Fast Local-Search-based Parallel Algorithms for DNA Probe Placement on Small Oligonucleotide Arrays *

Dragoş Trincă and Sanguthevar Rajasekaran
Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269, USA
\{dtrinca,rajasek\}@engr.uconn.edu

February 10, 2010

Abstract

Oligonucleotide arrays are used in a wide range of genomic analyses, such as gene expression profiling, comparative genomic hybridization, chromatin immunoprecipitation, SNP detection, etc. During fabrication, the sites of an oligonucleotide array are selectively exposed to light in order to activate oligonucleotides for further synthesis. Optical effects can cause unwanted illumination at masked sites that are adjacent to the sites intentionally exposed to light. This results in synthesis of unforeseen sequences in masked sites and compromises interpretation of experimental data. To reduce such uncertainty, one can exploit freedom in how probes are assigned to array sites. The border length minimization problem (BLMP) seeks a placement of probes that minimizes the sum of border lengths in all masks. In this paper, we propose two parallel algorithms for the BLMP. The proposed parallel algorithms have the local-search paradigm at their core, and are especially developed for the BLMP. The results reported show that, for small microarrays with at most 1156 probes, the proposed parallel algorithms perform better than the best previous algorithms.

1 Introduction

Oligonucleotide arrays, such as those produced by Affymetrix [1], are used in a wide range of genomic analyses. As discussed in $[2,3]$, during very large-scale immobilized polymer synthesis (VLSIPS) the sites of a DNA probe array are selectively exposed to light in order to activate oligonucleotides for further synthesis. The selective exposure is achieved by a sequence of masks, with each mask consisting of nontransparent and transparent regions corresponding to the masked and exposed array sites. Optical effects (diffraction, reflections, etc.) can cause unwanted illumination at masked sites that are adjacent to the sites intentionally exposed to light - i.e., at the border sites of transparent regions in the mask. This results in synthesis of unforeseen sequences in masked sites and compromises interpretation of experimental data. To reduce such uncertainty, one can exploit freedom in how probes are assigned to array sites. The border length minimization problem (BLMP) seeks a placement of probes that minimizes the sum of border lengths in all masks. In this paper, we consider the synchronous version of the BLMP, which can be formulated as follows.

BLMP: Given a set $S P$ consisting of dim^{2} DNA sequences (called probes) of the same length, place the probes in $S P$ on a $\operatorname{dim} \times \operatorname{dim}$ microarray in such a way that the sum of the Hamming distances between every two neighbors on the microarray is minimized. (Two probes on the microarray are said to be neighbors if: (1) they are adjacent and (2) they are on the same row or column of the microarray. Thus, for a $\operatorname{dim} \times \operatorname{dim}$ microarray, there are $\operatorname{dim} *(\operatorname{dim}-1) * 2$ distinct pairs of neighbors.)

[^0]The BLMP is important not only for arrays fabricated by Affymetrix, but also for any other in-situ synthesis scheme, such as the highly-efficient micromirror arrays [4, 5, 6], or the membrane-based microarrays [12].

Previous work on the BLMP consists of the following heuristics: the TSP+1-Threading algorithm proposed in [7], the epitaxial algorithm proposed in [3], the row-epitaxial algorithm proposed in [8], and the recursive partitioning algorithm proposed in [9]. We detail these heuristics as follows.

1. The TSP+1-Threading heuristic proposed in [7] consists of two steps: (1) arrange the probes in a TSP tour by applying an approximation algorithm for the TSP, and then (2) place the sequence obtained in the first step on the microarray using the 1-Threading model, as described in [7].
2. The epitaxial heuristic proposed in [3] works as follows. Initially, a random probe in $S P$ is placed on a random location on the microarray, and then removed from $S P$. Then, as long as there is at least one probe in $S P$, do the following: randomly select an empty location on the microarray out of those with a maximum number of neighbors, and on that location place one of the probes in $S P$ that minimizes the sum of the Hamming distances between that probe and the current neighbors of the location (such a probe is randomly chosen if there are multiple probes that give the same minimum). Once the probe is placed, it is removed from $S P$.
3. The row-epitaxial heuristic proposed in [8] is similar to the epitaxial heuristic. The main difference consists of the fact that instead of placing the probes one by one, it re-shuffles an already existing pre-optimized placement.
4. The recursive partitioning heuristic proposed in [9] partitions the set of probes into subsets of the same size, and then places the probes in each subset on the corresponding submicroarray.

In this paper, we propose two parallel algorithms for the BLMP that are shown to give better results than the previous algorithms for small microarrays with up to 1156 probes. Such algorithms are especially useful for companies like:

1. SABiosciences [12], which fabricates custom microarrays with just 440 probes;
2. Febit [6], which fabricates small microarrays with just a few thousand probes.

2 Results and Discussion

In this section, we propose several algorithms for the BLMP. The algorithms that we propose are based on the local-search paradigm [10], but are more involved, and especially designed for the BLMP.

2.1 A Local-Search-based Sequential Algorithm

In this section, we propose a local-search-based sequential algorithm for the BLMP, called LS. It is given in Fig. 1. It works as follows. It takes as input the set of probes, a time limit T, and a probability parameter $p r$. Initially, the probes are randomly placed on the microarray. As long as the time limit was not exceeded yet, the algorithm randomly selects two locations, say $\left(l_{1}, c_{1}\right)$ and $\left(l_{2}, c_{2}\right)$. If swapping the probes currently on these two locations leads to a decreasing in the cost, then they are swapped and the cost is updated. Otherwise, they are swapped only with a certain probability. When the time limit is exceeded, the best microarray configuration found during the algorithm is returned.

2.2 A Local-Search-based Parallel Algorithm

The local-search-based idea can be easily parallelized, as shown in Fig. 2. The parallel variant is called LS-Par. In the first step, processor P_{1} places the probes randomly on its microarray, and then sends its microarray configuration to all the other processors. So, when reaching line 3, each processor has the same configuration. At the end of each iteration through the WHILE loop that starts at line 11, the processors synchronize with each other. Let $P_{\text {source }}$ be randomly selected out of those processors with a minimum COST. All the other processors update their variables with the corresponding variables from $P_{\text {source }}$. So, in conclusion, all the processors enter and exit every iteration through the WHILE loop with the same microarray configuration. The final result is returned by one of the processors, say P_{1}.

2.3 ALG1

Let $P_{1}, P_{2}, \ldots, P_{k}$ be the available processors. In this section, we propose a parallel algorithm for the BLMP, called ALG1, which is given in Fig. 4. The code shown in Fig. 4 is executed by each of the k processors separately. At each step, the processors synchronize with each other and (possibly) exchange some data. ALG1 incorporates the local-search idea we have seen in LS and LS-Par, but is more complicated, and especially developed for the BLMP.

The details are as follows. Each of the processors takes as input the same parameters, namely: a set of probes $S P$, a time limit T, and positive integers probelength, MaxTrials1, MaxTrials2, MaxCost1, MaxCost2, winlength 1 , and winlength2. The goal is to find a placement of the probes in $S P$ on the microarray as close as possible to the optimal.

The algorithm proceeds as follows. First, processor P_{1} places the probes in $S P$ on the microarray, and then sends its microarray configuration to all the other processors. So, initially, all the processors have the same placement on the microarray. Then, each of the processors copies its microarray to bestmicroarray, where bestmicroarray is the microarray that keeps the best configuration found during the algorithm. So, initially, each processor has the same bestmicroarray. In lines 6-9, each of the processors computes the COST of the initial microarray configuration, so each of the processors has the same COST. Also, bestCOST is the cost corresponding to the bestmicroarray configuration. In average, each of the processors keeps the current average Hamming distance between any two neighbors on the current microarray configuration. (Note that $\operatorname{dim} *(\operatorname{dim}-1) * 2$ is the total number of pairs of neighbors on a microarray with dim^{2} locations.)

The basic step of ALG1 starts at line 15 and ends at line 66. It is repeated until the time taken by the algorithm exceeds T. Each of the processors repeats this basic step the same number of times. If one of the processors exits the WHILE loop that starts at line 14, then it will notify the other processors, so that the other processors will not wait for the synchronizations that start at lines 36 and 47 .

During each basic step, each of the processors tries to find a pair of locations on the current microarray, say $\left(l_{1}, c_{1}\right)$ and $\left(l_{2}, c_{2}\right)$, with the property that swapping the probes that are currently on those locations, namely microarray $\left[l_{1}, c_{1}\right]$ and microarray $\left[l_{2}, c_{2}\right]$, will lead to a decreasing in the cost (or to a cost equal to the current cost). The pair of locations that are examined during each basic step are randomly generated, and depend on the current processor, since each processor has its own random number generator. The IF statement that starts at line 32 tries to see if swapping the probes on the chosen locations leads to an increasing in the cost (or to a cost equal to the current cost). If yes, then the probes are swapped, the $O K$ variable is set to 1 (meaning that the current basic step is finished), and the COST variable is updated accordingly. After the IF statement that starts at line 32 , the processors synchronize with each other. If at least one of them, say $P_{\text {source }}$, has $O K=1$, then that means that at least one of them has succeeded in finding a pair of locations that leads to a decreasing in the COST (or to a cost equal to the current COST). If so, then all the processors (including those that have $O K=1$) update their microarray configuration with the microarray from $P_{\text {source }}$. In such a case, all the processors will have $O K=1$ after the synchronization that starts at line 36 , and thus, all of them will exit the WHILE loop that starts at line 17.

If none of the processors has $O K=1$, then all the processors will have $O K=0$ after the synchronization that starts at line 36 , and thus, all of them will enter the IF statement that starts at line 40 , and then synchronize with each other at line 47. If, when reaching line 47 , at least one of them, say $P_{\text {source }}$, has $O K=1$, then that means that all the other processors will update their microarray and COST with the corresponding variables from $P_{\text {source }}$, and then set their $O K$ variable to 1 . (At line 42 , average is multiplied by 8 since the two chosen locations have at most 8 neighbors in total.)

So, in conclusion, all the processors exit the WHILE loop that starts at line 17 with the same nrt, meaning that each of the processors has tried the same number of pairs of locations before setting its $O K$ variable to 1 (or reaching the MaxTrials2 limit at line 51). Having this said, it is clear that MaxTrials2 is meant to help the processors exit the WHILE loop that starts at line 17, and not let them run indefinitely in case that $O K=0$ at all the processors after each processor has tried at least MaxTrials2 pairs of locations. Also, note that all the processors enter and exit the WHILE loop that starts at line 17 with the same microarray configuration. This also implies that all of them will eventually exit the WHILE loop that starts at line 14 with the same microarray configuration and the same bestmicroarray.

In lines 53-66, each processor updates its corresponding parameters. The average variable is updated according to the new COST. In case that COST < bestCOST, then bestCOST and bestmicroarray are updated accordingly at each processor. If myub $=0$ and the WHILE loop that starts at line 17 was executed at least winlength 1 times since the last update of myub, then myub is set to MaxCost1. Otherwise, if myub $=$ MaxCost1
and the WHILE loop that starts at line 17 was executed at least winlength2 times since the last update of $m y u b$, then myub is set to 0 . So, in other words, when $m y u b=M a x C o s t 1$, the processors are allowed to shuffle more probes on the microarray (at line 42). This helps the algorithm to converge much faster to an approximate solution. The parameter MaxCost2 at line 43 allows the processors to swap the probes as long as the overall cost of the resulting microarray configuration is under a certain threshold.

Example 1 To see how ALG1 works, we give an example with three processors P_{1}, P_{2}, P_{3}, for a microarray of size 4×4. The input parameters are as follows:

- SP has 16 probes, each of length probelength $=5$;
- T is 10 seconds;
- $\operatorname{dim}=4$, meaning that the microarray is of size 4×4;
- MaxTrials1 $=2$;
- MaxTrials2 $=1000$;
- $\operatorname{MaxCost1}=10$;
- MaxCost2 $=10$;
- winlength $1=70$;
- winlength2 $=20$.

The probes in SP are as given in Table 1. The algorithm works as follows.
INIT: Processor P_{1} randomly places the probes on its microarray. Without loss of generality, suppose that P_{1} places the probes as shown in Fig. 3. Processor P_{1} sends its microarray configuration to P_{2} and P_{3}. So, initially, all the processors have the same microarray configuration. In such a case, it can be seen that the initial cost is 85 (so, bestCOST is 85 as well). This implies that initially, average $=3.54$.

Step 1: At the beginning of this step, $O K=0$ and $n r t=0$. Also, sa $=0$, myub $=0$, and average $=3.54$. COST and bestCOST are both 85 .

Substep 1: Suppose that processor P_{1} randomly selects locations $(1,1)$ and $(4,3)$. For these locations, localcost $=16$, whereas newlocalcost $=17$. Processor P_{2} randomly selects locations $(3,3)$ and $(1,1)$. For these locations, localcost $=22$ and newlocalcost $=20$. Processor P_{3} randomly selects locations $(4,2)$ and $(1,4)$. For these locations, localcost $=14$ and newlocalcost $=15$. So, only processor P_{2} enters the IF statement that starts at line 32. So, P_{2} will reach the synchronization that starts at line 36 with $O K=1$ and $C O S T=83$, and thus it will be the source processor. So, all the other processors exit the WHILE loop that starts at line 17.
Update: At the beginning of this phase, all the processors have $C O S T=83$. The average variable becomes 3.45 , bestCOST and bestmicroarray are updated accordingly, sa becomes 1 , and myub remains 0 .

Step 2: At the beginning of this step, $O K=0$ and nrt $=0$. Also, sa $=1$, myub $=0$, and average $=3.45$. COST and bestCOST are both 83.

Substep 1: Suppose that P_{1} selects $(1,2)$ and $(4,1), P_{2}$ selects $(1,2)$ and $(4,2)$, and P_{3} selects $(3,1)$ and $(4,3)$. For P_{1}, localcost $=18$ and newlocalcost $=18$. For P_{2}, localcost $=22$ and newlocalcost $=18$. For P_{3}, localcost $=19$, whereas newlocalcost $=24$. So, only P_{1} and P_{2} enter the IF statement that starts at line 32. Suppose that P_{1} is randomly chosen to be the source processor. So, all the processors exit the WHILE loop that starts at line 17 (with COST = 83).
Update: At this point, all the processors have $\operatorname{COST}=83$. All the other variables remain unchanged, except for sa, which becomes 2 .

Step 3: At the beginning of this step, $O K=0$ and $n r t=0$. Also, sa $=2$, myub $=0$, and average $=3.45$. COST and bestCOST are both 83.

Substep 1: Suppose that P_{1} selects $(1,4)$ and $(3,3), P_{2}$ selects $(4,2)$ and $(1,2)$, and P_{3} selects $(1,2)$ and $(2,4)$. For P_{1}, localcost $=19$ and newlocalcost $=24$. For P_{2}, localcost $=20$ and newlocalcost $=20$. For P_{3}, localcost $=20$, whereas newlocalcost $=23$. So, only P_{2} enters the IF statement that starts at line 32, and thus P_{2} is the source processor. So, all the processors exit the WHILE loop that starts at line 17 (with COST $=83$).
Update: At this point, all the processors have $\operatorname{COST}=83$. All the other variables remain unchanged, except for sa, which becomes 3 .

Step 4: At the beginning of this step, $O K=0$ and $n r t=0$. Also, sa $=3$, myub $=0$, and average $=3.45$. COST and bestCOST are both 83.

Substep 1: Suppose that P_{1} selects $(1,1)$ and $(2,2), P_{2}$ selects $(2,3)$ and $(4,4)$, and P_{3} selects $(1,4)$ and $(4,4)$. For P_{1}, localcost $=20$ and newlocalcost $=22$. For P_{2}, localcost $=21$ and newlocalcost $=24$. For P_{3}, localcost $=12$, whereas newlocalcost $=14$. So, none of the processors enters the IF statement that starts at line 32. Since nrt $<$ MaxTrials1 at all the processors, none of the processors swaps the probes at its selected locations. So, all the processors remain with $O K=0$ at the end of this substep.
Substep 2: Suppose that P_{1} selects $(1,4)$ and $(2,4), P_{2}$ selects $(1,4)$ and $(2,2)$, and P_{3} selects $(4,1)$ and $(2,1)$. For P_{1}, localcost $=16$ and newlocalcost $=17$. For P_{2}, localcost $=18$ and newlocalcost $=22$. For P_{3}, localcost $=18$, whereas newlocalcost $=19$. So, none of the processors enters the IF statement that starts at line 32. Since nrt = MaxTrials1 and the other conditions (at lines 42-43) are satisfied at all the processors, each of the processors swaps the probes at its selected locations. Suppose that P_{1} is chosen to be the source processor at the synchronization that starts at line 47. Thus, at the end of this substep, all the processors have $C O S T=84$, and, since $O K=1$ at all the processors, all of them exit the WHILE loop that starts at line 17.
Update: At this point, each processors has COST $=84$. The average variable becomes 3.50, bestCOST and bestmicroarray remain unchanged (since COST just increased), sa becomes 4 , and myub remains 0 .

Step 5: Suppose that at this point, the time limit T is exceeded at all the processors. Thus, all of them exit the WHILE loop that starts at line 14. Only processor P_{1} returns the best cost (and the corresponding bestmicroarray configuration) found during the algorithm, which is 83 .

2.4 ALG2

In this section we propose a variant of ALG1, called ALG2, which is given in Fig. 5. The only difference from ALG1 is that we have a new input parameter, namely MaxCost, which replaces the average variable used in ALG1. This will allow ALG2 to give better results than ALG1 for some microarray dimensions.

2.5 Results (on Randomly Generated Sets of Probes)

We have implemented the previous heuristics (TSP+1-Threading, epitaxial, row-epitaxial, recursive partitioning) and the algorithms discussed in this paper (LS, LS-Par, ALG1, and ALG2) on a SGI Altix machine with 64 processors, using MPI [11]. Since the previous four heuristics (TSP+1-Threading, epitaxial, row-epitaxial, recursive partitioning) and the LS algorithm are sequential algorithms, we have run them using only one processor out of 64 available. For LS-Par, ALG1, and ALG2, we have used all 64 processors available in order to help them to converge faster to an approximate solution. For small microarrays, each of the four previous heuristics (TSP+1-Threading, epitaxial, row-epitaxial, recursive partitioning) takes just a few seconds. We can definitely use up to 64 processors in order to reduce the time taken by each of them even further, but this does not help in reducing the cost. Indeed, the four previous heuristics (TSP+1-Threading, epitaxial, row-epitaxial, recursive partitioning), unlike LS, LS-Par, ALG1, and ALG2, are algorithms with a finite number of steps. For small microarrays of size at most 34×34, the epitaxial algorithm gives better results than TSP+1-Threading, row-epitaxial, and recursive partitioning. Thus, we compare the epitaxial algorithm against LS, LS-Par, ALG1, and ALG2.

We have run LS with different probabilities, and collected results after 2, 4, 6, 8, and 10 minutes. For LS-Par, we have used all 64 processors available, and collected results after 2, 4, 6, 8, and 10 minutes. For
all microarray dimensions considered, LS and LS-Par perform worse than the epitaxial algorithm. We have also implemented ALG1 and ALG2 using all 64 processors available, and collected results after 2, 4, 6, 8, and 10 minutes. The parameters used in order to get to the results shown in Tables 3 and 4 are as follows: probelength $=25$, MaxTrials $1=20$, MaxTrials2 $=40000$, MaxCost $=160$, MaxCost1 $=10$, MaxCost2 $=10$, winlength $1=1120$, winlength2 $=320$. For microarrays of size at most 32×32, ALG1 gives better results than the epitaxial algorithm. For microarrays of size 33×33 or more, ALG1 gives worse results than the epitaxial algorithm. For microarrays of size at most 34×34, ALG2 gives better results than the epitaxial algorithm. For microarrays of size 35×35 or more, ALG2 gives worse results than the epitaxial algorithm. We can also remark that ALG2 performs better than ALG1. This suggests that the MaxCost input parameter in ALG2 is more helpful than the average variable in ALG1.

References

[1] Affymetrix, Inc.: http://www.affymetrix.com.
[2] Fodor S, Read JL, Pirrung MC, Stryer L, Tsai LA, Solas D: Light-Directed, Spatially Addressable Parallel Chemical Synthesis. Science 1991, 251:767-773.
[3] Kahng AB, Mandoiu II, Pevzner P, Reda S, Zelikovsky A: Border Length Minimization in DNA Array Design. In Proceedings of the 2nd Workshop on Algorithms in Bioinformatics, Springer LNCS 2002:435-448.
[4] Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F: Maskless Fabrication of Light-Directed Oligonucleotide Microarrays using a Digital Micromirror Array. Nature Biotechnology 1999, 17:974-978.
[5] Invitrogen, Inc.: http://www.invitrogen.com.
[6] Febit, Inc.: http://www.febit.com.
[7] Hannenhalli S, Hubbell E, Lipshutz R, Pevzner PA: Combinatorial Algorithms for Design of DNA Arrays. In Chip Technology. Edited by Hoheisel J, Springer 2002.
[8] Kahng AB, Mandoiu II, Pevzner P, Reda S, Zelikovsky A: Engineering a Scalable Placement Heuristic for DNA Probe Arrays. In Proceedings of the 7th Annual International Conference on Research in Computational Molecular Biology, ACM 2003:148-156.
[9] Kahng AB, Mandoiu II, Reda S, Xu X, Zelikovsky A: Evaluation of Placement Techniques for DNA Probe Array Layout. In Proceedings of the IEEE-ACM International Conference on Computer-Aided Design, IEEE Press 2003:262-269.
[10] Papadimitriou CH, Steiglitz K: Combinatorial Optimization: Algorithms and Complexity. Dover Publications 1998.
[11] The MPI standard: http://www-unix.mes.anl.gov/mpi.
[12] SABiosciences, Inc.: http://www.sabiosciences.com/custom.php.

Table 1: The 16 probes in $S P$

$p_{1}=$ CGATT	$p_{9}=\mathrm{ATACG}$
$p_{2}=\mathrm{GGGCC}$	$p_{10}=\mathrm{CCCTC}$
$p_{3}=\mathrm{ATCGA}$	$p_{11}=\mathrm{GGAGA}$
$p_{4}=\mathrm{ATGTC}$	$p_{12}=\mathrm{AGCCG}$
$p_{5}=\mathrm{TTAGT}$	$p_{13}=\mathrm{AGACA}$
$p_{6}=\mathrm{ACCAG}$	$p_{14}=\mathrm{ACCTA}$
$p_{7}=\mathrm{CCCGA}$	$p_{15}=\mathrm{GAATC}$
$p_{8}=\mathrm{AATTC}$	$p_{16}=\mathrm{GATTT}$

```
Input: SP,T, dim, probelength, and an input probability pr
Output: a microarray configuration as close as possible to the optimal
    - Place the probes in SP randomly on the microarray.
    \bullet FOR all i\in{1,\ldots,\operatorname{dim}}\mathrm{ and all j }\in{1,\ldots,\operatorname{dim}} DO
            \bullet bestmicroarray [i,j]}\leftarrow\mathrm{ microarray [i,j];
    - COST}\leftarrow0
    - FOR all i }\in{1,\ldots,\operatorname{dim}}\mathrm{ and all j }\in{1,\ldots,\operatorname{dim}-1} D
            - COST}\leftarrowCOST + HammingDistance(microarray[i,j], microarray [i,j+1])
    - FOR all }j\in{1,\ldots,\mathrm{ dim } and all }i\in{1,\ldots,\mathrm{ dim - 1} DO
            - COST }\leftarrowCOST+HammingDistance(microarray[i,j],microarray[i + 1,j])
    - bestCOST }\leftarrowCOST
    - WHILE (the time taken by the algorithm is }\leqT\mathrm{ ) DO
            - Choose two random locations on the microarray, say ( }\mp@subsup{l}{1}{},\mp@subsup{c}{1}{})\mathrm{ and ( }\mp@subsup{l}{2}{},\mp@subsup{c}{2}{})\mathrm{ ). (The random locations that
            are chosen depend on the current processor, since each of the processors has its own random number
            generator.)
            - Let localcost1 be the sum of the Hamming distances between the probe microarray[l, c, cl] and the
            probes that are currently neighbors to ( }\mp@subsup{l}{1}{},\mp@subsup{c}{1}{})\mathrm{ .
            - Let localcost2 be the sum of the Hamming distances between the probe microarray [l2, c, c}]\mathrm{ and the
            probes that are currently neighbors to ( }\mp@subsup{l}{2}{},\mp@subsup{c}{2}{})\mathrm{ .
            - Let newlocalcost1 be the sum of the Hamming distances between the probe microarray[l l},\mp@subsup{c}{2}{}]\mathrm{ and
            the probes that are currently neighbors to ( }\mp@subsup{l}{1}{},\mp@subsup{c}{1}{}
            - Let newlocalcost2 be the sum of the Hamming distances between the probe microarray[l, , c, ] and
            the probes that are currently neighbors to ( }\mp@subsup{l}{2}{},\mp@subsup{c}{2}{})\mathrm{ .
            - localcost }\leftarrow\mathrm{ localcost1 + localcost2;
            - newlocalcost }\leftarrow\mathrm{ newlocalcost1 + newlocalcost2;
            - IF (newlocalcost < localcost) THEN
            - Swap the probes at locations ( }\mp@subsup{l}{1}{},\mp@subsup{c}{1}{})\mathrm{ and ( }\mp@subsup{l}{2}{},\mp@subsup{c}{2}{})\mathrm{ ;
            - COST \leftarrowCOST - (localcost - newlocalcost);
            - bestCOST}\leftarrowCOST
            - FOR all }i\in{1,\ldots,\operatorname{dim}}\mathrm{ and all j }\in{1,\ldots,\operatorname{dim}}\mathrm{ DO
                    \bullet bestmicroarray [i,j] \leftarrow microarray [i,j];
            ELSE
            - Randomly generate a number N in the interval [0,1].
            - IF N}\leqpr THEN
                    - Swap the probes at locations ( }\mp@subsup{l}{1}{},\mp@subsup{c}{1}{})\mathrm{ and ( }\mp@subsup{l}{2}{},\mp@subsup{c}{2}{})\mathrm{ ;
                    - COST}\leftarrowCOST + (newlocalcost - localcost ); 
    - return bestmicroarray;
```

Figure 1: LS: a local-search-based sequential algorithm for the BLMP

Input: $S P, T$, dim, probelength, and an input probability $p r$
Output: a microarray configuration as close as possible to the optimal

- Processor P_{1} places the probes in $S P$ randomly on its microarray and then sends its microarray configuration to all the other processors.
\bullet FOR all $i \in\{1, \ldots, \operatorname{dim}\}$ and all $j \in\{1, \ldots, \operatorname{dim}\}$ DO
- bestmicroarray $[i, j] \leftarrow$ microarray $[i, j]$;
- $\operatorname{COST} \leftarrow 0$;
- FOR all $i \in\{1, \ldots, \operatorname{dim}\}$ and all $j \in\{1, \ldots$, dim -1$\}$ DO
- COST $\leftarrow C O S T+$ HammingDistance $($ microarray $[i, j]$, microarray $[i, j+1])$;
- FOR all $j \in\{1, \ldots, \operatorname{dim}\}$ and all $i \in\{1, \ldots, \operatorname{dim}-1\}$ DO
$-\operatorname{COST} \leftarrow C O S T+$ HammingDistance (microarray $[i, j]$, microarray $[i+1, j]$);
- bestCOST $\leftarrow C O S T$;
- WHILE (the time taken by the algorithm is $\leq T$) DO
- Choose two random locations on the microarray, say $\left(l_{1}, c_{1}\right)$ and $\left(l_{2}, c_{2}\right)$. (The random locations that are chosen depend on the current processor, since each of the processors has its own random number generator.)
- Let localcost1 be the sum of the Hamming distances between the probe microarray $\left[l_{1}, c_{1}\right]$ and the probes that are currently neighbors to $\left(l_{1}, c_{1}\right)$.
- Let localcost2 be the sum of the Hamming distances between the probe microarray $\left[l_{2}, c_{2}\right]$ and the probes that are currently neighbors to $\left(l_{2}, c_{2}\right)$.
- Let newlocalcost1 be the sum of the Hamming distances between the probe microarray $\left[l_{2}, c_{2}\right]$ and the probes that are currently neighbors to $\left(l_{1}, c_{1}\right)$.
- Let newlocalcost2 be the sum of the Hamming distances between the probe microarray $\left[l_{1}, c_{1}\right]$ and the probes that are currently neighbors to $\left(l_{2}, c_{2}\right)$.
- localcost \leftarrow localcost1 + localcost2;
- newlocalcost \leftarrow newlocalcost1 + newlocalcost2;
- IF (newlocalcost < localcost) THEN
- Swap the probes at locations $\left(l_{1}, c_{1}\right)$ and $\left(l_{2}, c_{2}\right)$;
- $\operatorname{COST} \leftarrow \operatorname{COST}$ - (localcost - newlocalcost);
- bestCOST $\leftarrow C O S T$;
- FOR all $i \in\{1, \ldots, \operatorname{dim}\}$ and all $j \in\{1, \ldots, \operatorname{dim}\}$ DO
- bestmicroarray $[i, j] \leftarrow$ microarray $[i, j]$; ELSE
- Randomly generate a number N in the interval $[0,1]$.
- IF $N \leq p r$ THEN
- Swap the probes at locations $\left(l_{1}, c_{1}\right)$ and $\left(l_{2}, c_{2}\right)$;
- COST $\leftarrow C O S T+($ newlocalcost - localcost $)$;
- Processors synchronize with each other. Let $P_{\text {source }}$ be randomly selected out of those processors that have a minimum COST. All the other processors update their microarray, $C O S T$, bestmicroarray, bestCOST with the corresponding variables from $P_{\text {source }}$.
- Processor P_{1} returns bestmicroarray;

Figure 2: LS-Par: a local-search-based parallel algorithm for the BLMP (The pseudocode shown here is executed by each of the processors; only processor P_{1} returns the final result.)

p_{1}	p_{2}	p_{3}	p_{4}
p_{5}	p_{6}	p_{7}	p_{8}
p_{9}	p_{10}	p_{11}	p_{12}
p_{13}	p_{14}	p_{15}	p_{16}

Figure 3: The initial placement (at all the processors) of the probes on the microarray

Table 2: The Hamming distances between every two probes in $S P$

	p_{1}	p_{2}	p_{3}	p_{4}	p_{5}	p_{6}	p_{7}	p_{8}	p_{9}	p_{10}	p_{11}	p_{12}	p_{13}	p_{14}	p_{15}	p_{16}
p_{1}		4	5	4	3	5	4	4	4	3	3	4	3	4	3	3
p_{2}			5	3	5	5	5	4	4	4	3	3	3	5	3	4
p_{3}				3	3	3	2	4	3	4	3	3	3	2	5	5
p_{4}					4	4	5	2	3	3	5	4	4	3	3	4
p_{5}						5	4	5	3	5	3	5	4	5	4	4
p_{6}							3	4	3	3	5	2	4	2	5	5
p_{7}								5	5	2	3	4	4	2	5	5
p_{8}									4	3	5	4	4	3	2	2
p_{9}										5	4	2	2	4	4	5
p_{10}											5	4	5	2	3	4
p_{11}												4	2	4	3	4
p_{12}													2	3	5	5
p_{13}														3	4	5
p_{14}															4	4
p_{15}																2
p_{16}																

```
Input: SP, T, dim, probelength, MaxTrials1, MaxTrials2, MaxCost1, MaxCost2, winlength1, winlength2
Output: a microarray configuration as close as possible to the optimal
- Processor \(P_{1}\) places all the probes in \(S P\) randomly on its microarray, and then sends its microarray to all
    the other processors;
    - FOR all \(i \in\{1, \ldots, \operatorname{dim}\}\) and all \(j \in\{1, \ldots, \operatorname{dim}\}\) DO
            - bestmicroarray \([i, j] \leftarrow\) microarray \([i, j]\);
    - \(\operatorname{COST} \leftarrow 0\);
    - FOR all \(i \in\{1, \ldots, \operatorname{dim}\}\) and all \(j \in\{1, \ldots, \operatorname{dim}-1\}\) DO
        - COST \(\leftarrow \operatorname{COST}+\) HammingDistance (microarray \([i, j]\), microarray \([i, j+1]\) );
    - FOR all \(j \in\{1, \ldots\), dim \(\}\) and all \(i \in\{1, \ldots, \operatorname{dim}-1\}\) DO
            \(-\operatorname{COST} \leftarrow \operatorname{COST}+\) HammingDistance (microarray \([i, j]\), microarray \([i+1, j])\);
    - average \(\leftarrow[\operatorname{COST} /(\operatorname{dim} *(\operatorname{dim}-1) * 2)]\);
    - bestCOST \(\leftarrow C O S T\);
    - \(s a \leftarrow 0\);
    - myub \(\leftarrow 0\);
    - WHILE (the time taken by the algorithm is \(\leq T\) ) DO
        - \(O K \leftarrow 0\);
            - \(n r t \leftarrow 0\);
            - WHILE \((O K=0)\) DO
            - \(n r t \leftarrow n r t+1\);
                            - Choose two random locations on the microarray, say \(\left(l_{1}, c_{1}\right)\) and \(\left(l_{2}, c_{2}\right)\). (The random
                locations that are chosen depend on the current processor, since each processor has its
                own random number generator.)
            - Let localcost1 be the sum of the Hamming distances between the probe microarray \(\left[l_{1}, c_{1}\right]\)
                and the probes that are currently neighbors to \(\left(l_{1}, c_{1}\right)\).
            - Let localcost2 be the sum of the Hamming distances between the probe microarray \(\left[l_{2}, c_{2}\right]\)
            and the probes that are currently neighbors to ( \(l_{2}, c_{2}\) ).
            - Let newlocalcost1 be the sum of the Hamming distances between the probe microarray \(\left[l_{2}, c_{2}\right]\)
                and the probes that are currently neighbors to \(\left(l_{1}, c_{1}\right)\).
            - Let newlocalcost2 be the sum of the Hamming distances between the probe microarray \(\left[l_{1}, c_{1}\right]\)
                that are currently neighbors to \(\left(l_{2}, c_{2}\right)\).
            - localcost \(\leftarrow\) localcost1 + localcost2;
            - newlocalcost \(\leftarrow\) newlocalcost \(1+\) newlocalcost2;
            - IF (newlocalcost \(\leq\) localcost) THEN
                    - \(O K \leftarrow 1\);
                    - Swap the probes at locations \(\left(l_{1}, c_{1}\right)\) and \(\left(l_{2}, c_{2}\right)\);
                    - COST \(\leftarrow C O S T-(\) localcost - newlocalcost \()\);
                - Processors synchronize with each other. If at least one of them has \(O K=1\), then let \(P_{\text {source }}\)
                be one of those processors with \(O K=1\), randomly chosen. All the other processors update
                their microarray and COST with the corresponding variables from \(P_{\text {source }}\), and then set their
                \(O K\) their variable to 1.
            - If ( \(O K=0\) ) THEN
                    - IF (nrt \(\geq\) MaxTrials1) THEN
                            - IF (newlocalcost \(\leq\lfloor 8 *\) average \(\rfloor+\) myub) THEN
                            - IF (COST + newlocalcost - localcost \(\leq\) bestCOST + MaxCost2) THEN
                                    - \(O K \leftarrow 1\);
                                    - Swap the probes at locations \(\left(l_{1}, c_{1}\right)\) and \(\left(l_{2}, c_{2}\right)\);
                            - COST \(\leftarrow C O S T+(\) newlocalcost - localcost \()\);
                            - Processors synchronize with each other. If at least one of them has \(O K=1\), then let
                \(P_{\text {source }}\) be one of those processors with \(O K=1\), randomly chosen. All the other
                processors update their microarray and \(C O S T\) with the corresponding variables from
                \(P_{\text {source }}\), and then set their \(O K\) variable to 1 .
            - IF \((O K=0)\) and (nrt \(\geq\) MaxTrials2) THEN
                    - BREAK the WHILE that starts at line 17 ;
            - average \(\leftarrow[\operatorname{COST} /(\operatorname{dim} *(\operatorname{dim}-1) * 2)]\);
            - IF (COST < bestCOST) THEN
            - bestCOST \(\leftarrow C O S T\);
            - FOR all \(i \in\{1, \ldots, \operatorname{dim}\}\) and all \(j \in\{1, \ldots, \operatorname{dim}\}\) DO
                    - bestmicroarray \([i, j] \leftarrow\) microarray \([i, j]\);
            - \(s a \leftarrow s a+1\);
            - IF (myub \(=0\) ) THEN
            - IF \((s a=\) winlength 1\()\) THEN
                    - \(s a \leftarrow 0\);
                            - myub \(\leftarrow\) MaxCost1;
        ELSE
            - IF ( sa = winlength 2 ) THEN
                    - \(s a \leftarrow 0\);
                    - myub \(\leftarrow 0\);
- Processor \(P_{1}\) returns bestmicroarray;
```

Figure 4: ALG1 (the pseudocode shown here is executed by each of the processors involved in the algorithm; only processor P_{1} returns the final result.)

```
Input: SP, T, dim, probelength, MaxTrials1, MaxTrials2, MaxCost, MaxCost1, MaxCost2, winlength1, winlength2
Output: a microarray configuration as close as possible to the optimal
- Processor \(P_{1}\) places all the probes in \(S P\) randomly on its microarray, and then sends its microarray to all
    the other processors;
- FOR all \(i \in\{1, \ldots, \operatorname{dim}\}\) and all \(j \in\{1, \ldots, \operatorname{dim}\}\) DO
            - bestmicroarray \([i, j] \leftarrow\) microarray \([i, j]\);
    - COST \(\leftarrow 0\);
    - FOR all \(i \in\{1, \ldots, \operatorname{dim}\}\) and all \(j \in\{1, \ldots, \operatorname{dim}-1\}\) DO
            \(\bullet C O S T \leftarrow C O S T+\) HammingDistance (microarray \([i, j]\), microarray \([i, j+1]) ;\)
- FOR all \(j \in\{1, \ldots, \operatorname{dim}\}\) and all \(i \in\{1, \ldots, \operatorname{dim}-1\}\) DO
            - COST \(\leftarrow C O S T+\) HammingDistance (microarray \([i, j]\), microarray \([i+1, j]) ;\)
- bestCOST \(\leftarrow C O S T\);
- \(s a \leftarrow 0\);
- myub \(\leftarrow 0\);
- WHILE (the time taken by the algorithm is \(\leq T\) ) DO
        - \(O K \leftarrow 0\);
            - \(n r t \leftarrow 0\);
            - WHILE \((O K=0)\) DO
                    - \(n r t \leftarrow n r t+1\);
                    - Choose two random locations on the microarray, say \(\left(l_{1}, c_{1}\right)\) and \(\left(l_{2}, c_{2}\right)\). (The random
                locations that are chosen depend on the current processor, since each processor has its
                own random number generator.)
                    - Let localcost1 be the sum of the Hamming distances between the probe microarray \(\left[l_{1}, c_{1}\right]\)
                and the probes that are currently neighbors to \(\left(l_{1}, c_{1}\right)\).
                    - Let localcost2 be the sum of the Hamming distances between the probe microarray \(\left[l_{2}, c_{2}\right]\)
                and the probes that are currently neighbors to \(\left(l_{2}, c_{2}\right)\).
                    - Let newlocalcost1 be the sum of the Hamming distances between the probe microarray \(\left[l_{2}, c_{2}\right]\)
                and the probes that are currently neighbors to \(\left(l_{1}, c_{1}\right)\).
                            - Let newlocalcost2 be the sum of the Hamming distances between the probe microarray \(\left[l_{1}, c_{1}\right]\)
                that are currently neighbors to \(\left(l_{2}, c_{2}\right)\).
            - localcost \(\leftarrow\) localcost1 + localcost2;
            - newlocalcost \(\leftarrow\) newlocalcost1 + newlocalcost2;
            - IF (newlocalcost \(\leq\) localcost) THEN
                    - \(O K \leftarrow 1\);
                            - Swap the probes at locations \(\left(l_{1}, c_{1}\right)\) and \(\left(l_{2}, c_{2}\right)\);
                            - COST \(\leftarrow C O S T-\) (localcost - newlocalcost);
                            - Processors synchronize with each other. If at least one of them has \(O K=1\), then let \(P_{\text {source }}\)
                be one of those processors with \(O K=1\), randomly chosen. All the other processors update
                their microarray and \(C O S T\) with the corresponding variables from \(P_{\text {source }}\), and then set their
                \(O K\) their variable to 1
            - IF \((O K=0)\) THEN
                    - IF (nrt \(\geq\) MaxTrials1) THEN
                            - IF (newlocalcost \(\leq\) MaxCost + myub) THEN
                                    - IF \((C O S T+\) newlocalcost - localcost \(\leq\) bestCOST + MaxCost2) THEN
                                    - \(O K \leftarrow 1\);
                            - Swap the probes at locations \(\left(l_{1}, c_{1}\right)\) and \(\left(l_{2}, c_{2}\right)\);
                            - COST \(\leftarrow C O S T+(\) newlocalcost - localcost \()\);
                            - Processors synchronize with each other. If at least one of them has \(O K=1\), then let
                                \(P_{\text {source }}\) be one of those processors with \(O K=1\), randomly chosen. All the other
                                    processors update their microarray and \(C O S T\) with the corresponding variables from
                                    \(P_{\text {source }}\), and then set their \(O K\) variable to 1.
            - IF \((O K=0)\) and ( \(n r t \geq\) MaxTrials2) THEN
                    - BREAK the WHILE that starts at line 16 ;
        - IF \((C O S T<\) best \(C O S T)\) THEN
            - bestCOST \(\leftarrow C O S T\);
            - FOR all \(i \in\{1, \ldots, \operatorname{dim}\}\) and all \(j \in\{1, \ldots, \operatorname{dim}\}\) DO
                            - bestmicroarray \([i, j] \leftarrow\) microarray \([i, j]\);
    - \(s a \leftarrow s a+1\);
        - IF (myub = 0) THEN
            - IF (sa \(=\) winlength1) THEN
                            - \(s a \leftarrow 0\);
                            - myub \(\leftarrow\) MaxCost1;
        ELSE
            - IF (sa = winlength 2 ) THEN
                            - \(s a \leftarrow 0\);
                            - myub \(\leftarrow 0\);
- Processor \(P_{1}\) returns bestmicroarray;
```

Figure 5: ALG2 (the pseudocode shown here is executed by each of the processors involved in the algorithm; only processor P_{1} returns the final result.)

Table 3: Comparisons between ALG1 (with 64 processors) and the epitaxial algorithm

dim	Epitaxial	ALG1				
		$T=2 \mathrm{~min}$.	$T=4 \mathrm{~min}$.	$T=6 \mathrm{~min}$.	$T=8 \mathrm{~min}$.	$T=10 \mathrm{~min}$.
32	55,296	55,680	55,238	55,068	54,942	54,894
30	48,604	48,832	48,576	48,428	48,418	48,392
28	42,676	42,298	42,184	42,088	42,070	42,040
26	36,806	36,656	36,536	36,528	36,450	36,382
24	31,480	31,074	31,004	31,004	31,004	31,004
22	26,608	26,208	26,208	26,208	26,208	26,208
20	21,956	21,698	21,666	21,666	21,666	21,666
18	17,884	17,588	17,588	17,588	17,588	17,588
16	14,190	13,916	13,916	13,916	13,916	13,916

Table 4: Comparisons between ALG2 (with 64 processors) and the epitaxial algorithm

dim	Epitaxial	ALG2				
		$T=2 \mathrm{~min}$.	$T=4 \mathrm{~min}$.	$T=6 \mathrm{~min}$.	$T=8 \mathrm{~min}$.	$T=10 \mathrm{~min}$.
34	62,072	63,316	62,774	62,438	62,222	62,026
32	55,296	56,060	55,468	55,258	55,060	54,918
30	48,604	48,924	48,398	48,226	48,070	47,988
28	42,676	42,382	42,138	42,006	41,946	41,894
26	36,806	36,572	36,332	36,246	36,222	36,192
24	31,480	31,032	30,916	30,864	30,818	30,774
22	26,608	26,084	25,922	25,860	25,850	25,842
20	21,956	21,672	21,482	21,482	21,482	21,482
18	17,884	17,376	17,376	17,330	17,328	17,328
16	14,190	13,730	13,730	13,730	13,730	13,730

[^0]: *This research was supported in part by the NSF Grant ITR-0326155.
 AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

