degree ( iv )>=degree ( jv )), add the 
vertex iv into the vertex cover VC otherwise add jv into VC. Update the adjacency matrix by 
putting zero in to the row and column entries of the corresponding vertex v∈VC. Proceed the 
above process until G has no edges. i.e., up to j i,  0a j i ∀≠ . Finally the maximum independent set 
S of the graph G is extracted from the minimum vertex cover VC of the graph G by S = V - VC.  
The pseudo-code of the proposed algorithm is described in Fig. 2. 

Algorithm 3.1.1: Vertex Support Algorithm (VSA) 
 
Input: G (V, E) 
Output: Max. Independent Set S (G) = V - VC where VC is the minimum vertex cover of G    

1. VC φ← ; selection = 0;  
2. ∀vi∈ V 
3. do 
4. ∑= j iji a )d(v ;  ∑ ∈

=
)iN(vjv ji  )d(v)v(s ; 

5. Max = s(v1) , k = 1; 
6.      for i←2 to n 
7.           if max < s(vi) then 
8.           t = i; 
9.           else if max = s(vi) and d(vi-k) <= d(vi) then 
10.         t = i; 
11.         else max = s(vi) and d(vi-k) > d(vi) then 
12.         t = i-k; 
13.         k = k + 1; 
14.     end for 
15. VC = VC» {vt} 
16. selection = selection + 1; 
17. assign the value zero to the  tth row and tth column of the matrix  A = (aij); 
18. while A ≠ (0) 
19. | VC | = selection; 
20. end.           

 
Figure 2: The pseudo-code of the proposed algorithm 
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4. Experimental Results & analysis 
 All the procedures of VSA have been coded in C++ language. The experiments 

were carried out on an Intel Pentium Core2 Duo 1.6 GHz CPU and 1 GB of RAM. The 
effectiveness of the VSA heuristic was evaluated using 136 instances. These instances are 
divided into 3 sets as shown in the Table 1. Simulations are carried out on three types of graphs: 
the randomly generated small size, moderate and large scale graphs for the maximum 
independent set problem.  
 
Table 1 
MIS Instances 
 

Set No. of Instances Scale Graph Model Optimal Solution 
1 36 small-large G (n, p) Unknown 
2 80 small-large DIMACS Known 
3 20 moderate G(n, m) Unknown 

4.1 G (n, p) Model 
 
 The G (n, p) model is also called Erdös Renyi random graph model [2], consists of graphs 
of n vertices for which the probability of an edge between any pair of nodes is given by a 
constant p > 0. To ensure that graphs are almost always connected, p is chosen so 

that
n

)nlog(p >> . To generate a G (n, p) graph we start with an empty graph. Then we iterate 

through all pairs of nodes and connect each of these pairs with probability p. The pseudo code 
for generating G (n, p) graph is shown in the Fig. 3. 
 
Algorithm 4.1: Generate (G, n, p) 
  
 Initialize graph G (V, E) 
 for i←  1 to n 
 for j←  i+1 to n 
 add edge (i, j) to E with probability p 
 return (G) 
Figure 3: The pseudo-code for generating G(n, p) graphs 
 
The expected number of edges of G (n, p) graph is p

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

 and expected degree is np. Graphs are 

generated for different p and n values. 
 

4.2  G(n, m) Model 
 
 The G(n, m) model consists of all graphs with n vertices and m edges. The number of 
vertices, n and the number of edges, m are related by m = nc, where c > 0 is constant. 
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To generate a random G(n, m) graph, we start with a graph with no edges. Then, cn edges are 
generated randomly using uniform distribution over all possible graphs with cn edges. Each node 
is thus expected to connect to 2c other nodes on average. The pseudo-code for the random graph 
generation is shown in Fig. 4. 
 
Algorithm 4.2: Generate (G, n, c) 
 
Initialize graph G(V, E) 
m cn ∗←        
for mto1i ←  
repeat 

edgerandome ←  
until e not present in E 

{e}EE ∪←  
return (G) 
Figure 4: The pseudo-code for generating G (n, m) graphs 

4.2 Results for random graphs 

 We first tested the VSA on 36 random graphs generated based on the concept 
explained in Section 4.1. The result we recorded for each test graph and their information are 
shown in the Table 2 and these results are compared with the theoretical evaluation of expected 
maximum clique for G(n, p) random graphs, shown in [14], and it is guaranteed that the 
proposed algorithm estimations are quite well to the expected size of the maximum independent 
set. In the 36 instances tested the maximum time taken of 29 seconds, (3000, 0.8; 4000, 0.9 & 
5000, 0.8), is an encouraging one but also it is comparatively very less time for finding the 
maximum clique of random graphs of large number of vertices with high density. So, it is 
interest to see the performance of the proposed algorithm on benchmark graphs with known 
optimal (best known) solutions.    

 
Table 2. 
Simulation results for the G(n, p) random graphs. 
n p Proposed VSA n p Proposed VSA n p Proposed VSA 
 |C| Time (s)  |C| Time (s)  |C| Time (s) 
100 
 
 
150 
 
 
200 
 
 
300 

0.7 
0.8 
0.9 
0.8 
0.9 
0.95 
0.7 
0.8 
0.9 
0.7 
0.8 
0.9 

15 
20 
31 
23 
37 
54 
19 
26 
43 
21 
29 
51 

<1 
<1 
<1 
<1 
3 
2 
<1 
3 
5 
2 
<1 
5 

400 
 
 
500 
 
 
700 
 
 
1000 
 

0.7 
0.8 
0.9 
0.7 
0.8 
0.9 
0.7 
0.8 
0.9 
0.7 
0.8 
0.9 

23 
31 
53 
32 
41 
59 
46 
52 
72 
83 
107 
112 

<1 
2 
4 
<1 
5 
3 
6 
3 
12 
17 
8 
28 

2000 
 
 
3000 
 
 
4000 
 
 
5000 

0.7 
0.8 
0.9 
0.7 
0.8 
0.9 
0.7 
0.8 
0.9 
0.7 
0.8 
0.9 

129 
142 
159 
143 
167 
189 
173 
206 
236 
227 
249 
283 

23 
18 
27 
15 
29 
17 
28 
27 
29 
23 
29 
24 
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4.3 Results for DIMACS benchmark graphs  
 To test the performance of VSA approach, further we have tested the proposed 

algorithm on benchmark graphs with known results, they have been extracted from DIMACS [8] 
challenge suite. That suite structured from the perspective of finding maximum cliques, so we 
considered the benchmark graphs as G . We compare the heuristic performance with 
implementation of the algorithms SQUEEZE [4], KLS [12], OCH [1] and the results were shown 
in the Table 3.  

The first three columns reports the type of the instances such as name, cardinality and 
density of the instances; the fourth gives the best results obtained in the challenge, the fifth, sixth 
and seventh gives the maximum size of the cliques found by corresponding algorithms. Eighth 
column reports the optimality achieved by proposed algorithm, in which * indicates the instances 
where proposed algorithm fail to reach the optimality, mostly in MANN type of instances. Table 
3 shows that proposed algorithm could find the optimal solution for most of the DIMACS 
benchmark graphs i.e., out of 79 instances tested the proposed algorithm reaches the optimum 
value for 73 instances. 

 
Table 3 
Simulation results for the DIMACS benchmark instances  
 

      G    |V| Density Optimum SQUEEZE KLS OCH Proposed VSA 

Time Success    α (G) α (G) α (G) α (G) α (G) 
 (s) (%) 

brock200_1 200 0.745 21 - 19 - 21 <1 100 
brock200_2 200 0.496 12 12 10 12 12 <1 100 
brock200_3 200 0.605 15 15 13 - 15 <1 100 
brock200_4 200 0.658 17 17 14 17 17 <1 100 
brock400_1 400 0.748 27 - 20 27 27 <1 100 
brock400_2 400 0.749 29 - 23 29 29 <1 100 
brock400_3 400 0.748 31 - 23 31 31 <1 100 
brock400_4 400 0.749 33 - 23 33 33 <1 100 
brock800_1 800 0.649 23 - 23 20 23 2 100 
brock800_2 800 0.651 24 - 24 24 24 2 100 
brock800_3 800 0.649 25 - 25 25 25 5 100 
brock800_4 800 0.65 26 - 26 23 26 4 100 
C125.9 125 0.898 34 34 - 34 34 <1 100 
C250.9 250 0.899 44 - - 44 44 <1 100 
C500.9 500 0.9 r57 - - 53 57 6 100 
C1000.9 1000 0.901 r68 - - 68 68 13 100 
C2000.5 2000 0.5 r16 - - 16 16 18 100 
C2000.9 2000 0.9 r77 - - 77 77 26 100 
C4000.5 4000 0.5 r18 - - - 18 30 100 
c-fat200-1 200 0.077 12 12 12 - 12 <1 100 
c-fat200-2 200 0.163 24 24 24 - 24 <1 100 
c-fat200-5 200 0.426 58 - - - 56* <1 96 
                              Continued on next page 
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       G    |V| Density Optimum SQUEEZE KLS OCH Proposed VSA 

Time Success    α (G) α (G) α (G) α (G) α (G) 
 (s) (%) 

c-fat500-1 500 0.036 14 14 14 - 14 <1 100 
c-fat500-2 500 0.073 26 26 26 - 26 <1 100 
c-fat500-5 500 0.186 54 - 52 - 54 <1 100 
DSJC500.5 500 0.5 r13 13 13 13 13 13 100 
DSJC1000.5 1000 0.5 r15 15 15 15 15 20 100 
gen200_p0.9_44 200 0.9 44 - - 44 44 <1 100 
gen200_p0.9_55 200 0.9 55 - - 55 55 <1 100 
gen400_p0.9_55 400 0.9 55 - - 53 55 6 100 
gen400_p0.9_65 400 0.9 65 - - 65 65 9 100 
gen400_p0.9_75 400 0.9 75 - - 75 75 8 100 
Hamming6-2 64 0.905 32 30 30 32 32 <1 100 
Hamming6-4 64 0.349 4 4 4 4 4 <1 100 
Hamming8-2 256 0.969 128 - - - 128 3 100 
Hamming8-4 256 0.639 16 16 16 16 16 2 100 
Hamming10-2 1024 0.99 512 512 512 512 512 9 100 
Hamming10-4 1024 0.829 40 - - 40 40 23 100 
Johnson8-2-4 28 0.556 4 4 4 4 4 <1 100 
Johnson8-4-4 70 0.768 14 14 14 14 14 <1 100 
Johnson16-2-4 120 0.765 8 7 8 8 8 <1 100 
Johnson32-2-4 496 0.879 16 - - 15 16 6 100 
keller4 171 0.649 11 11 8 11 11 <1 100 
keller5 776 0.751 27 - 16 27 27 10 100 
keller6 3361 0.818 r58 - - 58 54* 25 91 
MANN_a9 45 0.927 16 16 16 16 16 <1 100 
MANN_a27 378 0.99 126 - 117 120 125* 12 99 
MANN_a45 1035 0.996 345 - - 338 343* 33 99 
MANN_a81 3321 0.999 r1093 - - 1093 1084* 43 98 
p_hat300-1 300 0.244 8 8 8 8 8 <1 100 
p_hat300-2 300 0.489 25 25 25 25 25 <1 100 
p_hat300-3 300 0.744 36 36 36 36 36 <1 100 
p_hat500-1 500 0.253 9 9 9 9 9 2 100 
p_hat500-2 500 0.505 36 36 36 36 36 5 100 
p_hat500-3 500 0.752 50 - 47 47 50 3 100 
p_hat700-1 700 0.249 11 11 7 11 11 <1 100 
p_hat700-2 700 0.498 44 - 44 43 44 15 100 
p_hat700-3 700 0.748 62 - 59 60 61* 18 98 
p_hat1000-1 1000 0.245 10 10 10 10 10 8 100 
p_hat1000-2 1000 0.49 46 - 44 45 46 23 100 
p_hat1000-3 1000 0.744 66 - 62 63 65* 30 98 
p_hat1500-1 1500 0.253 12 12 10 12 12 23 100 
p_hat1500-1 1500 0.506 r646 52 64 64 65 26 100 
p_hat1500-1 1500 0.754 r94 - 91 91 94 24 100 
                             Continued on next page 
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      G    |V| Density Optimum SQUEEZE KLS OCH Proposed VSA 

Time Success    α (G) α (G) α (G) α (G) α (G) 
 (s) (%) 

san200-0.7.1 200 0.7 30 30 15 30 30 <1 100 
san200-0.7.2 200 0.7 18 18 12 18 18 <1 100 
san200-0.9.1 200 0.9 70 - 45 65 70 5 100 
san200-0.9.2 200 0.9 60 - 39 57 60 17 100 
san200-0.9.3 200 0.9 44 44 31 44 44 23 100 
san400-0.5.1  400 0.5 13 13 7 13 13 6 100 

san400-0.7.1 400 0.7 40 - 20 40 40 <1 100 
san400-0.7.2 400 0.7 30 30 15 30 30 <1 100 
san400-0.7.3 400 0.7 22 - 12 22 22 19 100 
san400-0.9.1 400 0.9 100 - 50 96 100 8 100 
san1000 1000 0.502 10 10 8 10 10 <1 100 
sanr200-0.7 200 0.697 18 18 16 18 18 <1 100 
sanr200-0.9 200 0.898 42 - 41 42 42 <1 100 
sanr400-0.5 400 0.501 13 13 13 13 13 <1 100 
sanr400-0.7 400 0.7 21 - 21 21 21 <1 100 

 
Since we know the optimal solution value for each instance we tested, we can measure 

the quality of the solution derived by an algorithm by computing ratio between them. That is, we 
define the quality measure ratio as value/optimum, where value is the value of a solution found 
by an algorithm and optimum is the optimal solution value. We note that smaller the ratio 
indicates that the performance of an algorithm is guaranteed one. In Table 4 we sum up the 
information concerning the ratios. 

 
Table 4 
Averages and standard deviations of the ratio values  
 

Algorithm                Min                         Average                      Max                       Std. dev   
VSA  1.00                         1.06                            1.18  0.06 
OCH                        1.00 1.26               1.45  0.13 
KLS       1.15                        1.40                           1.70  0.17 
SQUEEZE               2.80                         3.75                            4.94  1.21 

4.4 Results for G(n, m) random graphs 

 In this experiment the parameter set opted like moderate scale problems, that is V 
varied from 50 to 1000. Here we used the G(n, m) graph model to generate the random graphs. 
All of the heuristics implemented in the previous experiment were examined in this experiment. 
For most of the test instances the optimal solutions are unknown, we obtained the relative 
performance of the other heuristics with the VSA by calculating the percentage of deviation of 
other heuristics from the VSA. These results are shown in the figure 5 where the major axis 
represents the 20 test instances and for each test instances error rate of other heuristics with VSA 
were plotted as points and for each algorithm their points are linked by a line. With these figures 
we show that, for the set instances we used, the VSA produced better solutions than other 
heuristics compared and the other heuristics get higher deviation from VSA when the size of the 
problem increases. 
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5. Concluding Remarks 
 
 A new VSA for MIS of graphs using vertex cover has been proposed and its effectiveness 
has been shown by simulation experiments. The terminology support of a vertex introduced in 
the new model, with that, the new model can find the maximum Independent Set effectively. 
Experimental result shows that this approach greatly reduce the execution time and in addition, 
the simulation results show that the new VSA can yield better solutions than SQUEEZE, KLS 
and OCH heuristics found in the literature. At the same time, our approach gives best solutions 
for DIMACS benchmark graph instances and also for random graphs. The proposed algorithm 
has led to give near optimal solutions for most of the test instances where we know the optimal 
solutions. Furthermore attractiveness of this heuristic is its outstanding performance for solving 
MIS. 

Test Instances
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Figure 5: Error rate (%) of other heuristics with VSA in 3rd set of test instances 
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