
AMO - Advanced Modeling and Optimization, Volume 12, Number 1, 2010

Parallel alignment of coding DNA

S.H. Alavi-Soltani, H. Ahrabian1, A. Nowzari-Dalini

Center of Excellence in Biomathematics,

School of Mathematics, Statistics, and Computer Science,

University of Tehran, Tehran, Iran.

Email: {alavi,ahrabian,nowzari}@ut.ac.ir.

Abstract

We present a new parallel algorithm that computes an optimal alignment of the

coding DNA sequences based on DNA/protein model proposed by Hein for the

evaluating distance between two coding DNA sequence. The algorithm is proved to

be adaptive and cost optimal with respect to the sequential algorithm. The parallel

algorithm is implemented and experimental results show the efficiency of algorithm.

Keywords: Bioinformatics, Parallel algorithms, Sequence alignments.

1 Introduction

Sequence alignment is an important tool in biology for relating the molecular structure and
function to the underlying sequences. In this problem, biological sequences such as DNA
and protein sequences are considered as strings over a fixed alphabet of characters [Jones
et al., 2004]. Sequence alignment on the biological sequences are known as an alignment.
Dynamic programming has become the method of choice for ”regions” aligned of DNA
and protein sequences. For a number of useful alignment-scoring schemes, this method
is guaranteed to produce an alignment of two given sequences with the highest possible
score. Scoring is altered by considering the distances between two sequences. The scoring
mechanism for two sequences can be designed in three different models: DNA model,
protein model, DNA/protein model. In this paper we deal with DNA/protein model.
Now we give a brief details about these three models.

A straight forward model of evolutionary distance between two coding DNA sequences
is to ignore the encoding protein and compute the distance in some evolutionary model
of DNA. The evolutionary distance between two sequences in a DNA level model can
most often be formulated as a classical alignment problem and be efficiently computed by
Dynamic programming [Jones et al., 2004; Needleman et al., 1970; Waterman, 1989].

It is usually more reliable to describe the evolutionary distance based on a alignment
of the encoded proteins rather on a alignment of the coding DNA itself [Pearson, 1996].

1Corresponding author.
AMO - Advanced Modeling and Optimization. ISSN: 1841-4311.

71



S.H. Alavi-Soltani, H. Ahrabian, A. Nowzari-Dalini

Hence, most often the evolutionary distance between two coding DNA sequences is mod-
eled in terms of amino acid events, such as substitutions of a single amino acid and
insertion-deletion of consecutive amino acids. These events cause transforming the one
encoded protein into the other encoded protein. Such a model is called a protein model.
The evolutionary distance between two coding DNA sequence in a protein level model
can often be formulated as classical alignment problem of two encoded proteins [Pear-
son, 1996]. Even though a protein level model is usually more reliable than a DNA
level model, it falls short because it postulates that all insertions and deletions on the
underlying DNA occur of codon boundaries and it ignores similarities on the DNA level.

Hein [1994] presented a non classical model of the evolutionary distance between two
coding DNA sequences in which a nucleotide event is penalized by the change it induces
on the DNA as well as on the encoded protein. Their model is a natural combination of
a DNA level model and a protein model and is called DNA/protein model. This model
is a biological reasonable instance of the general model in which the evolution of coding
DNA is idealized to involve only substitution of a single nucleotide and insertion-deletion
of a multiple of three nucleotides.

Simple sequence alignment algorithms for two sequences of length n and m using
DNA model or protein model, have been presented in [Jones et al., 2004; Needleman
et al., 1970; Waterman, 1989], with O(nm) time and space complexity. Using Hirchberg’s
technique [Hirchberg, 1975] developed in the context of the longest common sequence
problem, Mayers and Miller [1988] presented a technique to reduce the space requirement
of the sequence alignment to optimal O(m + n) while retaining a time complexity of
O(nm). These algorithms are very important because the lengths of biological sequences
can be large enough to render algorithms that use quadratic space infeasible. Hein [1994]
presented an O(n2m2) time complexity algorithm for computing the evolutionary distance
in the DNA/protein model between two sequences of length n and m. Later Pedersen
et al. [1998] presented an O(nm) time algorithm that solves the same problem under the
assumption of an affine gap cost. While space-optimal algorithms make large sequence
alignment feasible, the quadratic time requirement still make it a time-consuming process.
A natural approach is to reduce the time requirement with the use of parallel computers.
Edmiston et al. [1988] presented parallel algorithms for sequence and subsequence align-
ment that achieved linear speed up and can use up to O(min(m,n)) processors with speed
up 52 on Intel iPSC/1 hypercube which had up to 128 processors. Rajko et al. [2004]
presented parallel algorithm with speed up 21 on 60-node IBM xSeries cluster for aligning
two DNA sequences of length 80K. Chen et al. [2005] presented a parallel algorithm with
speed up 11 on 18-node grid system for aligning two DNA sequences of length 100K.
Driga et al. [2006] also presented a parallel algorithm with speed up 17.3 on 32-node SGI
Origin 2400 for aligning two DNA sequences of length 319, 030 and 305, 636.

In this paper we present an efficient parallel implementation of the sequential alignment
of coding DNA sequences which is proposed by Pedersen et al. [1998]. The parallel
algorithm evaluates the distance between two coding DNA sequences and is based on
DNA/protein model . The algorithm is both adaptive and cost optimal. It is implemented
on a cluster of workstations and the experimental results show the efficiency of algorithm.

72



Parallel alignment of coding DNA

Also we archived a linear speed up with regard to the number of nodes in the cluster.
We show that this approach generates high quality alignments and leads to significant
runtime savings on a PC cluster.

The remaining of the paper is organized as follows. A brief discussion of the Pedersen’s
sequential alignment algorithm [Pedersen et al., 1998] is given in Section 2. The parallel
version of this algorithm is presented in Section 3. In Section 4, the time and space
complexity of the algorithm are discussed. Experimental results are given in Section 5.
In Section 6, conclusion is given.

2 Sequential alignment algorithm

In this section we review the sequential alignment algorithm in DNA/protein model given
by Pedersen et al. [1998]. Let a = a1a2a3 . . . a3n−2a3n−1a3n be a coding DNA sequence of
length 3n with a reading frame starting at a1. Let the notation ai

1a
i
2a

i
3 denote the ith

codon a3i−2a3i−1a3i and the notation Ai describes the amino acid coded by the ith codon.
The amino acid sequence A = A1A2A3 . . . An describes the protein coded by a.

Let a = a1a2a3 . . . a3n and b = b1b2b3 . . . b3m be two coding DNA sequences. It is desired
to compute an optimal alignment of a and b in DNA/protein model. An alignment of two
sequences describes a set of substitution or insertion-deletion (gap) events necessary to
transform one sequence into the other sequence. These events are usually described by a
matrix or a path in a alignment graph as illustrated in Figure 1. The cost of an alignment
(cost()) is the optimal cost of any order of the events described by the alignment. Hence,
the evolutionary distance in the DNA/protein model between two coding DNA sequences
is the cost of an optimal alignment in the model. If the cost of any consecutive number of
events is independent of the order but only depends on the set of events, then an optimal
alignment can be computed efficiently using dynamic programming [Jones et al., 2004;
Hirschberg, 1975; Myers et al., 1988].

The DNA level cost in the DNA/protein model is defined in the classical way by spec-
ifying a substitution cost and a gap cost in the alignment and is easy to determine as
it is independent of the order of the events. The protein level cost of a nucleotide event
which changes the encoded protein from A to A′ should somehow reflect the difference
between protein A and protein A′. Hence, the substitution cost of A by A′ is defined as
the minimum cost of a distance alignment of A and A′ where we allow substitution of
a single amino acid and insertion-deletion of consecutive amino acids. The protein level

Figure 1: An alignment can be described by a matrix or path in the alignment graph.

73



S.H. Alavi-Soltani, H. Ahrabian, A. Nowzari-Dalini

cost in the DNA/protein model however depends on the order of events, so we cannot
use a classical alignment algorithm to compute an optimal alignment in the DNA/protein
model. Here it is assumed that the protein level cost of a nucleotide event only depends
on the affected codons. So we decompose the alignment into codon alignments. A codon
alignment is a minimal part of the alignment that corresponds to a path connecting two
nodes (3i′, 3j′) and (3i, 3j) in the alignment graph. Recall from [Hein, 1994], we have
eleven distinct types of codon alignments, with the assumption that an insertion or dele-
tion has length a multiple of three as illustrated in Figure 2. Let Dt(i, j), 1 ≤ t ≤ 11,
be the cost of an optimal alignment of a1a2a3 . . . a3i and b1b2b3 . . . b3j under assumption
that the last codon alignment is of type t. Also let D(i, j) be the cost of final optimal
alignment of a1a2a3 . . . a3i and b1b2b3 . . . b3j and is defined as follows: If i ≤ 0 or j ≤ 0,
then D(i, j) is assumed to be infinity, otherwise D(i, j), defined as:

D(i, j) = min{Dt(i, j)|t = 1, 2, . . . , 11}.

In the rest of this paper it is assumed that the amino acid substitution cost is hq and
amino acid gap cost of length k is gq(k) and nucleotide substitution cost is hd and cost of
inserting or deleting 3k consecutive nucleotides is gd(3k). The combined gap cost function
g(k) = gd(3k) + gq(k) is briefed as α + βk for some α, β ≥ 0, where starting a gap costs
α and each additional symbol in the gap costs β. The cost h∗

q(σ1σ2σ3, τ1τ2τ3) where

h∗

q : {A,C,G, T}3 × {A,C,G, T}3 → R

is the minimum DNA level cost(nucleotide substitution cost) plus protein level cost of
three substitutions σ1 → τ1, σ2 → τ2 and σ3 → τ3. These assumptions make it possible
to compute Dt(i, j) in constant time if D(k, ℓ) has been computed for all (k, ℓ) < (i, j)
(we say that (i′, j′) < (i, j) iff i′ ≤ i ∧ j′ ≤ j ∧ (i′ 6= i ∨ j′ 6= j)). This implies that we can
compute D(n,m) in O(nm).

Figure 2: The eleven types of codon alignments.

74



Parallel alignment of coding DNA

For example the cost of D6(i, j) is computed by minimizing the cost of the last codon
alignment plus the cost of the remaining alignment over all possible last codon alignment
of type 6. This is done by minimizing the sum cost(subs) + cost(del) +D(i− k− 1, j − 1)
over all possible combinations of deletions of length k and remaining codons x1x2x3. A
combination of deletion length k and remaining codon x1x2x3 is possible if x1 ∈ {ai′

1 , b
j
1},

x2 ∈ {ai′

2 , b
j
2} and x3 ∈ {ai

3, b
j
3} where i′ = i − k. So we compute D6(i, j) as:

len6
x1x2

(i, j, k) = D(i − k − 1, j − 1)+

h∗

q(a3(i−k)−2a3(i−k)−1a3(i−k), x1x2a3(i−k)) + α + βk,

L6
x1x2

(i, j) = min{len6
x1x2

(i, j, 1), L6
x1x2

(i − 1, j) + β},

F 6
x1x2x3

(i, j) = min{L6
x1x2

(i − 1, j) + β + αq+

hq(a3(i−1)−2a3(i−1)−1a3(i−1), x1x2x3), len
6
x1x2

(i, j, 1)+

hq(x1x2a3(i−1), x1x2x3), F
6
x1x2x3

(i − 1, j) + β},

D6
x1x2x3

(i, j) = min{L6
x1x2

(i, j) + hq(a3i−2a3i−1x3, x1x2x3), F
6
x1x2x3

(i, j)},

D6(i, j) = min
x1x2x3

{h∗

q(a3i−2a3i−1a3i, a3i−2a3i−1x3)+

h∗

q(x1x2x3, b3i−2b3i−1b3i) + D6
x1x2x3

(i, j)}.

Where tables len6
x1x2

(i, j, k) are corresponding to 16 combinations of x1x2 such that
len6

x1x2
(i, j, k) are the cost of remaining alignment plus the part of the cost of the last

codon alignment that does not depend on the codon ai
1a

i
2a

i
3 and the witness. The witness

encodes the amino acid aligned with the remaining amino acid. Tables L6
x1x2

(i, j) are
equal to min{len6

x1x2
(i, j, k) | 0 < k < i}. D6

x1x2x3
(i, j) is the minimum cost of the terms

that depends on both the deletion length and the remaining codon under the assumption
that the remaining codon is x1x2x3. Tables F 6

x1x2x3
(i, j) are corresponding to 64 combi-

nations of x1x2x3 that if x1x2x3 is possible remaining codon and the end-codon ai
1a

i
2x3 is

not the witness of D6
x1x2x3

(i, j), then F 6
x1x2x3

(i, j) is equal to D6
x1x2x3

(i, j).
This algorithm is implemented and named Combat in [Pedersen et al., 1998]. The

algorithm uses 400 table entries per step, each table of size O(mn) (for more details see
[Pedersen et al., 1998]). The tables can be filled together row by row, column by column,
or diagonal by diagonal (where a diagonal represents all entries (i, j) of the table such
that i + j is a constant). Either way, when computing an entry of the table, the entries
required in computing are already known. The tables are typically filled using a row by
row scan, required O(mn) time. So algorithm has O(mn) time and space complexity.

3 The parallel alignment of coding DNA

The sequential Combat has quadratic time complexity and real time increases dramati-
cally with the increase in size of the sequences. In order to alleviate this problem, we
have developed a parallel version of the Combat algorithm in a cluster of workstations,
subsequently referred to as Parallel Combat algorithm. Our algorithm employs the previ-
ous techniques given in the parallelization of dynamic programming algorithms [Driga et
al., 2006; Rajko et al., 2004; Chen et al., 2005].

75



S.H. Alavi-Soltani, H. Ahrabian, A. Nowzari-Dalini

Parallel Combat algorithm consists of two subtasks:

1. The first task is parallelization of the computation of tables entries in order to
calculate best distance.

2. Second task is the calculation of the actual alignment.

For the first task, we define a phase as the computational step during which nodes of
the cluster calculate the sub-matrices in parallel at the same time. Also we define a block

as a sub-matrices which is calculated by a node of the cluster during one phase. Let p be
the number of processors with id’s ranging from 1 to p, and for simplicity, we assume m

and n are multiples of p. The processor i is responsible for computing the rows (i−1)n
p
+1

through in
p

of the tables. Distribution of the sequence a is trivial because ai is needed only
in computing row i. Therefore, the subsequence a(i−1)n

p
+1 . . . ai n

p

is assigned to processor

i. Each bj is employed by all the processors at the same time when the column j is being
computed. So the tables are logically partitioned in p× c equally sized blocks, with c ≥ 1.
For example, in Figure 3, the steps of the computation are illustrated for p = 8 and
c = 15.

The parallelization of the calculation of tables entries is based on the wavefront com-
munication pattern [Driga et al., 2006]. Most of the parallel algorithms for sequence
alignment are designed so far to fill the dynamic programming table diagonal by diagonal
that is called wavefront. This is because all the entries required for computing a diagonal
depends on only the previous two diagonals, facilitating concurrent computation. Such
an algorithm results in optimal time complexity O(mn

p
).

In Figure 3, each diagonal of blocks labeled with the same number forms a wavefront
line. At any moment during the parallel processing of the tables, a processor is either idle
or is working on only one block. Furthermore, only one processor can work on a block.
Once the processing of a block ends, no processor will work on that block again.

Figure 4 displays the dependency relationship: each block (i, j) of the matrices is com-
puted from the blocks (i − 1, j), (i, j − 1), (i − 1, j − 1). The wavefront moves in anti-
diagonals as depicted in Figure 4a, i.e. the wavefront is from north-west to south-east.

Figure 3: Computational steps.

76



Parallel alignment of coding DNA

Figure 4: Wavefront computation of the similarity matrix: (a) shift direction,(b) depen-
dency relationship.

From step p to step c, all the p processors can work in parallel because the wavefront line
consists of exactly p blocks. The parallel computation ends when all the p× c blocks have
been computed. When the parallel phase ends, all the tables entries are computed and
are available in memory of processors.

For second task, calculation of the actual alignment as in the sequential version of the
Combat algorithm, trace back procedure follows an optimal path which extends from the
bottom-right corner of the tables to its left or upper boundary. This can be accommodated
without significantly affecting the parallel runtime provided.

The algorithm shown in Figure 5, illustrates all the above discussion. This algorithm is
executed independently by each processor. In this parallel algorithm, p is the number of
available processors and rank is the processor’s id ranging from 0 to p−1. a and b are two
given sequence objects of length n and m respectively. The block size is demonstrated by
blocksize, and the end of current block is dented by endBlock. The sequence a is divided
among each processes, such that the length of the subsequence in each process is equal to
n
p

and is stored in lenSubSeq.
In the ParallelCombat shown in Figure 5, Alignment is a class composed of the matrices

employed in our algorithm. The align is an object of Alignment class in which the result
of alignment is stored. The variable i shows the current step in the parallel wavefront.
The function init align initializes the matrices in the object align. We have two types of
communications in MPI, blocking and non blocking [Snir, 1995]. The functions sendtoN

and receive are used for blocking communications and Ireceive a non blocking reception.
MPI Wait stops processes until the non blocking receive, receives needed information
and isRecv stores status of current non blocking receive that demonstrated by the level.
The function Compute Sequential D uses sequential Combat for computing sub matrix
(block) D and ComputeTraceBack is the function that computes trace back on all nodes
for obtaining the final result.

4 Time and space complexity

As shown in Figure 3, the computation of the blocks advances following a diagonal wave-
front pattern. In Figure 3 each diagonal of blocks labeled with the same number forms

77



S.H. Alavi-Soltani, H. Ahrabian, A. Nowzari-Dalini

Figure 5: ParallelCombat algorithm.

a wavefront line. A wavefront line is important because the blocks that form it are inde-
pendent and can be computed in parallel.

Theorem 1 The ParallelCombat algorithm is cost optimal and adaptive.

Proof. The computation time of the blocks can be divided into three distinct phases.
Figure 6 shows these three phases corresponding to a computing subproblem which is
solved on p = 8 processors. If Tb is sum of the calculation time per block plus the cost of
communicating one processor to next processor then we have:

Tb = O(
m × n

p × c
) + (s + (e × ℓ)),

where the communication time per block is (s + (e × ℓ)), and s is the time required to
initiate the communication, and the transfer time per (typically four-byte) word is e,

78



Parallel alignment of coding DNA

Figure 6: The three phases of a parallel computing subproblem.

which is determined by the physical bandwidth of the communication channel linking the
source and destination processors and ℓ is the length of the largest message. This message
is equal to the information required for computing the next block in the next processor
that is computed by current processor and it sends it to the next processor. In the first
phase the number of blocks in each wavefront line increases from 1 to p− 1. In this phase
a total of p(p−1)

2
blocks are computed. In the worst-case scenario each wavefront line is

solved in a parallel stage that lasts a time of Tb; thus, the time spent on the first phase is
at most (p − 1)Tb . The third phase consists of the wavefront lines that are formed from
less than p blocks and that are not computed in the first phase. An example of wavefront
lines forming a third phase is depicted in Figure 6. The third phase has at most the same
number of wavefront lines as the first phase, i.e., p − 1. Because each wavefront line can
be solved in a parallel stage of time Tb , the third phase cannot last longer than (p−1)Tb.
The second phase is the true parallel phase. Enough blocks are available so that all the
processors can work in parallel. An upper bound for the number of blocks computed in
this phase is the total number of blocks, minus the lower bound for the number of blocks
computed in the first phase and the lower bound for the number of blocks computed in
the third phase, i.e.,

(p × c) −
p(p − 1)

2
−

p(p − 1)

2
= p × c − p2 + p.

Because these blocks are computed in parallel, the time spent in the second phase is

(p × c − p2 + p)

p
× Tb.

So the upper bound of parallel computing tables is:

Tp = (p − 1)Tb + (c − p + 1)Tb + (p − 1)Tb

= (c + p − 1)Tb = (c + p − 1)(m×n
p×c

+ (s + (e × ℓ))),

= m×n
p

(1 + p−1
c

) + (s + (e × ℓ))(c + p − 1).

79



S.H. Alavi-Soltani, H. Ahrabian, A. Nowzari-Dalini

If c was big enough, then evaluation of the tables requires O(m×n
p

) time. Trace back

runs in O(m + n) , therefore the total time is O(m×n
p

). Therefore the cost is equal to

O(m × n), which comparing to the complexity of the sequential algorithm, this cost is
optimal. Obviously the space required on each processor is O(m×n

p
). Since the number of

processors is independent of n and m, therefore the algorithm is adaptive. �

5 Experimental results for ParallelCombat

For investigating the efficiency of our parallel algorithm the speed up of the algorithm is
evaluated, which is defined as follows:

Sp =
ts

tp
,

where ts is the execution time of the sequential algorithm and tp is the execution time
of the parallel algorithm with p processors. Obviously, algorithms with Sp close to p are
more efficient algorithms.

Our algorithm ParallelCombat is implemented on the cluster of University of Tehran,
department of computer science (eight nodes: four Dual-Core AMD Opteron(tm) Proces-
sor 2 GHz). The ParallelCombat is coded in C using LAM/MPI.

For testing the algorithm, we implement our algorithm on two different data sets. These
data sets are extracted from NCBI [Pruitt et al., 2000]. The first data set is composed
of two sequences: NM 009791 that is 9363 bp long and XM 422197 that is 9078 bp long.
The results on these sequences are reported in Tables 1 and Figure 7. These results show
the speed up of ParallelCombat for c = 3 and 0 ≤ p ≤ 8. As we can see the speed up
increases in a linear manner, and its value is close to the number of the processors.

The second data set is built from CDS of DNA sequences obtained from NCBI and
named by their ACCESSION which is refereed in [Pruitt et al., 2000]. Table 2 shows the
speed up of ParallelCombat for c = 3 and p = 1, p = 4 and p = 8 where S4 and S8 denotes
speed up obtained by 4 and 8 processors respectively. As we see in Table 2 and Figure 8
when the data size is larger, the increase in speed up appears to be better.

Table 1: Execution time and speed up of ParallelCombat.
#Processor Execution time Speed up

1 2644.118 1
2 1335.176 1.98
3 892.80 2.96
4 668.83 3.95
5 548.02 4.82
6 459.19 5.76
7 395.60 6.68
8 348.02 7.60

80



Parallel alignment of coding DNA

Figure 7: ParallelCombat Execution time.

Figure 8: Comparison of the overall execution time.

Table 2: Comparison of the overall execution time.
Id. Sequences length (bp) p=1 p=4 S4 p=8 S8

sqs1 AY370879, XM 87157 735, 648 14.7 4.1 3.6 3.1 4.7
sqs2 XM 547400, XM 001161722 1701, 1557 82.1 21.7 3.8 13.3 6.2
sqs3 XM 421412, XM 538386 2424, 2112 147.8 38.2 3.9 22.4 6.2
sqs4 XM 516767, HUMPP2A130 3474, 3453 369.7 95.5 3.9 52.9 7
sqs5 XM 001139169, NM 000014 4431, 4425 609.1 156.3 3.9 84.4 7.2
sqs6 XM 687036, AB028985 5901, 5316 975.9 248.2 3.9 132.5 7.4
sqs7 XM 537788, XM 534893 7188, 6111 1389.0 348.7 4 184.5 7.5

81



S.H. Alavi-Soltani, H. Ahrabian, A. Nowzari-Dalini

6 Conclusion

The exponential growth of genomic databases demands even more parallel and distributed
solutions for different biological problems in the future. In this paper we have presented
a parallel algorithm for an existing sequential algorithm for aligned of the coding DNA
sequences. The result of this algorithm on two different biological data sets extracted from
NCBI, shows the efficiency of our algorithm. The measure for efficiency of our algorithm
is justified by evaluating the speed up of our parallel algorithm. It is shows that the value
of the speed up for this algorithm is nearly close to the number of processors. As an
alternative to special-purpose systems, and expensive supercomputers, we advocate the
use of cluster architecture.

Acknowledgements

This research was partially supported by University of Tehran.

REFERENCES

Chen, C., and Schmidt, B. (2005) An adaptive grid implementation of DNA sequence
alignment. Future Generation Computer Systems, Vol. 21, pp.988–1003.

Driga, A., Lu, P., Schaeffer, J., Szafron, D., Charter, K., and Parsons, I.

(2006) FastLSA: A fast, linear-space, parallel and sequential algorithm for sequence
alignment. Algorithmica, Vol. 45, pp.337-375.

Edmiston, E.W., Core, N.G., Saltz, J.H., and Smith, R.M. (1988) Parallel
processing of biological sequence comparison algorithms. International Journal of

Parallel Programming, Vol. 17, pp.259–275.

Hein, J. (1994) An algorithm combining DNA and protein alignment. Journal of Theo-

retical Biology, Vol. 167, pp.169–174.

Hirschberg, D.S. (1975) A linear space algorithm for computing longest common sub-
sequences. Communication of the ACM, Vol. 18, pp.341–343.

Jones, N.C., and Pevzner, P.A. (2004) An Introduction to Bioinformatics Algorithms.
MIT Press, Cambridge.

Myers, E., and Miller, W. (1988) Optimal alignments in linear space. Computer

Applications in the Biosciences, Vol. 4, pp.11–17.

Needleman, S.B., and Wunsch, C.D. (1970) A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of Molec-

ular Biology, Vol. 48, pp.443–453.

82



Parallel alignment of coding DNA

Pearson, W.R. (1996) Effective protein sequence comparison. Methods in Enzymology,

Vol. 266, pp.227–258.

Pedersen, C., Lyngso, R., and Hein, J. (1998) Comparision of coding DNA. Lecture

Notes in Computer Science, Vol. 1448, pp.153–173.

Pruitt, K.D., Katz, K.S., Sicotte, H., and Maglott, D.R. (2000) Introducing
RefSeq and LocusLink: curated human genome resources at the NCBI. Trends in

genetics, Vol. 16, pp.44–47.

Rajko, S., and Aluru, S. (2004) Space and time optimal parallel sequence alignments.
IEEE Transactions on Parallel and Distributed Systems, Vol. 15, pp.1070–1081.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J. (1995)
MPI: The Complete Reference. MIT Press, Cambridge.

Waterman, M.S. (1989) Mahematical methods for DNA sequences. CRC Press, Boca
Raton.

83


