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Abstract

We consider a nonsmooth nonlinear complementarity problem when the underlying

functions admit the H-differentiability but not necessarily locally Lipschitzian nor

directionally differentiable. We study the connection between the solutions of the

nonsmooth nonlinear complementarity problem and global/local/stationary points of

the associated square penalized Fischer-Burmeister and square Kanzow-Kleinmichel

merit functions. We show under appropriate regularity conditions on an H-differential

of f , minimizing a merit function corresponding to f leads to a solution of the nonlinear

complementarity problem.
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1 Introduction

Consider the nonsmooth nonlinear complementarity problem, denoted by the NCP(f),

which is to find a vector in Rn satisfying the conditions

x̄ ∈ Rn such that x̄ ≥ 0 , f(x̄) ≥ 0 and 〈f(x̄), x̄〉 = 0
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where f : Rn → Rn is a given H-differentiable function not necessarily locally Lipschitzian

nor directionally differentiable. Nonlinear complementarity problem arises in many ap-

plications, e.g., in operations research, economic equilibrium models and engineering sci-

ences(contact problems, obstacle problems, equilibrium models,...), [6], [16] for a more detail

description. Also, NCP has been served as a general framework for linear, quadratic, and

nonlinear programming. When f is a continuously differentiable or locally Lipschitzian, one

of the well-known approaches to solve the NCP is to reformulate the original NCP as an

unconstrained minimization problem whose global minima are coincident with the solution

of the NCP and the objective function of this unconstrained minimization problem is called

a merit function for the NCP , e.g., [4], [5], [8], [10], [11], [12], [18], [19], [21], [22], [36]. Most

of the merit functions in these references based on the square Fischer-Burmeister function

[5], [8], [12], [18], [19], [21], the implicit Lagrangian function [18], [22], [36], and for other

NCP functions see, e.g., the survey paper [9]. Most of these methods rely on the a so-called

NCP function: An NCP function is a function φ : R2 → R having the following property

φ(a, b) = 0⇔ ab = 0, a ≥ 0, b ≥ 0.

For the problem NCP(f), we define Φ : Rn → Rn by

Φ(x) =



φ(x1, f1(x))
...

φ(xi, fi(x))
...

φ(xn, fn(x))


, (1)

then it follows immediately from the definition of an NCP function that

x̄ solves NCP(f) ⇔ Φ(x̄) = 0 ⇔ Ψ(x̄) = 0

where Ψ : Rn → R denotes the corresponding merit function

Ψ(x) :=
n∑
i=1

Φi(x). (2)

By abuse of language, we call Φ(x) an NCP function for NCP(f).

In this paper, we consider the following NCP functions:

(1)

φSPFB (a, b) =
1

2
[φλ(a, b)]

2 :=
1

2
[λφFB(a, b) + (1− λ)a+ b+]2 (3)
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where φSPFB, φλ : R2 → R. NCP function φλ is called the penalized Fischer-

Burmeister function [1]

φλ(a, b) := λφFB(a, b) + (1− λ)a+ b+ (4)

where φFB is called Fischer-Burmeister function, a+ = max{0, a} and λ ∈ (0, 1) is a

fixed parameter. Then its merit function associated to φSPFB at x̄ is defined as in (2)

where
Φi(x̄) = φSPFB (x̄i, fi(x̄)) = 1

2
[φλ(x̄i, fi(x̄))]2

:= 1
2

[
λφFB(x̄i, fi(x̄)) + (1− λ)x̄i+ fi(x̄)+

]2
.

(5)

(2)

φSKK (a, b) :=
1

2
[φβ(a, b)]2 =

1

2

[
a+ b−

√
(a− b)2 + βab

]2

(6)

where φSKK , φβ : R2 → R. NCP function φβ was proposed by Kanzow-Kleinmichel

[20]

φβ(a, b) := a+ b−
√

(a− b)2 + βab (7)

where β is a fixed parameter in (0, 4). We note that when β = 2, φ reduces to the

Fischer-Burmeister function, while as β → 0, φβ becomes

φ(a, b) := a+ b−
√

(a− b)2 (= 2 min{a, b}).

Then the merit function associated to φSKK at x̄ is defined as in (2) where

Φi(x̄) = φSKK (x̄i, fi(x̄)) = 1
2

[φβ(x̄i, fi(x̄))]2

:= (1/2)
[
x̄i + fi(x̄)−

√
(x̄i − fi(x̄))2 + βx̄i fi(x̄)

]2

.
(8)

The main goal of this paper is to study the connection between the solutions of the nons-

mooth nonlinear complementarity problem and global/local/stationary points of the associ-

ated square penalized Fischer-Burmeister and square Kanzow-Kleinmichel merit functions.

The organization of the paper is as follows. Section 2, we state some basic definitions

and preliminary results. In Section 3, we describe H-differentials of the square Kanzow-

Kleinmichel function and the square penalized Fischer-Burmeister function, and their merit

functions. Also, we show how, under appropriate regularity -conditions on an H-differential

of f , finding local/global minimum of Ψ (or a ‘stationary point’ of Ψ) leads to a solution

of the given nonlinear complementarity problem. Our results unify/extend various similar

results proved in the literature for C1 and semismooth functions [1], [20].
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2 Preliminaries

A few words about notation. We regard vectors in Rn as column vectors. We denote the

inner-product between two vectors x and y in Rn by either xTy or 〈x, y〉. Vector inequalities

are interpreted componentwise. A subscript i is used to denote ith component of a vector

x ∈ Rn. A superscript k indicates the kth iterate of a given sequence. For a matrix A, Ai

denotes the ith row of A. For a differentiable function f : Rn → Rm, ∇f(x̄) denotes the

Jacobian matrix of f at x̄. We call φ a nonnegative NCP function if φ(a, b) ≥ 0 on R2. We

call Φ a nonnegative NCP function for NCP(f) if φ is nonnegative.

We need the following definitions from [3], [25].

Definition 2.1 A matrix A ∈ Rn×n is called P0 (P) if ∀x ∈ Rn, x 6= 0, there exists i such

that xi 6= 0 and xi (Ax)i ≥ 0 (> 0) or equivalently, every principle minor of A is nonnegative

(respectively, positive).

Definition 2.2 For a function f : Rn → Rn, we say that f is a

(i) monotone if

〈f(x)− f(y), x− y〉 ≥ 0 for all x, y ∈ Rn.

(ii) P0(P)-function if, for any x 6= y in Rn,

max
{i:xi 6=yi}

(x− y)i[f(x)− f(y)]i ≥ 0 (> 0). (9)

We note that every monotone (strictly monotone) function is a P0(P)-function.

The following result is from [25], [30].

Theorem 2.1 Under each the following conditions, f : Rn → Rn is a P0(P)-function.

(a) f is Fréchet differentiable on Rn and for every x ∈ Rn, the Jacobian matrix ∇f(x) is

a P0(P)-matrix.

(b) f is locally Lipschitzian on Rn and for every x ∈ Rn, the generalized Jacobian ∂f(x)

consists of P0(P)-matrices.

(c) f is semismooth on Rn (in particular, piecewise affine or piecewise smooth) and for

every x ∈ Rn, the Bouligand subdifferential ∂Bf(x) consists of P0(P)-matrices.

(d) f is H-differentiable on Rn and for every x ∈ Rn, an H-differential Tf (x) consists of

P0(P)-matrices.
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We give the following definition and examples from Gowda and Ravindran [15].

Definition 2.3 Given a function f : Ω ⊆ Rn → Rm where Ω is an open set in Rn and

x∗ ∈ Ω, we say that a nonempty subset T (x∗) (also denoted by Tf (x
∗)) of Rm×n is an

H-differential of f at x∗ if for every sequence {xk} ⊆ Ω converging to x∗, there exist a

subsequence {xkj} and a matrix A ∈ T (x∗) such that

f(xkj)− f(x∗)− A(xkj − x∗) = o(||xkj − x∗||). (10)

We say that f is H-differentiable at x∗ if f has an H-differential at x∗.

Remarks

As noted in [35], it is easily seen that if a function f : Ω ⊆ Rn → Rm is H-differentiable at

a point x̄, then there exist a constant L > 0 and a neighbourhood B(x̄, δ) of x̄ with

||f(x)− f(x̄)|| ≤ L||x− x̄||, ∀x ∈ B(x̄, δ). (11)

Conversely, if condition (11) holds, then T (x̄) := Rm×n can be taken as an H-differential

of f at x̄. We thus have, in (11), an alternate description of H-differentiability. But, as

we see in the sequel, it is the identification of an appropriate H-differential that becomes

important and relevant. Clearly any function locally Lipschitzian at x̄ will satisfy (11). For

real valued functions, condition (11) is known as the ‘calmness’ of f at x̄. This concept has

been well studied in the literature of nonsmooth analysis (see [29], Chapter 8).

Example 1 Let f : Rn → Rm be Fréchet differentiable at x∗ ∈ Rn with Fréchet derivative

matrix (= Jacobian matrix derivative) {∇f(x∗)} such that

f(x)− f(x∗)−∇f(x∗)(x− x∗) = o(||x− x∗||).

Then f is H-differentiable with {∇f(x∗)} as an H-differential.

Example 2 Let f : Ω ⊆ Rn → Rm be locally Lipschitzian at each point of an open set Ω.

For x∗ ∈ Ω, define the Bouligand subdifferential of f at x∗ by

∂Bf(x∗) = {lim∇f(xk) : xk → x∗, xk ∈ ΩF}

where Ωf is the set of all points in Ω where f is Fréchet differentiable. Then, the (Clarke)

generalized Jacobian [2]

∂f(x∗) = co∂Bf(x∗)

is an H-differential of f at x∗.
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Example 3 Consider a locally Lipschitzian function f : Ω ⊆ Rn → Rm that is semismooth

at x∗ ∈ Ω [23], [26], [28]. This means for any sequence xk → x∗, and for Vk ∈ ∂f(xk),

f(xk)− f(x∗)− Vk(xk − x∗) = o(||xk − x∗||).

Then the Bouligand subdifferential

∂Bf(x∗) = {lim∇f(xk) : xk → x∗, xk ∈ Ωf}.

is an H-differential of f at x∗. In particular, this holds if f is piecewise smooth, i.e., there

exist continuously differentiable functions fj : Rn → Rm such that

f(x) ∈ {f1(x), f2(x), . . . , fJ(x)} ∀x ∈ Rn.

Example 4 Let f : Rn → Rn be C-differentiable [27] in a neighborhood D of x∗. This

means that there is a compact upper semicontinuous multivalued mapping x 7→ T (x) with

x ∈ D and T (x) ⊂ Rn×n satisfying the following condition at any a ∈ D: For V ∈ T (x),

f(x)− f(a)− V (x− a) = o(||x− a||).

Then, f is H-differentiable at x∗ with T (x∗) as an H-differential.

Remark While the Fréchet derivative of a differentiable function, the Clarke generalized

Jacobian of a locally Lipschitzian function [2], the Bouligand differential of a semismooth

function [26], and the C-differential of a C-differentiable function [27] are particular in-

stances of H-differential, the following simple example, is taken from [13], shows that an

H-differentiable function need not be locally Lipschitzian nor directionally differentiable.

Example 5 Consider on R,

f(x) = x sin(
1

x
) for x 6= 0 and f(0) = 0.

Then f is H-differentiable on R with

T (0) = [−1, 1] and T (c) = {sin(
1

c
)− 1

c
cos(

1

c
)} for c 6= 0.

We note that f is not locally Lipschitzian around zero. We also see that f is neither Fréchet

differentiable nor directionally differentiable.
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3 The main results

Before stating our results, we would like to mention that we employ the concepts of

H-differentiability and H-differential of a function [15] due to the following reasons: the

Fréchet derivative of a differentiable function, the Clarke generalized Jacobian of a locally

Lipschitzian function [2], the Bouligand differential of a semismooth function [26], and the

C-differential of Qi [27] are particular instances of H-differential; any superset of an H-

differential is an H-differential;a H-differentiable function need not be locally Lipschitzian

function nor directionally differentiable; H-differentials enjoy simple sum, product, chain

rules, a mean value theorem and a second order Taylor-like expansion, and inverse and

implicit function theorems, and H-differentiability implies continuity, see [13], [14], [15];

moreover, the closure of the H-differential is an approximate Jacobian [17].

For some applications of H-differentiability to optimization problems, nonlinear comple-

mentarity problems and variational inequalities, see e.g. [35], [33], [34], [32].

For a given H-differentiable function f : Rn → Rn, consider the associated NCP function

Φ and the corresponding merit function Ψ :=
∑n

i=1 Φi (as in Examples 6-7 below). It should

be recalled that

Ψ(x̄) = 0⇔ Φ(x̄) = 0⇔ x̄ solves NCP(f).

3.1 H-differentials of some NCP/merit functions

In this subsection, we compute the H-differential of the merit function Ψ :=
∑n

i=1 Φi.

Theorem 3.1 Suppose Φ is H-differentiable at x̄ with TΦ(x̄) as an H-differential. Then

Ψ :=
∑n

i=1 Φi is H-differentiable at x̄ with an H-differential given by

TΨ(x̄) = {eTB : B ∈ TΦ(x̄)}.

Proof. To describe an H-differential of Ψ, let θ(x) = x1 + · · ·+xn. Then Ψ = θ ◦Φ so that

by the chain rule for H-differentiability, we have TΨ(x̄) = (Tθ ◦ TΦ)(x̄) as an H-differential

of Ψ at x̄. Since Tθ(x̄) = {eT} where e is the vector of ones in Rn, we have

TΨ(x̄) = {eTB : B ∈ TΦ(x̄)}.

This completes the proof. �

Now we describe the H-differentials of the merit functions associated to square Kanzow-

Kleinmichel function and square penalized Fischer-Burmeister function.
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Example 6 (square Kanzow-Kleinmichel function)

Suppose f : Rn → Rn has an H-differential T (x̄) at x̄ ∈ Rn. Consider the associated

square Kanzow-Kleinmichel function

Φ(x̄) := (1/2)
[
x̄+ f(x̄)−

√
(x̄− f(x̄))2 + βx̄ f(x̄)

]2

. (12)

where all the operations are performed componentwise. Let

J(x̄) = {i : fi(x̄) = 0 = x̄i}.

Then the H-differential of Φ in (12) is given by

TΦ(x̄) = {V A+W : (A, V,W, d) ∈ Γ},

where Γ is the set of all quadruples (A, V,W, d) with A ∈ T (x̄), ||d|| = 1, V = diag(vi)

W = diag(wi) are diagonal matrices with

vi =


φβ(x̄i, fi(x̄))

[
1− −2(x̄i−fi(x̄))+βx̄i

2
√

(x̄i−fi(x̄))2+βx̄ifi(x̄)

]
when i 6∈ J(x̄)

φβ(di, Aid)

[
1− −2(di−Aid)+βdi

2
√

(di−Aid)2+βdi(Aid)

]
when i ∈ J(x̄) and [(di − Aid)2 + βdi(Aid) > 0

arbitrary when i ∈ J(x̄) and (di − Aid)2 + βdi(Aid) = 0,

(13)

wi =


φβ(x̄i, fi(x̄))

[
1− 2(x̄i−fi(x̄))+βfi(x̄)

2
√

(x̄i−fi(x̄))2+βx̄ifi(x̄)

]
when i 6∈ J(x̄)

φβ(di, Aid)

[
1− 2(di−Aid)+βAid

2
√

(di−Aid)2+βdi(Aid)

]
when i ∈ J(x̄) and (di − Aid)2 + βdi(Aid) > 0

arbitrary when i ∈ J(x̄) and (di − Aid)2 + βdi(Aid) = 0.

We can describe the H-differential of Φ in a way similar to the calculation and analysis of

Examples 5-7 in [35].

By Theorem 3.1, the H-differential TΨ(x̄) of Ψ(x̄) consists of all vectors of the form

vTA+ wT with A ∈ T (x̄), v and w are columns vectors with entries defined by (13).

Example 7 (square penalized Fischer-Burmeister function)

Suppose f : Rn → Rn has an H-differential T (x̄) at x̄ ∈ Rn. Consider the associated

square penalized Fischer-Burmeister function

Φ(x̄) :=
1

2

[
λφFB(x̄, f(x̄)) + (1− λ)x̄+ f(x̄)+

]2
. (14)
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where φFB is called Fischer-Burmeister function, a+ = max{0, a} and λ ∈ (0, 1) is a fixed

parameter, and all the operations are performed componentwise. Let

J(x̄) = {i : fi(x̄) = 0 = x̄i} and K(x̄) = {i : x̄i > 0, fi(x̄) > 0}.

For Φ in (14), a straightforward calculation shows that an H-differential is given by

TΦ(x̄) = {V A+W : (A, V,W, d) ∈ Γ},

where Γ is the set of all quadruples (A, V,W, d) with A ∈ T (x̄), ||d|| = 1, V = diag(vi) and

W = diag(wi) are diagonal matrices with

vi =



φλ(x̄i, fi(x̄))

[
λ

(
1− fi(x̄)√

x̄2i +fi(x̄)2

)
+ (1− λ)x̄i

]
when i ∈ K(x̄)

φλ(di, Aid)

[
λ

(
1− Aid√

d2i +(Aid)2

)]
when i ∈ J(x̄) and d2

i + (Aid)2 > 0

φλ(x̄i, fi(x̄))

[
λ

(
1− fi(x̄)√

x̄2i +fi(x̄)2

)]
when i 6∈ J(x̄) ∪K(x̄)

arbitrary when i ∈ J(x̄) and d2
i + (Aid)2 = 0,

(15)

wi =



φλ(x̄i, fi(x̄))

[
λ

(
1− x̄i√

x̄2i +fi(x̄)2

)
+ (1− λ)fi(x̄)

]
when i ∈ K(x̄)

φλ(di, Aid)

[
λ

(
1− di√

d2i +(Aid)2

)]
when i ∈ J(x̄) and d2

i + (Aid)2 > 0

φλ(x̄i, fi(x̄))

[
λ

(
1− x̄i√

x̄2i +fi(x̄)2

)]
when i 6∈ J(x̄) ∪K(x̄)

arbitrary when i ∈ J(x̄) and d2
i + (Aid)2 = 0.

The above calculation relies on the observation that the following is an H-differential of

the one variable function z 7→ z+ at any z̄:

∆(z̄) =


{1} if z̄ > 0

{0, 1} if z̄ = 0

{0} if z̄ < 0.

Using Theorem 3.1, the H-differential TΨ(x̄) of Ψ(x̄) consists of all vectors of the form

vTA+ wT with A ∈ T (x̄), v and w are columns vectors with entries defined by (15).

We close this subsection by the following lemma that will be needed in the sequel. The

proof is similar to lemmas 1-5 in [12].
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Lemma 3.1 Assume that Ψ is H-differentiable with an H-differential TΨ(x̄) and Φ(as in

Examples 6-7) is nonnegative H-differentiable with an H-differential TΦ(x̄) is given by

TΦ(x̄) = {V A+W : A ∈ T (x̄), V = diag(vi) and W = diag(wi)} (16)

where Φ, V and W satisfy the following properties:

(i) x̄ solves NCP(f) ⇔ Φ(x̄) = 0.

(ii) For i ∈ {1, . . . , n}, viwi ≥ 0.

(iii) For i ∈ {1, . . . , n}, Φi(x̄) = 0⇔ (vi, wi) = (0, 0).

(iv) For i ∈ {1, . . . , n} with x̄i ≥ 0 and f(x̄i) ≥ 0, we have vi ≥ 0.

(v) If 0 ∈ TΨ(x̄), then Φ(x̄) = 0⇔ v = 0.


(17)

3.2 Minimizing the merit function under regularity (strict regu-

larity) conditions

We generalize the concept of a regular (strictly regular) point from [4], [7], [21], [24].

For a given H-differentiable function f and x̄ ∈ Rn, we define the following index sets:

P(x̄) := {i : vi > 0}, N (x̄) := {i : vi < 0},
C(x̄) := {i : vi = 0}, R(x̄) := P(x) ∪N (x)

where vi are the entries of V in (16) (e.g., vi is defined as in Examples 6-7).

Definition 3.1 Consider f , Φ, and Ψ as in Examples 6-7. A vector x∗ ∈ Rn is called

strictly regular if, for every nonzero vector z ∈ Rn such that

zC = 0, zP > 0, zN < 0, (18)

there exists a vector s ∈ Rn such that

sP ≥ 0, sN ≤ 0, sC = 0, and (19)

sTAT z > 0 for all A ∈ T (x∗). (20)

Theorem 3.2 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).

Let Φ be as in Examples 6-7. Assume that Ψ :=
∑n

i=1 Φi(x̄) is H-differentiable at x̄ with an

H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}
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where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying

properties (ii), (iii), and (v) in (17).

Then x̄ solves NCP(f) if and only if 0 ∈ TΨ(x̄) and x̄ is a strictly regular point.

Proof. The ‘if’ part of the theorem follows easily from the definitions. Now suppose that

0 ∈ TΨ(x̄) and x̄ is a strictly regular point. Then for some vTA+ wT ∈ TΨ(x̄),

0 = vTA+ wT ⇒ ATv + w = 0. (21)

We claim that Φ(x̄) = 0. Assume the contrary that x̄ is not a solution of NCP(f). Then

by property (v) in (17), we have v as a nonzero vector satisfying vC = 0, vP > 0, vN < 0.

Since x̄ is a strictly regular point, and viwi ≥ 0 by property (ii) in (17), by taking a vector

s ∈ Rn satisfying (19) and (20), we have

sTATv > 0 (22)

and

sTw = sTCwC + sTPwP + sTNwN ≥ 0. (23)

Thus we have sT (AT v + w) = sTATv + sTw > 0. We reach a contradiction to (21). Hence,

x̄ is a solution of NCP(f). �

Now we state a consequence of the above theorem.

Theorem 3.3 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).

Let Φ be as in Examples 6-7. Assume that Ψ :=
∑n

i=1 Φi(x̄) is H-differentiable at x̄ with an

H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying

properties (ii), (iii), and (v) in (17).

Further suppose that T (x̄) consists of positive-definite matrices. Then

Φ(x̄) = 0⇔ 0 ∈ TΨ(x̄).

Proof. The proof follows by taking s = z in Definition 3.1 of a strictly regular point and

by using Theorem 3.2. �

Before we state the next theorem, we recall a definition from [31].
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Definition 3.2 Consider a nonempty set C in Rn×n. We say that a matrix A is a row

representative of C if for each index i = 1, 2, . . . , n, the ith row of A is the ith row of

some matrix C ∈ C. We say that C has the row-P0-property (row-P-property) if every row

representative of C is a P0-matrix (P-matrix). We say that C has the column-P0-property

(column-P-property) if CT = {AT : A ∈ C} has the row-P0-property (row-P-property).

Theorem 3.4 Suppose f : Rn → Rn is H-differentiable at x̄ with an H-differential T (x̄).

Let Φ be as in Examples 6-7. Assume that Ψ :=
∑n

i=1 Φi(x̄) is H-differentiable at x̄ with an

H-differential given by

TΨ(x̄) = {vTA+ wT : (A, v, w) ∈ Ω}

where Ω is the set all triples (A, v, w) with A ∈ T (x̄), v and w vectors in Rn satisfying

properties (ii), (iii), and (v) in (17).

Further suppose that T (x̄) has the column-P-property. Then

x̄ solves NCP(f) if and only if 0 ∈ TΨ(x̄).

Proof. In view of Theorem 3.2, it is enough to show x̄ is a strictly regular point. To see

this, let v be a nonzero vector satisfying (18). Since T (x̄) has the column-P-property, by

Theorem 2 in [31], there exists an index j such that vj
[
ATv

]
j
> 0 ∀A ∈ T (x̄). Choose

s ∈ Rn so that sj = vj and si = 0 for all i 6= j. Then sTATv = vj
[
ATv

]
j
> 0 ∀A ∈ T (x̄).

Hence x̄ is a strictly regular point. �

As a consequence of the above theorem is the following corollary.

Corollary 3.1 Let f : Rn → Rn be locally Lipschitzian. Let Φ be the square Fischer-

Burmeister function. Suppose that Ψ :=
∑n

i=1 Φi(x̄). Further assume that ∂Bf(x̄) has the

column-P0-property. Then

Ψ(x̄) = 0⇔ 0 ∈ ∂Ψ(x̄).

Proof. We note that by Corollary 1 in [35], every matrix in ∂f(x̄) = co ∂Bf(x̄) is a P0-

matrix and by Corollary 2 in [34], we have the claim.�

Remark The usefulness of Corollary 3.1 may appear when the function f is piecewise

smooth in which case ∂Bf(x̄) consists of a finite number of matrices.
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[24] Moré, J.J., Global Methods for Nonlinear Complementarity Problems, Mathematics

of Operations Research 21 (1996) 589-614.
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