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A Structure-Preserving Doubling Algorithm for Quadratic Matrix
Equations arising form damped mass-spring system ∗

Bo Yu† ‡ and Ning Dong ‡

Abstract. We are concerned with the quadratic matrix equation with nonsingular M-
matrices arising from the damped mass-spring system. We propose a sufficient condition
for the existence of the solvents to the equation. We also develop a nonsingular M-matrix
structure-preserving doubling algorithm (MSD) to calculate the extreme solvents of the equa-
tion. Under appropriate conditions, we establish the global and quadratic convergence of
the proposed method. Numerical experiments show that the proposed MSD algorithm out-
performs Newton’s method with exact line searches and Bernoulli’s method.
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1. Introduction

We consider the quadratic matrix equation (QME)

Q(X) = AX2 + BX + C = 0, (1.1)

where A, B, C are all real matrices of sizes n× n. Throughout, we assume that

matrix A is a nonnegative and nonsingular matrix,

matrices B and C are nonsingular M−matrices such that B−1C ≥ 0.

We will introduce the concept of M-matrix and its properties in the latter part of this section.
The above conditions are motivated by a quadratic eigenvalue problem (QEP)

Q(λ)x = (λ2A + λB + C)x (1.2)

in a damped mass-spring system with following structure [18, 19]:

A = diag(m1, · · · ,mn), B = τtridiag(−1, 3,−1), C = κtridiag(−1, 3,−1),
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where for each i = 1, 2, · · · , n, mi is the weight of the ith mass and τ (κ) is the damping (stiffness)
constant. It is easy to see that the above structure is a special case of Q(X).

A solution of QME (1.1) is called a solvent. The existence of solvents to (1.1) has been
extensively studied. For details, see [2, 14, 11] and the references there in. Among all the
solvents (if exists), two extreme solvents, the dominant and minimal solvents, are of great
interests. Let the eigenvalues of QEP (1.2) {λi}2n

i=1 be ordered by absolute values:

|λ1| ≥ |λ2| ≥ · · · ≥ |λ2n|. (1.3)

A solvent X(1) of Q(X) is called a dominant solvent if the set of the eigenvalues is λ(X(1)) =
{λ1, · · · , λn} and |λn| > |λn+1|. A solvent X(2) of Q(X) is a minimal solvent if its eigenvalue set
is λ(X(2)) = {λn+1, · · · , λ2n} and |λn| > |λn+1|.

Newton’s method and basic fixed-point iterations are widely used to find the solvents (not
necessary extreme solvents) of (1.1). Higham and Kim showed that Newton’s method with exact
line searches is globally and quadratically convergent [11]. However, solving the subproblem, a
generalized Sylvester equation, of Newton’s method requires 102n3 flops by generalized Schur
decomposition or 52n3 flops by Hessenberg-triangular decomposition [3, 4, 5, 11]. It will become
a huge cost when the dimension increases largely. Bernoulli’s method, one of the fixed-point
iterations, is regarded as a more effective algorithm than Newton’s method for extreme solvents
due to its low cost per iteration [12]. Nevertheless, its linear convergence rate results in too
many iterations definitely. Recently, Chu et al. constructed a structure-preserving doubling
(SD) algorithm for Riccati-type matrix equation [1]. Attractive properties of the SD algorithm,
as pointed out by Lin and Xu [15], include its quadratic convergence rate, low computational
cost per iteation and nice numerical reliability. Guo et al. developed an SD algorithm to
nonsymmetric algebraic Riccati equation (NARE) where the four coefficient matrices form a
nonsingular M-matrix [10]. Guo et al. considered the case of irreducible singular M-matrix
formed by four coefficient matrices. In this case, the convergence rate of SD algorithm was
shown to be linear with 1/2 [8].

In this paper, we first propose a sufficient condition for the existence of the solvents to QME
(1.1) with nonsingular coefficient matrices. This condition, based on a fixed-point iterations,
is similar to Eisenfeld’s condition. In order to compute the extreme solvents to (1.1), we then
develop a M-matrix structure-preserving doubling (MSD) algorithm. An advantage of the MSD
algorithm is that it can preserve a nonsingular M-matrix structure during iterations. This
algorithm is highly efficient in that at each iteration, only one LU -factorization and several
matrix multiplications are required. Under mild conditions, we establish the global and quadratic
convergence of the method. Similar to the arguments in [7, 8, 9] for nonsymmetric algebraic
Riccati equations, we construct an example to illustrate the linear convergence rate of MSD (with
1/2) when the solvents contains a unit eigenvalue (in module). Our numerical experiments show
that the MSD algorithm outperforms Newton’s method with exact line searches in [11] and the
Bernoulli’s method in [12].

In what follows, we introduce the concept of M-matrix and give its interesting properties.
For matrices A, B ∈ Rn×n, we write A ≥ B(A > B) if aij ≥ bij(aij > bij) for all i, j. A real
square matrix A is called a Z-matrix if all its off-diagonal elements are nonpositive. It is clear
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that any Z-matrix A can be written as sI −B with B ≥ 0. A Z-matrix A = sI −B with B ≥ 0
is called an M-matrix if s ≥ ρ(B), where ρ(·) denotes the spectral radius. It is called a singular
M-matrix if s = ρ(B) and a nonsingular M-matrix if s > ρ(B). Given a square matrix A, we
will denote by λ(A) the set of eigenvalues of A, and ‖A‖ the Euclid norm of A.

The following lemma comes from [21] which shows some interesting properties of the nonsin-
gular M-matrix. It should be pointed out that the M-matrix defined in [21] is the nonsingular
M-matrix in this paper.

Lemma 1.1 For a Z-matrix A, the following statements are equivalent:
(a) A is a nonsingular M-matrix.
(b) A is nonsingular and satisfies A−1 ≥ 0.
(c) Av > 0 for some vector v > 0.
(d) All eigenvalues of A have positive real parts.

The rest of this paper is organized as follows. We give a sufficient condition for the existence
of the solvents of QME (1.1) in the next section. In Section 3, we develop a nonsingular M-matrix
structure-preserving doubling algorithm to find the extreme solvents to QME (1.1). In Section
4, we establish the global and quadratic convergence of the method. We do some numerical
experiments to test the proposed method and compare its performance with Newton’s method
and Bernoulli’s method in Section 5. We conclude the paper by discussion in Section 6.

2. A sufficient condition for the existence of solvents

The existence of the solvents to (1.1) has been studied by some scholars. By the use of contraction
mapping principle, Eisenfeld [2] showed that if A, B and C are nonsingular and

4‖B−1C‖‖B−1A‖ < 1, (2.1)

then at least two solvents exist [2]. A similar but more restrictive condition for the existence of
solvents was derived by McFarland [16].

In this section, we also show, by a fixed-point iterative process, that condition (2.1) is
sufficient for the existence of the solvents to (1.1). Consider the iterative process

Yk+1 = −B − CY −1
k A, k = 0, 1, · · · (2.2)

with initial matrix Y0 = −B. This iterative scheme was also considered in [7, 17]. Here we use
it to derive a similar sufficient condition to [2] for the existence of the solvents to (1.1).

Theorem 2.1 If A, B in QME (1.1) are nonsingular and condition (2.1) is satisfied, then (1.1)
has at least a solvent.

Proof. We first prove the inequality ‖B−1C‖‖Y −1
k A‖ < 1/2 by induction. From the fixed-point

iteration (2.2) and condition (2.1), it is clear that

‖B−1C‖‖Y −1
0 A‖ < 1/2.
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We assume that ‖B−1C‖‖Y −1
m−1A‖ < 1/2 holds for all m ≤ k − 1. Then we get from (2.2)

‖B−1C‖‖Y −1
k A‖ ≤ ‖B−1C‖‖B−1A‖‖(I + B−1CY −1

k−1A)−1‖

≤ ‖B−1C‖‖B−1A‖
1− ‖B−1C‖‖Y −1

k−1A‖

≤ 1/4

1− 1/4

1−‖B−1C‖‖Y −1
k−2A‖

· · · , (2.3)

where the first inequality follows from (2.2) and second inequality follows from the perturbation
lemma ‖(I −A)−1‖ ≤ 1/(1−‖A‖) when ‖A‖ < 1 (see [20] for example). By Worpitzky theorem
of continued fraction (see [13] for example), we have from (2.3) ‖B−1C‖‖Y −1

k A‖ < 1/2. This
results in

‖Y −1
k A‖ = ‖(I + B−1CY −1

k−1A)−1B−1A‖ ≤ ‖B−1A‖
1− ‖B−1C‖‖Y −1

k−1A‖
< 2‖B−1A‖ (2.4)

and
‖Y −1

k B‖ = ‖(I + B−1CY −1
k−1A)−1‖ ≤ 1

1− ‖B−1C‖‖Y −1
k−1A‖

< 2.

In particular, {‖Y −1
k ‖} is bounded above and hence {‖Yk‖} is bounded away from zero. There-

fore, we get from (2.2) and (2.3)

‖B−1(Yk+1 − Yk)‖ = ‖B−1C(Y −1
k − Y −1

k−1)A‖
≤ ‖B−1C‖‖Y −1

k B‖‖B−1(Yk − Yk−1)‖‖Y −1
k−1A‖

< θ‖B−1(Yk − Yk−1)‖

where θ = 4‖B−1C‖‖B−1A‖ < 1. The last inequality together with the boundedness of {‖Y −1
k ‖}

shows that {Yk} has a nonsingular limit. Let Y ∗ = limk→∞Yk. Then Y ∗ is a solvent of Y =
−B − CY −1A. Consequently, A−1Y ∗ is a solvent of QME (1.1) by some transformations . 2

The proof of Theorem 2.1 has found a solvent A−1Y ∗ of (1.1) where Y ∗ is the limit of {Yk}
determined by (2.2). In what follows, we find another solvent of (1.1) in a similar way.

Consider the iterative process

Yk+1 = −B −AY −1
k C, k = 0, 1, · · · (2.5)

with Y0 = −B. Similar to the proof of Theorem 2.1, we can derive another solvent Ŷ −1C of
(1.1), where Ŷ is the limit of (2.5). Therefore, we have the following theorem.

Theorem 2.2 If A, B and C in QME (1.1) are nonsingular, then condition (2.1) implies that
QME (1.1) has at least two solvents A−1Y ∗ and Ŷ −1C, where Y ∗ and Ŷ are the limits of {Yk}
generated by (2.2) and (2.5) with Y0 = −B, respectively.

We are particularly interested in the dominant and minimal solvents of (1.1). The latter parts
of this paper are dedicated to the numerical method for the computation of these solvents of (1.1).
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We will develop a M-matrix structure-preserving doubling (MSD) algorithm and established its
convergence. To this end, let us investigate some nice properties of the solvents A−1Y ∗ and Ŷ −1C

specified in Theorem 2.2. Suppose that matrices A, B and C are nonsingular and satisfied the
condition

‖B−1C‖+ ‖B−1A‖ < 1. (2.6)

We are going to show by induction that inequality ‖Y −1
k A‖ < ‖B−1A‖

1−‖B−1C‖ holds for all k. Clearly,

condition (2.6) implies ‖Y −1
0 A‖ = ‖B−1A‖ < ‖B−1A‖

1−‖B−1C‖ < 1. Suppose ‖Y −1
k−1A‖ < ‖B−1A‖

1−‖B−1C‖ < 1.
We get from (2.2) and condition (2.6)

‖Y −1
k A‖ ≤ ‖B−1A‖

1− ‖B−1C‖‖Y −1
k−1A‖

<
‖B−1A‖

1− ‖B−1C‖
< 1. (2.7)

So we conclude that ‖Y −1
k A‖ < ‖B−1A‖

1−‖B−1C‖ for all k and hence ‖Y ∗−1A‖ < 1. This shows that all
eigenvalues (in module) of (Y ∗)−1A are less than one, and hence the eigenvalues of its inverse
are all greater than one. Similarly, we can show that the eigenvalues of Ŷ −1C are all less than
one. This means that A−1Y ∗ and Ŷ −1C are the dominant solvent and the minimal solvent to
QME (1.1), respectively.

3. MSD algorithm for QME

In this section, we propose an M-matrix structure-preserving doubling algorithm which we call
the MSD algorithm. We first introduce some definitions of transformation and symplectic forms.

Let H − λJ ∈ R2n×2n be a matrix pencil and

N (H,J) =
{

[L∗, U∗] : L∗, U∗ ∈ R2n×2n, rank[L∗, U∗] = 2n, [U∗, L∗]
[

H

−J

]
= 0

}
.

It is clear that N (H,J) 6= ∅ since rank
( H

−J

)
≤ 2n. For each [L∗, U∗] ∈ N (H,J), we define

Ĥ = L∗H, Ĵ = U∗J.

The transformation
H − λJ −→ Ĥ − λĴ

is called a doubling transformation.
A subspace W of R2n×2n is called a generalized eigenspace of a pencil H − λJ ∈ R2n×2n,

if W is spanned by the columns of W ∈ R2n×n, where W has full rank columns and satisfies
HW = JWR1 with some R1 ∈ Rn×n. The following theorem, proved in [15], shows that the
doubling transformation can preserve the generalized eigenspace W and square the eigenvalues
of R1.

Theorem 3.1 Let the matrix pencil H − λJ ∈ R2n×2n satisfy

HW = JWR1 or JV = HV R2,
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where W,V ∈ R2n×n and R1, R2 ∈ Rn×n. Let Ĥ − λL̂ be a doubling transformation of H − λJ .
Then we have

ĤW = ĴWR2
1 or ĴV = ĤV R2

2.

Different symplectic structures of matrix pencil H − λJ have been constructed for various
nonlinear matrix equations. For example, Lin and Xu [15] defined a first (second) standard
symplectic form for discreet-time algebraic Riccati equation (nonlinear matrix equation with
plus or minus sign). Guo et al. [10] gave another generalized standard symplectic form for
nonsymmetric algebraic Riccati equation. Based on these symplectic forms, they proposed an
SD algorithm and established its convergence. We are going to develop an MSD algorithm to
solve the quadratic matrix equation (1.1). To this end, we define a new symplectic form with a
nonsingular M-matrix as follows.

A matrix pencil H − λJ is called in Composed M-matrix symlectic form (CMSF) if

H =
[

0 E

F −G

]
, J =

[
I S

0 T

]
, (3.1)

where ±E, −F , ±T and S are nonnegative matrices with dimension n×n, and G is a nonsingular
M-matrix.

In what follows, we propose a doubling algorithm which can preserve the above CMSF. Let
X be the minimal solvent of QME (1.1). It is clear that equation (1.1) can be rewritten as[

0 I

−C −B

] [
I

X

]
=

[
I 0
0 A

] [
I

X

]
X.

A direct left multiplication of
[

I 0
0 B−1

]
in the above equation gives rise to

H

[
I

X

]
= J

[
I

X

]
X, (3.2)

where

H =
[

0 I

−B−1C −I

]
and J =

[
I 0
0 B−1A

]
.

Set E = I, F = −B−1C, G = I, S = 0 and T = B−1A. It is easy to see that H − λJ is in
CMSF and that matrix G + FS is a nonnegative M-matrix. Consider the triangular structure
of the above H and J . Following the techniques in [1] and [15], we select

L∗ =
[

E(G + FS)−1F 0
−T (G + FS)−1F I

]
and U∗ =

[
I E(G + FS)−1

0 −T (G + FS)−1

]
(3.3)

such that
L∗J = U∗H.

It is obvious that [L∗, U∗] ∈ N [H,J ]. Then we get a doubling transformation

Ĥ = L∗H =
[

0 Ê

F −Ĝ

]
, Ĵ = U∗J =

[
I Ŝ

0 −T̂

]
,
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where

Ê = E(G + FS)−1FE, Ĝ = G + T (G + FS)−1FE,

Ŝ = S + E(G + FS)−1T, T̂ = −T (G + FS)−1T.

Based on the above argument, we propose the MSDA method as follows.

Algorithm 3.1 M-matrix Structure-Preserving Doubling Algorithm (MSDA):
Step 1: Given matrix F ∈ Rn×n. Let E0 = I, F = F0 = −B−1C,G0 = I, S0 = 0 and

T0 = B−1A. Let k = 0.
Step 2: For k ≥ 0, until convergence, do

Ek+1 = Ek(Gk + FSk)−1FEk,

Gk+1 = Gk + Tk(Gk + FSk)−1FEk,

Sk+1 = Sk + Ek(Gk + FSk)−1Tk,

Tk+1 = −Tk(Gk + FSk)−1Tk.

It is not difficult to see that at each iteration, the above algorithm only requires one LU -
factorization and several matrix multiplications. The computation cost is 50

3 n3 flops, one sixth
of that by generalized Schur decomposition in Newton’s method with exact line searches.

The following theorem shows that the MSDA is well defined and can preserve the structure
of CMSF. In the next section we shall show that under suitable conditions the matrix sequence
{Gk} ({Sk}) is monotonically decreasing (increasing) and quadratically convergent.

Theorem 3.2 Let matrix sequences {Ek}, {Gk}, {Sk}, {Tk} be generated by the MSD algorithm
and Vk = Tk(Gk + FSk)−1FEk. If condition (2.1) holds, then we have for k ≥ 1
(a) Ek ≤ 0, ‖Ek‖ ≤ 22k−k−1‖F‖2k−1;
(b) Tk ≤ 0, ‖Tk‖ ≤ 22k−k−1‖T0‖2k

;
(c) Sk ≥ 0, ‖Sk‖ ≤ (2− 2−(k−1))‖T0‖;
(d) Gk + FSk are nonsingular M-matrices and ‖(Gk + FSk)−1‖ ≤ 2k;
(e) Vk ≤ 0, ‖Vk‖ ≤ 2−(k+2).

Proof. We prove the theorem by induction. It is clear that E1 = F = −B−1C ≤ 0, T1 =
−T 2

0 = −(B−1A)2 ≤ 0, S1 = T0 = B−1A ≥ 0. Since ‖V0 + FS1‖ ≤ 1/4 < 1, G1 + FS1 is a
nonsingular M-matrix and

‖(G1 + FS1)−1‖ = ‖(I + V0 + FS1)−1‖ ≤ 1
1− 2‖B−1C‖‖B−1A‖

≤ 2.

It then follows that V1 = T1(G1 + FS1)−1FE1 ≤ 0 and

‖V1‖ ≤ ‖T1‖‖(G1 + FS1)−1‖‖F‖‖E1‖ ≤ 2−3.

This proves the theorem for k = 1. Suppose that (a)− (e) are true for all positive integers less
than or equal to k. We are going to show that they are true for k + 1 too. It follows from Step
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2 of MSD algorithm that Ek+1 ≤ 0, Tk+1 ≤ 0 and

Ek+1 = Ek(Gk + FSk)−1FEk ≤ 0,

Tk+1 = −Tk(Gk + FSk)−1Tk ≤ 0,

Sk+1 = Sk + Ek(Gk + FSk)−1Tk ≥ 0. (3.4)

We also have by induction

‖Ek+1‖ ≤ ‖Ek‖‖(Gk + FSk)−1‖‖F‖‖Ek‖ ≤ 22k+1−(k+1)−1‖F‖2k+1−1,

‖Tk+1‖ ≤ ‖Tk‖‖(Gk + FSk)−1‖‖Tk‖ ≤ 22k+1−(k+1)−1‖T0‖2k+1
,

‖Sk+1‖ ≤ ‖Sk‖+ ‖Ek‖‖(Gk + FSk)−1‖‖Tk‖

≤ ‖T0‖(2−
1

2k−1
+

22k+1−(k+1)−1

42k−1
) = (2− 2−k)‖T0‖.

By Step 2 of the MSD algorithm again, we have

Gk+1 −Gk = Vk ≤ 0. (3.5)

Denote by Wk+1 =
∑

0≤l≤k Vl + FSk+1. It then follows that Gk+1 + FSk+1 = I + Wk+1. Since

‖Wk+1‖ ≤
∑

0≤l≤k

‖Vl‖+ ‖F‖‖Sk+1‖ ≤ 1− 2−(k+1) < 1,

we claim that Gk+1 + FSk+1 is a nonsingular M-matrix with norm

‖(Gk+1 + FSk+1)−1‖ ≤ 1
1− ‖Wk+1‖

≤ 2k+1.

Finally, Step 2 of MSD algorithm implies

Vk+1 = Tk+1(Gk+1 + FSk+1)−1FEk+1 ≤ 0

with norm

‖Vk+1‖ ≤ ‖Tk+1‖‖(Gk+1 + FSk+1)−1‖‖F‖‖Ek+1‖ ≤ 2−((k+1)+2).

The proof is complete. 2

The above theorem yields the following corollary immediately, which shows that the structure
of CMSF can be preserved in iterations.

Corollary 3.1 Let the initial matrix pencil H − λJ be in CMSF form. If (2.1) holds, then we
can choose a matrix [L∗, U∗] with form (3.3) in N (H,J) such that its corresponding doubling
transformation Ĥ − λĴ is still in CMSF.
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4. Convergence for the MSD algorithm

In this section, we establish the convergence of the MSD algorithm. Let X∗ and Z∗ be solvents
of QME (1.1) and its dual equation

R(Z) = CZ2 + BZ + A = 0, (4.1)

respectively. As shown in Section 2, under the condition (2.6), there exists X∗ = (Ŷ )−1C and
Z∗ = (Y ∗)−1A such that ρ(X∗) < 1 and ρ(Z∗) < 1. Moreover, X∗ and Z∗ are the minimal
solvent and the inverse of dominant solvent for QME (1.1), respectively.

The following theorem establishes the global convergence of the MSD algorithm. Moreover,
it shows that matrix sequences {Sk} and {Gk} converge monotonically.

Theorem 4.1 Let matrix sequences {Ek}, {Gk}, {Sk}, {Tk} be generated by the MSD algo-
rithm. Assume condition (2.6) holds. Let X∗ and Z∗ be the minimal solvents of (1.1) and its
dual (4.1),respectively. Then the following statements hold.
(a) Ek = (I + SkX

∗)(X∗)2
k−1 and converges to 0.

(b) Tk = (FZ∗ −Gk)(Z∗)2
k

and converges to 0.
(c) The sequence {Sk}k≥0 is monotonically increasing and converges to −Z∗.
(d) The sequence {Gk}k≥0 is monotonically decreasing and converges to I + B−1AX∗.

Proof. For each k, we let

Hk =
[

0 Ek

F −Gk

]
, Jk =

[
I Sk

0 Tk

]
.

QME (1.1) and its dual equation (4.1) can be respectively rewritten as

H0

[
I

X∗

]
= J0

[
I

X∗

]
X∗ and J0

[
Z∗

I

]
= H0

[
Z∗

I

]
Z∗.

Since the matrix pencil Hk−λJk in the MSD algorithm is a doubling transformation of Hk−1−
λJk−1, an application of Theorem 3.1 gives rise to

Hk

[
I

X∗

]
= Jk

[
I

X∗

]
(X∗)2

k
and Jk

[
Z∗

I

]
= Hk

[
Z∗

I

]
(Z∗)2

k
.

By direct computation, we obtain

EkX
∗ = (I + SkX

∗)(X∗)2
k
, (4.2)

F −GkX
∗ = Tk(X∗)2

k+1, (4.3)

Z∗ + Sk = Ek(Z∗)2
k
, (4.4)

Tk = (FZ∗ −Gk)(Z∗)2
k
. (4.5)

It follows from Step 2 of MSD algorithm and Theorem 3.2 (c) that the matrix sequence {Sk} is
monotonically increasing and bounded above. So we get from (4.2) and (4.4) that the matrix
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sequence {Ek} converges to zero and hence {Sk} has the limit −Z∗ since ρ(X∗) < 1 and
ρ(Z∗) < 1.

We turn to the convergence of {Gk} and {Tk}. Inequality (3.5) means that {Gk} is mono-
tonically decreasing. Since

‖Gk‖ = ‖I +
k−1∑
i=0

Vi‖ ≤ 1 + (2−1 − 2−(k+2)) < 3/2,

the sequence {Gk} has a limit. It then follows from (4.5) that {Tk} converges to zero. The fact
ρ(X∗) < 1 together with equality (4.3) implies

lim
k→∞

Gk = F (X∗)−1 = I + B−1AX∗.

The proof is complete. 2

Theorem 4.1 shows that sequence {S−1
k } converges to the dominant solvent of (1.1) while

sequence {A−1B(Gk+1 − I)} converges to the minimal solvent of (1.1). In addition, conclusions
(a) and (b) in the theorem show the quadratic convergence of the MSD algorithm.

Remark 4.1. We consider the extreme case where the equality holds in (2.6). In this case
the eigenvalues (in module) of the extreme solvents may equal one. In a way similar to the
proof of Theorem 3.2, it is not difficult to show that the sequence {Gk} is still monotonically
decreasing and bounded below and hence has a limit. However, as in the SD method [8], the
convergence rate of MSD algorithm will reduce to linear. Here we give an example to show this
fact. Let A = 1

2I, B = I, and C = 1
2I such that ‖B−1C‖ + ‖B−1A‖ = 1. Then X∗ = −I

is a solvent of QME (1.1). It is easy to verify that Gk+1 − Gk = 1
2(Gk − Gk−1), Sk+1 = 1

2Sk,
Ek+1 = 1

2Ek, Tk+1 = 1
2Tk. Consequently, the sequence {Gk} is monotonically decreasing and

has a limit G∗ = 1
2I. However, the convergence rate is linear with factor 1/2.

Remark 4.2. In the proof of Theorem 4.1, the monotone convergence of {Sk} and {Gk}
requires the condition B−1C ≥ 0. Nevertheless, our numerical experiments in the next section
seem to show that this restriction might be unnecessary.

5. Numerical experiments

The purpose of this section is to show the effectiveness of the MSD algorithm 3.1 in computation.
We tested the proposed algorithm and compare the performance of the MSD algorithm with
the well-known Newton’s method with exact line searches and the Bernoulli method. Our
experiments were done in Matlab 7.0 on a PC with 2.13GHz Intel Celeron D processor, which
has unit roundoff u = 2−53 ≈ 1.1×10−16. We first give some implementation details of Newton’s
method with exact line searches (NME), Bernoulli’s method (BM) and MSD algorithm.

For Newton’s method, the default starting matrix is, as in [11],

X0 = (
‖B‖F + (‖B‖2

F + 4‖A‖F ‖C‖F )
1
2

2‖A‖F
)In,
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which was designed to have norm roughly the same order of magnitude as a solvent. The
termination criterion is that the relative residual µ(Xk) satisfies

µ(Xk)
4
=

‖fl(Q(Xk))‖F

‖A‖F ‖Xk‖2
F + ‖B‖F ‖Xk‖F + ‖C‖F

≤ nu,

where n is the dimension of the problem. The next iterate Xk+1 is obtained by solving the
generalized Sylvester system{

AEkXk + (AXk + B)Ek = −Q(Xk),
Xk+1 = Xk + tEk

with generalized Schur decomposition, where t is the step length determined by the exact line
search. When Bernoulli’s method is implemented to find the dominant solvent, Xk+1 is a solution
of following system of linear equations.

(AXk+1 + B)Xk + C = 0, k = 0, 1, · · ·

starting from X0 = −A−1B, while for the minimal solvent, Xk+1 is a solution of the system of
linear equations

(AXk + B)Xk+1 + C = 0

with initial matrix X0 = 0, respectively. Although it is a fixed-point iterations with linear
convergence rate, Bernoulli’s method has been observed to possess better numerical performance
in CPU times than Newton’s method [12]. The stopping criterion in BM and MSD algorithm
is, as in [12],

‖Xk+1 −Xk‖1

‖Xk‖1
≤ nu.

We tested the three methods on three problems with various dimensions.
Example 5.1 Consider the QME (1.1) with

B = tridiag(−I, T,−I) ∈ Rm2×m2
,

where
T = tridiag(−1, 4 +

150
(m + 1)2

,−1) ∈ Rm×m

is a tridiagonal matrix. Let n = m2 and

A =
1
a
tridiag(1, 2, 1) ∈ Rn×n, C =

1
b
tridiag(−1, 4 +

150
(m + 1)2

,−1) ∈ Rn×n,

where a and b are positive constants such that ‖B−1C‖2 + ‖B−1A‖2 < 1.
This problem comes from [10] with a little modification. The numerical results were listed

in Tables 5.1, 5.2 with a = 1/20, b = 1/15, m = 5, 10, 15, 20 and in Tables 5.3, 5.4 with
m = 16, a = 1/8, 1/12, 1/120, b = 1/5, 1/12, 1/120. Since it only converges to a minimal
solvent with default initial matrix X0, Newton’s method is omitted in Tables 5.2 and 5.4. In
the tables, ”Iter” stands for the number of iterations used, while ”CPU” denotes the CPU time
used in seconds. We see from Tables 5.1-5.4, that in most cases the MSDA used least number
of iterations and CPU time.
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Table 5.1 Results for minimal solvent with a = 1/20 and b = 1/15

m=5 m=10 m=15 m=20
Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

MSDA 4 0.1406 5 0.4219 5 2.9844 7 23.5156
BM 8 0.2969 10 0.6094 15 5.1563 30 58.9688

NME 6 1.5594 7 7.1719 8 63.1563 9 529.1250

Table 5.2 Results for dominant solvent with a = 1/20 and b = 1/15

m=5 m=10 m=15 m=20
Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

MSDA 4 0.1406 5 0.5156 5 2.8750 7 23.6563
BM 5 0.2813 7 0.6255 8 3.3806 22 42.8438

Table 5.3 Results for minimal solvent with m = 16

a=b=1/12 a=1/8, b=1/120 a=1/120, b=1/5 a=b=1/120
Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

MSDA 7 4.1563 5 4.3750 5 4.5156 4 3.2813
BM 30 12.8750 11 5.6094 12 5.5625 7 3.5000

NME 9 231.4844 8 209.1250 8 208.5469 8 209.2969

Table 5.4 Results for dominant solvent with m = 16

a=b=1/12 a=1/8, b=1/120 a=1/120, b=1/5 a=b=1/120
Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

MSDA 7 3.1563 5 4.0906 5 4.2063 4 3.5469
BM 22 9.9063 7 4.3781 8 4.6875 4 2.4531

Example 5.2 We consider the QME (1.1) arising from a damped mass-spring system (see
[18] or [12] for details) by choosing the masses, damping and stiffness constants to give an
n × n problem with A = I, B = tridiag(−10, 30,−10) except B(1, 1) = B(n, n) = 20, and
C = tridiag(−5, 15,−5).

Since ‖B−1C‖2 + ‖B−1A‖2 = 0.9248 < 1, all the eigenvalues (in module) of the extreme
solvents are less than one. We took the dimension n of problem varying from 100 to 450 to test
the number of iterations and CPU times used for different algorithms. Only the results about
the minimal solvent were listed in Table 5.5 for the purpose of comparison. Since Newton’s
method did not converge to the dominant solvent with default initial matrix X0, we omitted
the results. We can see from Table 5.5 that the number of iterations used for the MSDA was
less than Newton’s method and was about 1/3 as the Bernoulli’s method. In addition, the CPU
time used by the MSDA was less than Bernoulli’s method did and was at most 1/15 as that
used by Newton’s method.
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Table 5.5 Results for minimal solvent with dimension from n = 100 to n = 450

n=100 n=150 m=n=200 n=250
Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

MSDA 5 0.1094 5 0.4531 5 0.9219 5 2.4063
BM 15 0.5313 15 1.3125 15 2.7657 15 5.3750

NME 6 4.0469 6 15.2657 6 43.3438 6 88.6407
n=300 n=350 n=400 n=450

Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)
MSDA 5 5.4688 5 9.0313 5 15.5313 5 38.7656

BM 15 10.9375 15 18.3438 14 27.5938 14 47.7969
NME 6 179.6563 6 273.8594 6 442.9063 6 575.5781

Finally, we tested the three algorithms on the equation in which matrices A, B and C are
dense matrices.

Example 5.3 Consider the QME (1.1). Let (A)ij , (B)ij and (C)ij be the (i, j)-th element
of matrices A, B and C specified by

(A)ij =

{
2/α i + j = n + 1
1/α others

, (B)ij =


15 i = j

−3 i + 1 = j

−3 i = j + n− 2
−1 others

, (C)ij =

{
15/β i = j

−1/β others
,

where α = 1/15 and β = 1/2. It is not difficult to show that inequality ‖B−1C‖2+‖B−1A‖2 < 1
is satisfied.

We tested the algorithms on the problem with different dimensions n = 10, 100, 200 and
300. The condition B−1C ≥ 0 hold for n = 10 while does not hold for n = 100, 200 and 300.
The results were listed in Table 5.6. We see from the table that even when condition B−1C ≥ 0
is not satisfied, the MSD and Bernoulli’s algorithms terminated at extreme solvents. Moreover,
the MSD algorithm outperformed the Bernoulli’s algorithm in the number of iterations as well
as CPU time used. On the other hand, Newton’s method terminated at non-extreme solvents
and used CPU time at least 10 times as that by the MSD algorithm.
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Table 5.6 Results for solvents with different algorithms

n=10 n=100 n=200 n=300
Iter. CPU (s) Iter. CPU (s) Iter. CPU (s) Iter. CPU (s)

Convergence to the dominant solvent
MSDA 6 0.1563 5 0.2188 5 1.6875 5 3.6213

BM 21 0.5313 9 0.2969 9 2.4062 9 4.7031
Convergence to the minimal solvent

MSDA 6 0.1250 5 0.2500 5 2.1875 5 3.8719
BM 25 0.6094 30 0.9063 30 7.1563 30 16.2656

Convergence to a solvent (not necessary the extreme)
NME 9 1.2562 6 4.3125 6 59.14 5 167.6094

6. Concluding remarks

We have proposed an M-matrix structure-preserving doubling method for solving the quadratic
matrix equation. The method retains the advantage of the structure-preserving doubling method
in [10] that it is globally and quadratically convergent. Moveover, the generated sequence con-
verges to the extreme solution of the equation monotonically. The proposed algorithm saves
computational cost in that at each iteration, only an LU-factorization and several matrix mul-
tiplications are required, which is nearly 1/6 the cost of Newton’s method. The preliminary
numerical results show that the proposed method outperforms the well-know Newton’s method
with exact line searches and Bernoulli’s method. They also show that the global convergence
of the MSD method holds even if the condition B−1C ≥ 0 is not satisfied. At the moment, we
are not aware if it is possible to prove it theoretically. We leave it as a possible topic for further
study.

Acknowledgement. The authors would like to thank Prof. Hyun-Min Kim and Prof.
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