
AMO – Advanced Modeling and Optimization, Volume 12, Number 1, 2010

A Simple Algorithm to Optimize Maximum

Independent Set

S. Balaji * ,a V. Swaminathan b , K. Kannan c
c a, Department of Mathematics, SASTRA University, Thanjavur – 613 401, India.

b Ramanujan Research centre in Mathematics, Saraswathi Narayanan College, Madurai – 625 022, India.

Abstract:

 The Maximum Independent Set Problem (MIS) is a classic graph optimization NP-hard
problem with many real world applications. Given a graph G = (V, E), the independent set
problem is that of finding a maximum-cardinality subset S of V such that no two vertices in S are
adjacent. In this paper an efficient algorithm, called Vertex Support Algorithm (VSA), is
designed to find the maximum independent set of a graph. Our algorithm was tested on a large
number of random graphs with upto 5,000 vertices and on DIMACS benchmark graphs and the
result shows that VSA algorithm decidedly outperforms other existing algorithms found in the
literature for solving the MIS.

Keywords – independent set, vertex cover, vertex support, algorithms, NP-hard problem.

 1. Introduction:

 An independent set of a graph is a subset of vertices in which no two vertices are
adjacent. Given a set of vertices, the maximum independent set problem (MIS) calls for finding
the independent set of maximum cardinality. The MIS is a classic one in computer science and in
graph theory, and is known to be NP-hard [10]. MIS has many important applications, including
combinatorial auctions [7], graph coloring, coding theory [9], geometric tiling, fault diagnosis,
pattern recognition, molecular biology, and more recently its application in bioinformatics have
become important [16].
 The Minimum Vertex Cover (MVC) problem of a graph consists of identifying the vertex
cover of the graph which has minimum cardinality. The MIS and MVC problems are related in
that the maximum independent set contains all those vertices that are not in the minimum vertex
cover of the graph. Due to computational intractability of the MIS (MVC) problem, many
researchers have instead focused their attention on the design of approximation algorithm for
delivering quality solutions in a reasonable time.

* Corresponding author.

*,a balaji_maths@yahoo.com, b sulanesri@yahoo.com, c kkannan@maths.sastra.edu.

AMO-Advanced Modeling and Optimization. ISSN: 1841-4311.

107

S. Balaji, V. Swaminathan, K. Kannan

Pardalos and Xue [15] recently published a review with 260 references. Many algorithms for the
MIS have been proposed [1, 4, 5, 6, 11, 17]. Recently, Ostergard [14] proposed a new maximum
clique algorithm, which was supported by computational experiments.

The MIS problem has a relation with the Maximum Clique Problem (MCP) i.e., an
independent set of size k in a graph G (V, E) is a clique in the complemented graph)E V,(G and
a graph has independent set of size k if and only if it has a vertex cover of size |V|-k. Clearly, S is
an independent set of G if and only if it is a clique of G . In this paper we are concerned with the
problem of finding a maximum independent set in G, that is, independent set of maximum size.
Equivalently, this problem can be viewed as asking for a minimum vertex cover in G or
maximum clique in G . The MIS (MVC) of a graph is approximated by the new approach
support of a vertex which is calculated by summing up all the degrees of the vertices which are
adjacent to the vertex.
 In this paper a competent algorithm called Vertex Support Algorithm (VSA) is presented
to find the maximum independent set of the graph, which calculates the MIS through MVC by
support of the vertices. We compared our algorithm with the other existing algorithm namely [1,
4, 12]. The experimental result shows that our algorithm is very fast and yields better solutions
than the compared algorithms for many random graphs and DIMACS benchmark graphs.

The paper is organized as follows. Section 2 briefly describes the maximum independent
set (MIS) problem and the minimum vertex cover problem (MVC) and its theoretical
background. Section 3 outlines the proposed algorithm VSA. In Section 4 graph model used in
the experiments is briefly described. Section 5 provides experiments done and their results.
Section 6 summarizes and concludes the paper.

2. Maximum Independent Set and Minimum Vertex Cover

 Let G = (V, E) be an arbitrary undirected graph, where V = {1, 2, …, n} is the set of
vertices and E ⊆ V × V (not in ordered pairs) is the set of edges. Two distinct vertices u and v
are called adjacent if they are connected by an edge, an independent set S of G is a subset of V
whose elements are pairwise non-adjacent. The MIS problem seeks to find an independent set
with large number of vertices. The size of the maximum independent set of G is the stability
number of G and is denoted by α. A vertex cover for G is a subset VC of V such that for each
edge (u, v) ∈ E, at least one of u or v or both belongs to VC. The MVC problem consists of
identifying the vertex cover VC of G which has minimum cardinality. The MIS and MVC
problems are related in that the maximum independent set S of G contains all those vertices that
are not in the minimum vertex cover VC of G. i.e. S = V – VC.
 B
 A
 D MVC = {C, D} and MIS = {A, B, E, F}
 C

 E F
 Graph G(V, E)
 Figure 1.

108

A Simple Algorithm to Optimize the Maximum Independent Set

Fig. 1 depicts the above statement briefly. There are two versions of the vertex cover

problem: the decision and optimization versions. In the decision version, the task is to verify for
a given graph G whether there exists a vertex cover of a specified size but in the optimization
version the task is to find a vertex cover of minimum size. In this paper we consider the
optimization version of the minimum vertex cover with the goal of obtaining optimum solution.
Now the minimum vertex cover problem is formulated as an integer programming problem by
using the following conditions:
 Binary variables ija (i = 1,2,3,…,n; j = 1,2,3,…,n) form the adjacency matrix of the
graph G. Each variable has only two values (1 or 0) according as an edge exists or not. In other
words, if an edge (ji v,v) is in E then ija = 1 else ija = 0. The output of the program expresses the
vertex iv is in the independent set or not. vi = 1 if it is in the independent set otherwise vi = 0.
Thus the number of vertices in the independent set can be expressed by ∑= ivZ and any one or
none of the vertex of the edge),(ji vv is included in the independent set, we can write the
constrained condition of the MIS as 1≤+ ji vv . Thus the problem can be mathematically
transformed into the following optimization integer programming problem as follows.

 MIS: Max ∑= ivZ
 Subject to
 1≤+ ji vv Evv ji ∈∀),(
 { } Vvv ii ∈∀∈ 1,0

In this paper a competent algorithm VSA is proposed for the MIS (MVC) problems. The
simulation results show that the new VSA can yield better solutions, to random graphs, than
other existing algorithms. The iterations are much less than the original model. Moreover, for
some DIMACS graphs, the new VSA can yield 100% convergence rate to optimal solutions.

3. Terminologies & Proposed Algorithm

Neighborhood of a vertex:
 Let G = (V, E), V is a vertex set and E is an edge set, be an undirected graph and let

.mEnV == and Then for each V v∈ , the neighborhood of v is defined by
} voadjacent t isu /Vu{)v(N ∈= and N[v] = v ∪ N(v).

Degree of a vertex:
 The degree of a vertex V v∈ , denoted by d (v) and is defined by the number of
neighbors of v.
Support of a vertex:
 The support of a vertex V v∈ is defined by the sum of the degree of the vertices which
are adjacent to v, i.e., support (v) = s (v) =∑ ∈N(v)u

d(u) .

109

S. Balaji, V. Swaminathan, K. Kannan

3.1. Algorithm

 The following algorithm is designed to find the maximum independent set of a graph G.
Adjacency matrix A = (aij) of the given graph G of n vertices and m edges is given as the input of
the program and the degree)v(d i , support)v(s i of the each vertex Vvi ∈ of the graph G are
calculated. Support of the vertex Vv∈ is found by the relation∑ ∈N(v)u

d(u) . Add the vertex

which has the maximum value of the support into the vertex cover VC. If one or more vertices
have equal maximum value of the support, in this case if (degree (iv)>=degree (jv)), add the
vertex iv into the vertex cover VC otherwise add jv into VC. Update the adjacency matrix by
putting zero in to the row and column entries of the corresponding vertex v∈VC. Proceed the
above process until G has no edges. i.e., up to j i, 0a j i ∀≠ . Finally the maximum independent set
S of the graph G is extracted from the minimum vertex cover VC of the graph G by S = V - VC.
The pseudo-code of the proposed algorithm is described in Fig. 2.

Algorithm 3.1.1: Vertex Support Algorithm (VSA)

Input: G (V, E)
Output: Max. Independent Set S (G) = V - VC where VC is the minimum vertex cover of G

1. VC φ← ; selection = 0;
2. ∀vi∈ V
3. do
4. ∑= j iji a)d(v ; ∑ ∈

=
)iN(vjv ji)d(v)v(s ;

5. Max = s(v1) , k = 1;
6. for i←2 to n
7. if max < s(vi) then
8. t = i;
9. else if max = s(vi) and d(vi-k) <= d(vi) then
10. t = i;
11. else max = s(vi) and d(vi-k) > d(vi) then
12. t = i-k;
13. k = k + 1;
14. end for
15. VC = VC» {vt}
16. selection = selection + 1;
17. assign the value zero to the tth row and tth column of the matrix A = (aij);
18. while A ≠ (0)
19. | VC | = selection;
20. end.

Figure 2: The pseudo-code of the proposed algorithm

110

A Simple Algorithm to Optimize the Maximum Independent Set

4. Experimental Results & analysis
 All the procedures of VSA have been coded in C++ language. The experiments

were carried out on an Intel Pentium Core2 Duo 1.6 GHz CPU and 1 GB of RAM. The
effectiveness of the VSA heuristic was evaluated using 136 instances. These instances are
divided into 3 sets as shown in the Table 1. Simulations are carried out on three types of graphs:
the randomly generated small size, moderate and large scale graphs for the maximum
independent set problem.

Table 1
MIS Instances

Set No. of Instances Scale Graph Model Optimal Solution
1 36 small-large G (n, p) Unknown
2 80 small-large DIMACS Known
3 20 moderate G(n, m) Unknown

4.1 G (n, p) Model

 The G (n, p) model is also called Erdös Renyi random graph model [2], consists of graphs
of n vertices for which the probability of an edge between any pair of nodes is given by a
constant p > 0. To ensure that graphs are almost always connected, p is chosen so

that
n

)nlog(p >> . To generate a G (n, p) graph we start with an empty graph. Then we iterate

through all pairs of nodes and connect each of these pairs with probability p. The pseudo code
for generating G (n, p) graph is shown in the Fig. 3.

Algorithm 4.1: Generate (G, n, p)

 Initialize graph G (V, E)
 for i← 1 to n
 for j← i+1 to n
 add edge (i, j) to E with probability p
 return (G)
Figure 3: The pseudo-code for generating G(n, p) graphs

The expected number of edges of G (n, p) graph is p

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

 and expected degree is np. Graphs are

generated for different p and n values.

4.2 G(n, m) Model

 The G(n, m) model consists of all graphs with n vertices and m edges. The number of
vertices, n and the number of edges, m are related by m = nc, where c > 0 is constant.

111

S. Balaji, V. Swaminathan, K. Kannan

To generate a random G(n, m) graph, we start with a graph with no edges. Then, cn edges are
generated randomly using uniform distribution over all possible graphs with cn edges. Each node
is thus expected to connect to 2c other nodes on average. The pseudo-code for the random graph
generation is shown in Fig. 4.

Algorithm 4.2: Generate (G, n, c)

Initialize graph G(V, E)
m cn ∗←
for mto1i ←
repeat

edgerandome ←
until e not present in E

{e}EE ∪←
return (G)
Figure 4: The pseudo-code for generating G (n, m) graphs

4.2 Results for random graphs

 We first tested the VSA on 36 random graphs generated based on the concept
explained in Section 4.1. The result we recorded for each test graph and their information are
shown in the Table 2 and these results are compared with the theoretical evaluation of expected
maximum clique for G(n, p) random graphs, shown in [14], and it is guaranteed that the
proposed algorithm estimations are quite well to the expected size of the maximum independent
set. In the 36 instances tested the maximum time taken of 29 seconds, (3000, 0.8; 4000, 0.9 &
5000, 0.8), is an encouraging one but also it is comparatively very less time for finding the
maximum clique of random graphs of large number of vertices with high density. So, it is
interest to see the performance of the proposed algorithm on benchmark graphs with known
optimal (best known) solutions.

Table 2.
Simulation results for the G(n, p) random graphs.
n p Proposed VSA n p Proposed VSA n p Proposed VSA
 |C| Time (s) |C| Time (s) |C| Time (s)
100

150

200

300

0.7
0.8
0.9
0.8
0.9
0.95
0.7
0.8
0.9
0.7
0.8
0.9

15
20
31
23
37
54
19
26
43
21
29
51

<1
<1
<1
<1
3
2
<1
3
5
2
<1
5

400

500

700

1000

0.7
0.8
0.9
0.7
0.8
0.9
0.7
0.8
0.9
0.7
0.8
0.9

23
31
53
32
41
59
46
52
72
83
107
112

<1
2
4
<1
5
3
6
3
12
17
8
28

2000

3000

4000

5000

0.7
0.8
0.9
0.7
0.8
0.9
0.7
0.8
0.9
0.7
0.8
0.9

129
142
159
143
167
189
173
206
236
227
249
283

23
18
27
15
29
17
28
27
29
23
29
24

112

A Simple Algorithm to Optimize the Maximum Independent Set

4.3 Results for DIMACS benchmark graphs
 To test the performance of VSA approach, further we have tested the proposed

algorithm on benchmark graphs with known results, they have been extracted from DIMACS [8]
challenge suite. That suite structured from the perspective of finding maximum cliques, so we
considered the benchmark graphs as G . We compare the heuristic performance with
implementation of the algorithms SQUEEZE [4], KLS [12], OCH [1] and the results were shown
in the Table 3.

The first three columns reports the type of the instances such as name, cardinality and
density of the instances; the fourth gives the best results obtained in the challenge, the fifth, sixth
and seventh gives the maximum size of the cliques found by corresponding algorithms. Eighth
column reports the optimality achieved by proposed algorithm, in which * indicates the instances
where proposed algorithm fail to reach the optimality, mostly in MANN type of instances. Table
3 shows that proposed algorithm could find the optimal solution for most of the DIMACS
benchmark graphs i.e., out of 79 instances tested the proposed algorithm reaches the optimum
value for 73 instances.

Table 3
Simulation results for the DIMACS benchmark instances

 G |V| Density Optimum SQUEEZE KLS OCH Proposed VSA

Time Success α (G) α (G) α (G) α (G) α (G)
 (s) (%)

brock200_1 200 0.745 21 - 19 - 21 <1 100
brock200_2 200 0.496 12 12 10 12 12 <1 100
brock200_3 200 0.605 15 15 13 - 15 <1 100
brock200_4 200 0.658 17 17 14 17 17 <1 100
brock400_1 400 0.748 27 - 20 27 27 <1 100
brock400_2 400 0.749 29 - 23 29 29 <1 100
brock400_3 400 0.748 31 - 23 31 31 <1 100
brock400_4 400 0.749 33 - 23 33 33 <1 100
brock800_1 800 0.649 23 - 23 20 23 2 100
brock800_2 800 0.651 24 - 24 24 24 2 100
brock800_3 800 0.649 25 - 25 25 25 5 100
brock800_4 800 0.65 26 - 26 23 26 4 100
C125.9 125 0.898 34 34 - 34 34 <1 100
C250.9 250 0.899 44 - - 44 44 <1 100
C500.9 500 0.9 r57 - - 53 57 6 100
C1000.9 1000 0.901 r68 - - 68 68 13 100
C2000.5 2000 0.5 r16 - - 16 16 18 100
C2000.9 2000 0.9 r77 - - 77 77 26 100
C4000.5 4000 0.5 r18 - - - 18 30 100
c-fat200-1 200 0.077 12 12 12 - 12 <1 100
c-fat200-2 200 0.163 24 24 24 - 24 <1 100
c-fat200-5 200 0.426 58 - - - 56* <1 96
 Continued on next page

113

S. Balaji, V. Swaminathan, K. Kannan

 G |V| Density Optimum SQUEEZE KLS OCH Proposed VSA

Time Success α (G) α (G) α (G) α (G) α (G)
 (s) (%)

c-fat500-1 500 0.036 14 14 14 - 14 <1 100
c-fat500-2 500 0.073 26 26 26 - 26 <1 100
c-fat500-5 500 0.186 54 - 52 - 54 <1 100
DSJC500.5 500 0.5 r13 13 13 13 13 13 100
DSJC1000.5 1000 0.5 r15 15 15 15 15 20 100
gen200_p0.9_44 200 0.9 44 - - 44 44 <1 100
gen200_p0.9_55 200 0.9 55 - - 55 55 <1 100
gen400_p0.9_55 400 0.9 55 - - 53 55 6 100
gen400_p0.9_65 400 0.9 65 - - 65 65 9 100
gen400_p0.9_75 400 0.9 75 - - 75 75 8 100
Hamming6-2 64 0.905 32 30 30 32 32 <1 100
Hamming6-4 64 0.349 4 4 4 4 4 <1 100
Hamming8-2 256 0.969 128 - - - 128 3 100
Hamming8-4 256 0.639 16 16 16 16 16 2 100
Hamming10-2 1024 0.99 512 512 512 512 512 9 100
Hamming10-4 1024 0.829 40 - - 40 40 23 100
Johnson8-2-4 28 0.556 4 4 4 4 4 <1 100
Johnson8-4-4 70 0.768 14 14 14 14 14 <1 100
Johnson16-2-4 120 0.765 8 7 8 8 8 <1 100
Johnson32-2-4 496 0.879 16 - - 15 16 6 100
keller4 171 0.649 11 11 8 11 11 <1 100
keller5 776 0.751 27 - 16 27 27 10 100
keller6 3361 0.818 r58 - - 58 54* 25 91
MANN_a9 45 0.927 16 16 16 16 16 <1 100
MANN_a27 378 0.99 126 - 117 120 125* 12 99
MANN_a45 1035 0.996 345 - - 338 343* 33 99
MANN_a81 3321 0.999 r1093 - - 1093 1084* 43 98
p_hat300-1 300 0.244 8 8 8 8 8 <1 100
p_hat300-2 300 0.489 25 25 25 25 25 <1 100
p_hat300-3 300 0.744 36 36 36 36 36 <1 100
p_hat500-1 500 0.253 9 9 9 9 9 2 100
p_hat500-2 500 0.505 36 36 36 36 36 5 100
p_hat500-3 500 0.752 50 - 47 47 50 3 100
p_hat700-1 700 0.249 11 11 7 11 11 <1 100
p_hat700-2 700 0.498 44 - 44 43 44 15 100
p_hat700-3 700 0.748 62 - 59 60 61* 18 98
p_hat1000-1 1000 0.245 10 10 10 10 10 8 100
p_hat1000-2 1000 0.49 46 - 44 45 46 23 100
p_hat1000-3 1000 0.744 66 - 62 63 65* 30 98
p_hat1500-1 1500 0.253 12 12 10 12 12 23 100
p_hat1500-1 1500 0.506 r646 52 64 64 65 26 100
p_hat1500-1 1500 0.754 r94 - 91 91 94 24 100
 Continued on next page

114

A Simple Algorithm to Optimize the Maximum Independent Set

 G |V| Density Optimum SQUEEZE KLS OCH Proposed VSA

Time Success α (G) α (G) α (G) α (G) α (G)
 (s) (%)

san200-0.7.1 200 0.7 30 30 15 30 30 <1 100
san200-0.7.2 200 0.7 18 18 12 18 18 <1 100
san200-0.9.1 200 0.9 70 - 45 65 70 5 100
san200-0.9.2 200 0.9 60 - 39 57 60 17 100
san200-0.9.3 200 0.9 44 44 31 44 44 23 100
san400-0.5.1 400 0.5 13 13 7 13 13 6 100

san400-0.7.1 400 0.7 40 - 20 40 40 <1 100
san400-0.7.2 400 0.7 30 30 15 30 30 <1 100
san400-0.7.3 400 0.7 22 - 12 22 22 19 100
san400-0.9.1 400 0.9 100 - 50 96 100 8 100
san1000 1000 0.502 10 10 8 10 10 <1 100
sanr200-0.7 200 0.697 18 18 16 18 18 <1 100
sanr200-0.9 200 0.898 42 - 41 42 42 <1 100
sanr400-0.5 400 0.501 13 13 13 13 13 <1 100
sanr400-0.7 400 0.7 21 - 21 21 21 <1 100

Since we know the optimal solution value for each instance we tested, we can measure

the quality of the solution derived by an algorithm by computing ratio between them. That is, we
define the quality measure ratio as value/optimum, where value is the value of a solution found
by an algorithm and optimum is the optimal solution value. We note that smaller the ratio
indicates that the performance of an algorithm is guaranteed one. In Table 4 we sum up the
information concerning the ratios.

Table 4
Averages and standard deviations of the ratio values

Algorithm Min Average Max Std. dev
VSA 1.00 1.06 1.18 0.06
OCH 1.00 1.26 1.45 0.13
KLS 1.15 1.40 1.70 0.17
SQUEEZE 2.80 3.75 4.94 1.21

4.4 Results for G(n, m) random graphs

 In this experiment the parameter set opted like moderate scale problems, that is V
varied from 50 to 1000. Here we used the G(n, m) graph model to generate the random graphs.
All of the heuristics implemented in the previous experiment were examined in this experiment.
For most of the test instances the optimal solutions are unknown, we obtained the relative
performance of the other heuristics with the VSA by calculating the percentage of deviation of
other heuristics from the VSA. These results are shown in the figure 5 where the major axis
represents the 20 test instances and for each test instances error rate of other heuristics with VSA
were plotted as points and for each algorithm their points are linked by a line. With these figures
we show that, for the set instances we used, the VSA produced better solutions than other
heuristics compared and the other heuristics get higher deviation from VSA when the size of the
problem increases.

115

S. Balaji, V. Swaminathan, K. Kannan

5. Concluding Remarks

 A new VSA for MIS of graphs using vertex cover has been proposed and its effectiveness
has been shown by simulation experiments. The terminology support of a vertex introduced in
the new model, with that, the new model can find the maximum Independent Set effectively.
Experimental result shows that this approach greatly reduce the execution time and in addition,
the simulation results show that the new VSA can yield better solutions than SQUEEZE, KLS
and OCH heuristics found in the literature. At the same time, our approach gives best solutions
for DIMACS benchmark graph instances and also for random graphs. The proposed algorithm
has led to give near optimal solutions for most of the test instances where we know the optimal
solutions. Furthermore attractiveness of this heuristic is its outstanding performance for solving
MIS.

Test Instances

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

%
 o

f d
ev

ia
tio

n
fro

m
 V

S
A

0

1

2

3

4

5

6

SQUEEZE
KLS
OCH

Figure 5: Error rate (%) of other heuristics with VSA in 3rd set of test instances

References:

[1] Aggarwal C., Orlin J. B & Tai R. P, “Optimized cross cover for the independent set
problem,” Operations Research, (1997), Vol. 45, pp. 226-234.

116

A Simple Algorithm to Optimize the Maximum Independent Set

[2] Bollobas. B: Random graphs (2nd Ed.). Cambridge, UK: Cambridge University press (2001).

[3] Bollobas B, Erdös P., “Cliques in Random Graphs”, mathematical Proceedings of the
Cambridge Philosophical Society, (1976), Vol.80, pp. 419-427.

[4] Bourjolly J. M., Gill P., Laporte G & Mercure H, “ An exact quadratic 0-1 algorithm for the
stable set problem,” in cliques, coloring and satisfiability, D. S. Johnson and M. A. Trick (Eds.).
American Mathematical Society Providence, RI. 1996, pp. 53-73.

[5] Busygin S., Butenko S & Pardolos P. M, “A heuristic for the maximum independent set
problembased on optimization of a quadratic over a sphere,” Jounal of combinatorial
optimization, (2002), vol. 6, pp. 287-297.

[6] Carraghan R., & Pardolos PM. “An exact algorithm for the maximum clique problem”,
Operations Research Letters, (1990), vol. 9, pp. 375-382.

[7] De Vries S & Vohra R “Combinatorial auctions: a survey” INFORMS Journal on Computing
(2003), vol. 15, pp. 284-309.

[8] DIMACS clique benchmarks. Benchmark instances made available by electronic transfer at
dimacs.rutgers.edu, Rutgers Univ., Piscataway. NJ. (1993).

[9] Etzion T & Östergård P. R. J., “Greedy and heuristic algorithms for codes and colorings,”
IEEE Transactions on Information Theory, (1998), vol. 44, pp. 382-388.

[10] Garey. M. R, Johnson. D. S: Computers and Intractability: A Guide to the theory
NP – completeness. San Francisco: Freeman (1979).

[11] Gibbons L., Hearn D & Pardolos P, “A continuous based heuristic for the maximum clique
problem” in cliques, coloring and satisfiability, D. S. Johnson and M. A. Trick (Eds.). American
Mathematical Society Providence, RI. 1996, pp. 103-124.

[12] Katayama K, Hamamoto A, Narihisa H, “An effective local search for the maximum clique
problem”, Information Processing Letters, (2005), vol. 95, pp. 503-511.

117

S. Balaji, V. Swaminathan, K. Kannan

[13] Matula D., “On the complete subgraph of a random graph”, Combinatory mathematics and
its Applications, (1970), pp. 356-369.

[14] Östergård P R J., “A fast algorithm for the maximum clique problem”, Discrete Applied
Mathematics, (2002), vol. 120, pp.197-207.

[15] Pardolos P., & Xue J. “The maximum clique problem”, Journal of Global optimization,
(1994), vol.4, pp. 301-328.

[16] Pevzner, P.A. & Sze, S-H., Combinatorial approaches to finding subtle signals in DNA
sequences, in proceedings of Eighth International Conference on intelligent systems for
Molecular Biology, AAAI Press, (2000), pp.269-278.

[17] Pullan W, “Optimisation of unweighted/weighted maximum independent sets and minimum
vertex covers” Discrete Optimization, (2009), vol. 6, pp. 214-219.

118

