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Abstract: By using the the equivalent expression of the second order cone, we reformulate

the convex second order cone programming as a boxed constrained optimization, which is a

nonlinear programming with four nonnegative constraints. We give the conditions under which

the stationary point of the reformulation problem solve the original problem.
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1. Introduction

The second order cone programming (SOCP) problem is a family of convex optimization

problems more general than linear programming. SOCP problems include linear and convex

quadratic programs as special cases. On the other hand, SOCP problems are special cases of

semidefinite optimization (SDO) problems, and hence can be solved by using an algorithm for

SDO problems.

In the last few years, the SOCP problem has received considerable attention from re-

searchers because of its wide range of applications [1]. As mentioned by Kanzow, Ferenczi and

Fukushima [7], the linear second-order cone program has been investigated in many previous

works. For the study of many important applications and theoretical properties, see [1, 3]. Soft-

ware for the solution of linear second-order cone programs is also available, see, for example,

[10-13]. However, The treatment of the nonlinear second-order cone program is rather limited,

see, for examples [3-5, 14-17]. These papers include kinds of solution methods (interior-point

methods, smoothing methods, SQP-type methods, or methods based on unconstrained opti-

mization) and certain theoretical properties or suitable reformulations of the second-order cone

program.
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In this paper, we consider a boxed constrained optimization reformulation for the nonlinear

convex second order cone programming problem, our reformulation is motivated by the method

[2] for generalized second order cone complementarity. By using the arrow matrix, we reformu-

late the SOCP to a nonlinear programming with four nonnegative constraints. Furthermore,

we give the conditions under which the stationary point of the reformulation problem solve the

original problem.

2. The equivalent reformulation of SOCP

Given 𝑓 : ℝ𝑛+1 → ℝ, we consider the following nonlinear convex second-order cone convex

programming problem (SOCP), that is, finding 𝑥 ∈ 𝒦 such that

min 𝑓(𝑥)

𝑠.𝑡. 𝑥 ર𝒦 0
(1)

where 𝑓(𝑥) is a twice continuously differentiable convex function and 𝒦 denotes the second-order

cone:

𝒦 = {𝑥 ∈ ℝ𝑛+1∣𝑥20 ≥
𝑛∑

𝑖=1

𝑥2𝑖 }.

If we define 𝐴 = 𝑑𝑖𝑎𝑔(1,−1,−1, . . . ,−1), the second order cone can be expressed in matrix form

as

𝒦 = {𝑥 ∈ ℝ𝑛+1∣1
2
𝑥𝑇𝐴𝑥 ≥ 0, 𝑥0 ≥ 0}.

Then(1) can be written as

min 𝑓(𝑥)

𝑠.𝑡.
1

2
𝑥𝑇𝐴𝑥 ≥ 0,

𝑥0 ≥ 0.

(2)

To solve (2), we consider introducing a merit function that embodies the KKT conditions. The

KKT conditions of (2) are as follows:

∇𝑓(𝑥)− 𝜆𝐴𝑥− 𝜇𝑒0 = 0,

1

2
𝑥𝑇𝐴𝑥− 𝑠 = 0,

𝑥0 − 𝑡 = 0,

𝜆𝑠 = 0, 𝜆 ≥ 0, 𝑠 ≥ 0

𝜇𝑡 = 0, 𝜇 ≥ 0, 𝑡 ≥ 0.

(3)

where 𝜆, 𝜇 𝑠, 𝑡 ∈ ℝ and 𝑒0 = (1, 0, . . . , 0)𝑇 ∈ ℝ𝑛+1.

Let

𝐹 (𝑥) =
1

2
[∥∇𝑓(𝑥)− 𝜆𝐴𝑥− 𝜇𝑒0∥2 + (

1

2
𝑥𝑇𝐴𝑥− 𝑠)2 + (𝑥0 − 𝑡)2 + (𝜆𝑠)2 + (𝜇𝑡)2]. (4)

We can reformulate problem (2) as the following optimization problem:

min𝐹 (𝑥)

𝑠.𝑡.𝜆 ≥ 0, 𝜇 ≥ 0, 𝑠 ≥ 0, 𝑡 ≥ 0.
(5)

102



A Boxed Optimization Reformulation for the Convex SOCP

The following result give the equivalent relation between the global minimizer of problem

(2) and the KKT point of problem (2).

Theorem 1 If 𝑥∗ is a solution of (2), then there exist

(𝜆∗, 𝑠∗, 𝑡∗, 𝜇∗) ∈ ℝ+ × ℝ+ × ℝ+ × ℝ+

such that (𝑥∗, 𝜆∗, 𝑠∗, 𝑡∗, 𝜇∗) is a global minimizer of (5) with objective value zero. Conversely, if

(𝑥∗, 𝜆∗, 𝑠∗, 𝑡∗, 𝜇∗) is a global minimizer of (5) with objective value zero then 𝑥∗is the KKT point

of (2).

Proof. First of all, if 𝑥∗ is a solution of (2), we consider the possible two cases:

Case 1: 𝑥∗ = 0, in this case, it is easily to get ∇𝑓(𝑥∗) = 0 due to the convexity of 𝑓(𝑥), and

therefore, let 𝜆∗ ≥ 0, 𝜇∗ ≥ 0, 𝑠∗ = 0, 𝑡∗ = 0, we know that (𝑥∗, 𝜆∗, 𝑠∗, 𝑡∗, 𝜇∗) is a global minimizer

of (5) with objective value zero.

Case 2: 𝑥∗ ∕= 0, in this case, notice that 𝑥∗0 > 0, thus there is at most one active constraint at

𝑥∗. If 1
2𝑥

∗𝑇𝐴𝑥∗ > 0, both constraints are nonactive and the gradient of the objective must be

zero at 𝑥∗, that is,∇𝑓(𝑥∗) = 0. If 1
2𝑥

∗𝑇𝐴𝑥∗ = 0, the gradient of the unique active constraints

is 𝐴𝑥∗ = (𝑥∗0,−𝑥∗1 . . . ,−𝑥∗𝑛)𝑇 ∕= 0, forming a linearly independent set,implying that constraint

qualifications hold at 𝑥∗. In the both cases there exist Lagrange multipliers 𝜆∗ ≥ 0, 𝜇∗ = 0

(for 𝑥∗0 > 0) such that ∇𝑓(𝑥∗) − 𝜆∗𝐴𝑥∗ − 𝜇∗𝑒0 = 0 and 𝜆∗(12𝑥
∗𝑇𝐴𝑥∗) = 0, 𝜇∗𝑥0 = 0. Let

𝑠∗ = 1
2𝑥

∗𝑇𝐴𝑥∗, 𝑡∗ = 𝑥∗0, by using the last equation of (3), we conclude that 𝑠∗ ≥ 0, 𝑡∗ ≥ 0. Thus

the objective value 𝐹 (𝑥∗) = 1
2 [∥∇𝑓(𝑥∗) − 𝜆∗𝐴𝑥∗ − 𝜇∗𝑒0∥2 + (12𝑥

∗𝑇𝐴𝑥∗ − 𝑠∗)2 + (𝑥0
∗ − 𝑡∗)2 +

(𝜆∗𝑠∗)2 + (𝜇∗𝑡∗)2] = 0. Therefore, given a solution of (2), we obtain an optimal solution of (5)

with objective value zero.

Conversely, if (𝑥∗, 𝜆∗, 𝑠∗, 𝑡∗, 𝜇∗) is a global minimizer of (5) with objective value zero, we

have that

𝐹 (𝑥∗) = 1
2 [∥∇𝑓(𝑥∗)−𝜆∗𝐴𝑥∗−𝜇∗𝑒0∥2+(12𝑥

∗𝑇𝐴𝑥∗−𝑠∗)2+(𝑥0
∗−𝑡∗)2+(𝜆∗𝑠∗)2+(𝜇∗𝑡∗)2] = 0,

which means

∇𝑓(𝑥∗)− 𝜆∗𝐴𝑥∗ − 𝜇∗𝑒0 = 0,

1

2
𝑥∗𝑇𝐴𝑥∗ − 𝑠∗ = 0,

𝑥∗0 − 𝑡∗ = 0,

𝜆∗𝑠∗ = 0, 𝜆∗ ≥ 0, 𝑠∗ ≥ 0,

𝜇∗𝑡∗ = 0, 𝜇∗ ≥ 0, 𝑡 ≥ 0.

(6)

So 𝑥∗ is the KKT point of (2).

The following Theorem shows that under certain condition, the stationary point of (5) is a

solution of (2).

Theorem 2 Let (𝑥∗, 𝜆∗, 𝜇∗, 𝑠∗, 𝑡∗) be a stationary point of (5), define

𝐻𝑓 = ∇2
𝑥𝑥𝑓(𝑥

∗)− 𝜆𝐴
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if 𝐻𝑓 is positive definite then 𝑥∗ is a solution of (2).

Proof. Let

𝑙1 = ∇𝑓(𝑥∗)− 𝜆∗𝐴𝑥∗ − 𝜇∗𝑒0,

𝑙2 =
1

2
𝑥∗𝑇𝐴𝑥∗ − 𝑠∗,

𝑙3 = 𝑥∗0 − 𝑡∗,

(7)

and

𝐿(𝑥, 𝜆, 𝜇, 𝑠, 𝑡) = 𝐹 (𝑥)− 𝜃1𝜆− 𝜃2𝜇− 𝜃3𝑠− 𝜃4𝑡.

The first order necessary optimality conditions (KKT) of (5) can be written as

𝐻𝑇
𝑓 𝑙1 + 𝑙2(𝐴𝑥

∗) + 𝑙3𝑒0 = 0, (8)

−𝑙𝑇1 (𝐴𝑥∗) + (𝜆∗𝑠∗)𝑠∗ − 𝜃1 = 0, (9)

−𝑙𝑇1 𝑒0 + (𝑡∗𝜇∗)𝑡∗ − 𝜃2 = 0, (10)

−𝑙2 + (𝜆∗𝑠∗)𝜆∗ − 𝜃3 = 0, (11)

−𝑙3 + (𝑡∗𝜇∗)𝜇∗ − 𝜃4 = 0. (12)

From (9) and (11) we get

𝑙𝑇1 (𝐴𝑥
∗)𝑙2 = (𝜆∗𝑠∗)3 + 𝜃1𝜃3, (13)

(10) and (12) imply

𝑙𝑇1 𝑒0𝑙3 = (𝑡∗𝜇∗)3 + 𝜃2𝜃4. (14)

Premultiplying (8) by 𝑙1 we obtain

0 = 𝑙𝑇1 𝐻
𝑇
𝑓 𝑙1 + 𝑙2𝑙

𝑇
1 (𝐴𝑥

∗) + 𝑙3𝑙
𝑇
1 𝑒0 = 𝑙𝑇1 𝐻𝑓 𝑙1 + (𝜆∗𝑠∗)3 + 𝜃1𝜃3 + (𝑡∗𝜇∗)3 + 𝜃2𝜃4, (15)

where

(𝜆∗𝑠∗)3 + 𝜃1𝜃3 ≥ 0,

(𝑡∗𝜇∗)3 + 𝜃2𝜃4 ≥ 0.

By (15) and the above two inequalities and the assumption that 𝐻𝑓 is positive definite, we have

𝑙1 = 0, 𝜆∗𝑠∗ = 0, 𝑡∗𝑠∗ = 0. (16)

Therefore, using (8) and (16), 𝑙2(𝐴𝑥∗) + 𝑙3𝑒0 = 0 and 𝑥∗𝑖 𝑙2 = 0, for 𝑖 = 1, . . . , 𝑛. If for some

𝑘 = 1, . . . , 𝑛 𝑥∗𝑘 ∕= 0, then 𝑙2 = 0, and 𝑙3 = 0, which implies 𝐹 (𝑥∗) = 0.

If 𝑥∗𝑖 = 0 for 𝑖 = 1, . . . , 𝑛, then

(i) If 𝑠∗ > 0, (16) and (11) imply 𝜃3 = 0, 𝑙2 = −𝜃3 = 0 and 𝑙3 = 0, then 𝐹 (𝑥∗) = 0.

(ii) If 𝑠∗ = 0, by (16) and the definition of 𝑙2 we obtain

0 ≥ −𝜃3 = 𝑙2 =
1

2
𝑥20 ≥ 0 =⇒ 𝑙2 = −𝜃3 = 0, (17)

and again 𝑙3 = 0 and 𝐹 (𝑥∗) = 0. And we get the desired result.
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3. Conclusion

In this paper, we reformulate the nonlinear convex second order cone programming problem

as a nonlinear programming problem with four nonnegative constraints. Furthermore, we give

the conditions under which the stationary point of the reformulation problem solve the original

problem. How to design an algorithm to solve the SOCP based on this reformulation deserves

further study, we leave it as the future work.
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