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Abstract

In this paper, the analytic and numeric solutions of general continuous linear quadratic op-
timal control problem are presented.The associated general Riccati differential equation is
solved by numerical-analytical approach using variational iteration method. Numerical solu-
tions of the constrained optimal control problem are obtained by shooting method and the
conjugate gradient method(CGM) via quadratic programming of the discretized continuous
optimal control problem. Our results show that both analytical and numerical solutions agree
favourably.
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1 Introduction

Most of the algorithms for solving unconstrained optimal control problems are based on a class of
descent methods which traditionally have been the principal methods for solving unconstrained
minimization problems. Efficient, within this class, are steepest descent(SD), Flethcher-Reeves
conjugate gradient algorithm (FRCG) [6], Polak- Rebier̀e method(PRGG) [10, 17] which had
been classified as algorithms with no memory, and the Newton and quasi-Newton methods which
update the hessian inverse of f(X).In most applications, the conjugate gradient algorithm is
more suitable when compared to other conjugate direction algorithms[8]. It totally outshines
the steepest descent method, and compares more favourably with the Newton and quasi-Newton
methods. For example, the Newton descent and Quasi-Newton descent are not suitable for
minimising the Rayleigh quotient associated with a matrix, since an attempt to approximate the
hessian at the minimum is a singular matrix [20]. Also when the dimension of the optimization
variable is very large, most especially in optimal control, conjugate gradient method is preferred.

Most research works in the field of unconstrained optimization concentrate their efforts on
algorithm with inaccurate or no line search. This is due to the fact that the line search part
is time-consuming . Any adaptation of descent methods to solve real-life problems faces with
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the problem of determing α-the one dimensional step size accurately when the function under
consideration is not quadratic. So many approaches had been given in [3, 17] for computing α to
a tolerance, but still affect the quadratic termination of the conjugate gradient method and the
optimal solution.

Optimal control problems governed by ordinary differential equations arise in a wide range
of applications. Of a special interest is the linear quadratic optimal control problem (LQOCP),
which had been greatly studied [2, 9, 14, 15, 17, 19] due to its interesting features and its wider
applicabilities. Sargent[19] gave historical survey of optimal control and went on to review the
different approaches to the numerical solution of optimal control problem.The function space
algorithm for solving both continous and discrete linear quadratic optimal control problem was
given by Polak[17, Ch2]. The determination of α calls for reinitialising of the algorithm, which in
turn affect the quadratic termination of the conjugate gradient method.It proves to be successful
computationally in the sense that it converges well enough, nevertheless, it involves an enormous
variety of cumbersome calculations. The paper by Bersekas[2] tried to eliminate the problem of
eigen-value associated with the hessian matrix associated with the problem and reinitialization
of the algorithm. In his paper, the author examined the computational aspects of a certain class
of discrete-time optimal control problems, in which the partial conjugate gradient algorithms
operating in cycles of s + 1 conjugate gradient steps(s ≤ n state space dimension) was proposed
and analysed. This modest research work incorporated the problem of determining the step
size α accurately. The outstanding publication of Ibiejugba and Onumanyi [9] gave birth to
extended conjugate gradient method(ECGM). In other to circumvent the numerical set-back in
function space algorithm, the authors, constructed the control operator A which enables α to be
determined accurately. Research works along this line are found in[13, 14, 15].

In this paper, we present the analytic solution and numerical solution by shooting method and
conjugate gradient method(CGM) for the discretized constrained optimal control problem. We
construct the hessian matrix which renders the optimal control problem amenable to the gradient
methods. A similar approach was adopted in[15] but their presentation is purely mathematical
abstraction. The construction resulted into large sparse quadratic programming problem using
conjugate gradient method via penalty function method. The classical control parametrization
method is flexible and efficient for a large class of optimal control problems, as discretized optimal
control problems can be viewed as a Nonlinear programming problem with some special structure.
Now, we consider a generalised problem to be solved analytically and numerically.

2 Analytical Solution

Consider the generalized optimal control problem:

min I(x,u) =

Z∫

0

(xT (t)Px(t) + uT (t)Qu(t)) dt (2.1)

such that
ẋ(t) = Ax(t) + Bu(t), x(0) = x0, 0 ≤ t ≤ Z. (2.2)

where x(t) ∈ IRn, u(t) ∈ IRm, Pn×n, Qm×m are symmetric positive definite and An×n, Bn×m

are not necessarily symmetric positive definite.

With appropiate conditions on the end points, adjoint variable µ(t) ∈ IRn can be introduced
by forming the required augmented functional from equation(2.1) and equation(2.2).
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The Hamiltonian function is given as

H(x,u, µ, ẋ) = xT (t)Px(t) + uT (t)Qu(t) + µT (t)(ẋ − Ax(t) − Bu(t)) (2.3)

From the knowlegde of calculus of variation[18], we form the necessary conditions for optimal
control problem using the Euler-Lagrangian(E-L) equations for H regarded as function of the
four vector variables (x,u, µ, ẋ). Thus, the E − L system can be written

d

dt

[∂H

∂ẋ

]

=
∂H

∂x
(2.4)

d

dt

[∂H

∂u̇

]

=
∂H

∂u
(2.5)

d

dt

[∂H

∂µ̇

]

=
∂H

∂µ
(2.6)

which gives
ẋ(t) = Ax(t) + Bu(t) (2.7)

µ̇ = 2Px − AT µ (2.8)

u =
Q−1BT µ

2
(2.9)

substituting u in equation(2.9) into equation(2.7), we have the following dynamical equations in
matrix form as





ẋ

. . .
µ̇



 =







A
... BQ−1BT

2
. . . . . .

2P
... −AT







︸ ︷︷ ︸

M





x

. . .
µ



 (2.10)

The solution of differential system(2.10) exists and is unique[12].The general solution of which is
given as





















x1(t)
x2(t)
x3(t)

...
xn(t)
µ1(t)
µ2(t)
µ3(t)

...
µn(t)





















= etM





















x1(0)
x2(0)
x3(0)

...
xn(0)
µ1(0)
µ2(0)
µ3(0)

...
µn(t)





















(2.11)

Since we know x(0), the task is to choose µ(0) so that the tranversality condition µ(Z) = 0 is
satisfied.Assuming a linear function of the form:

µ(t) = C(t)x(t) (2.12)

where C(t) is an n × n symmetric, negative semidefinite matrix with element varying over time,
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leads to the matrix Riccati Equation for C(t)[17]:

Ċ = 2P − AT C − CA −
CBQ−1BT C

2
(2.13)

since µ(Z) = 0, the terminal condition is C(Z) = 0. So we have obtained a non-linear system
of first-order ODEs in C(·) with a terminal boundary condition. Hence µ(0) can be obtained by
solving equation(2.13).

3 Numerical Solutions

In order to make equations(2.1)-(2.2) amenable to conjugate gradient method, we shall replace the
constrained optimal control problem by appropiate discretized optimal control problem. Breaking
the interval [0, Z] into s equal intervals with knots t0 < t1 < t2 · · · < ts and ∆tj (say ∆tj = 0.01)
and tj = j∆tj . If these intervals are small enough, we can assume that in any interval [j − 1, j],
the values x(t) and u(t) can be approximated by zero order spline xj and uj respectively. Our
objective function (2.1) is then approximated by;

min I =
s∑

j=0

xT
j Nxj + uT

j Tuj (3.1)

where N = P∆tj and T = Q∆tj , and the differential equation(2.2) by

ẋj = Axj + Buj (3.2)

Furthermore, we shall use finite difference approximation to write

xj+1 = xj + ẋj∆tj (3.3)

Thus, the resulting discretized optimal control problem is:

min I =
s∑

j=0

xT
j Nxj + uT

j Tuj (3.4)

subject to
xj+1 = Cxj + Duj , (3.5)

where C = (In×n + A)∆tj , D = B∆tj , j = 0, 1, · · · , s − 1 and x0 given.

By parameter optimization[7], the discretized problem becomes a large sparse quadratic pro-
gramming problem. We give a matrix representation

I(z) = zTMz + c (3.6)

subject to
Vz = k (3.7)

and
zT = (xT

1 ,xT
2 , · · · ,xT

s ,uT
0 ,uT

1 , · · · ,uT
s ) (3.8)
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where M is a block diagonal matrix of order (n + m)s + m, with entries given by:

[M]ii = N, i = 1, 2, · · · , s

and
[M]ii = T, i = s + 1, s + 2, · · · , 2s + 1

where ith element correspond to ith block and c = x0Nx0. The matrix V is block matrix of order
ns × (n + m)s + m with the representation

V =
(

E
... F

... 0

)

(3.9)

where E is an ns×ns block bidiagonal matrix with principal block diagonal elements [E]ii = In×n

and lower block principal diagonal elements [E]ij = −C,∀i, j block such that i = j + 1. [F] is
ns × ms block diagonal matrix with block diagonal elements [F]ii = −D and [0] is an ns × m
zero matrix. The column vector [k] is of order ns × 1 with entries given by:[k]1−n,1 = Ax0

and[k]i1 = 0, i = n + 1, n + 2, · · · , ns.
Using proposition 2.8 of [5], the quadratic programming(QP) problem(3.6)-(3.7) is equivalent

to the solution of the saddle point system of linear equations

(
M VT

V 0

)(
z

λ

)

=

(
0

k

)

(3.10)

where λ ∈ IRns is the Lagrange multipliers. If V is a full row rank matrix, we can solve
equation(3.10) effectively by the Gaussian elimination with suitable pivoting strategy, or by a sys-
metric factorization which takes into account that equation(3.10) is indefinite. Alternatively, we
can use MINRES, a Krylov space method which generates the iterates minimizing the Euclidean
of the residual in the Krylov space. The performance of the MINRES depend on the spectrum
of the KKT system(3.10), similarly as the performance of the conjugate gradient method.

The unconstrained minimization problem by penalty function method is

minLρ(z) = zTMz + c + ρ 〈Vz − k,Vz − k〉 (3.11)

on expansion, we have
minLρ(z) = zTAρz + Bz + C (3.12)

Equation(3.12) is the quadratic form representation for the unconstrained minimization prob-
lem, where Lρ(z) is penalized Lagrangian,ρ is penalty parameter, the penalized matrix Aρ =
[
M + ρVTV

]
, B = −2ρkTkV and C = ρkTk + c.

Proposition 3.1. Consider the continuous optimal control problem(2.1)-(2.2) and the associated
discretized optimal control problem(3.4)-(3.5), the matrix M defined in (3.6) is positive symmetric
definite and well-conditioned.

Proof. The positive symmetric definiteness is immediate,since M is a block diagonal matrix
with positive symmetric block diagonal elements.Thus for any z ∈ IR(n+m)s+m,zTMz > 0 and
M = MT .
Let b ∈R(n+m)s+m,then the system of linear equations

Mz = b (3.13)

is stable with respect to perturbation of the entries of M, z and b. The condition number K(M)
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is small depending on ratio λmax/λmin,where λmax and λmin are the maximum and minimum
eigenvalues of M.Hence M is well-conditioned.

The property of a problem of being well-conditioned is independent of the numerical method
that is being used to solve it. Since we have established the positive symmtric definiteness of M,
we state the following lemmas.

Lemma 1 (Dostiàl[5]). Let M ∈ IR((n+m)s+m)×((n+m)s+m) be a symmetric positive definite ma-
trix, let V ∈ IR(ns)×((n+m)s+m),ρ > 0, and let KerM ∩ KerV = 0. Then the penalized matrix
Aρ is positive definite.

Lemma 2 (Dostiàl[5]). Let M ∈ IR((n+m)s+m)×((n+m)s+m) be a symmetric positive definite ma-
trix, let V ∈ IR(ns)×((n+m)s+m),µ > 0 such that

zTMz ≥ µ ‖z‖ , z ∈ KerV

Then Aρ is positive definite for sufficiently large ρ

The lemmas ensure the sufficient condition for z∗ ∈ IR((n+m)s+m) to a be local minimum
point. We solve the unconstrained minimization equation(3.12) by conjugate gradient algorithm
in the inner loop and enforce the feasibility condition in the outer loop as stated in the following
algorithm.

Algorithm 1 Conjugate Gradient Algorithm for Constrained Optimal Control Problem

Step 1. Select a z0,0 ∈ IR(n+m)s+m ,c > 0and ρ0 > 0. Set k = 0.
Step 2. Set i = 0 and set p0 = −g0 = −∆Lρ(z0,0)

Step 3. Compute αi =
pT

i pi

pT
i Aρpi

Step 4. Set z0,i+1 = z0,i + αipi

Step 5. Compute ∆Lρ(zi+1

Step 6. If ∆Lρ(z0,i+1) = 0 and Vz0,i+1 = k stop;else go to step 7.
Step 7. If ∆Lρ(z0,i+1) 6= 0, set

gi+1 = ∆Lρ(z0,i+1),

pi+1 = −gi+1 + γipi, with γi =
gT

i+1
gi+1

gT
i gi

Step 8. Set i = i + 1, and go to step 3.
Step 9. Else if Vz0,i+1 6= k, set ρk+1 = cρk; set k = k + 1 and go to step 2.

4 Hypothetical Examples

In this section, we demonstrate the reliability of our approach to discretized optimal control prob-
lem to other methods. We compared our result with the solutions obtained by shooting method
for the dynamical equation(2.11).All computations in the following examples were performed in
the MATLAB environment, Version 7.6.0324 Release(2008a) running on a Microsoft Windows
V istaTM Home Premium operating system with an Intel(R)Pentium(R) Dual processor running
at 1.87GHz.
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Example 1. Consider the following constrained optimal control problem

min I(x, u) =
1∫

0

(x2
1 + x1x2 + x2

2 + 2u2
1 + 2u1u2 + u2

2) dt

such that

(4.1)

ẋ1 = x1 − x2 + 2u1 + u2

ẋ2 = x1 + x2 − u2
(4.2)

where x(0) = 12×1, P =

(
1 0.5

0.5 1

)

, Q =

(
2 1
1 1

)

, A =

(
1 −1
1 1

)

and B =

(
2 1
0 −1

)

.

By eq(2.10) M is given as :

M =











1 −1
... 1 0

1 1 0 1
· · · · · · · · ·
2 1 −1 −1

1 2
... 1 −1











(4.3)

By equation(2.13), we have the resulted non-linear, coupled system of ordinary differential equa-
tions;

ċ11 = 2 − 2c11 − c12 − c21 − c12c21 − c2
11 (4.4)

ċ12 = 1 − 2c12 + c11 − c22 − c11c12 − c12c22 (4.5)

ċ21 = 1 − 2c21 + c11 − c22 − c11c21 − c21c22 (4.6)

ċ22 = 2 − 2c22 + c12 + c21 − c12c21 − c2
22 (4.7)

Solving equations(4.4), (4.5), (4.6) and (4.7) by means of Backward-sweep Runge-Kutta
method, we obtained;

C(0) =

(
−26127

10000 − 2809
10000

− 2809
10000 −19187

10000

)

(4.8)

with this the analytical solution for Riccati differential equation can be obtained by He’s
variational iteration method[1] as follows;

c11,n+1(t) = c11,n(t) +

∫ t

0
λ11(s)

[
dc11

ds
− 2 + 2c̃11 + c̃12 + c̃21 + c̃12c̃21 + c̃2

11

]

ds (4.9)

c12,n+1(t) = c12,n(t) +

∫ t

0
λ12(s)

[
dc12

ds
− 1 + 2c̃12 − c̃11 + c̃22 + c̃11c̃12 + c̃12c̃22

]

ds (4.10)

c21,n+1(t) = c21,n(t) +

∫ t

0
λ21(s)

[
dc12

ds
− 1 + 2c̃21 − c̃11 + c̃22 + c̃11c̃21 + c̃21c̃22

]

ds (4.11)

c22,n+1(t) = c22,n(t) +

∫ t

0
λ22(s)

[
dc11

ds
− 2 + 2c̃22 − c̃12 − c̃21 + c̃12c̃21 + c̃2

22

]

ds (4.12)

(4.13)

where c̃ij,n are considered as restricted variation i.e. δcij,n = 0 and t ∈ [0, 1]. Its stationary
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conditions can be obtained as:

1 + λ11(t) = 0, λ́11(t) |s=t = 0, (4.14)

1 + λ12(t) = 0, λ́12(t) |s=t = 0, (4.15)

1 + λ21(t) = 0, λ́21(t) |s=t = 0, (4.16)

1 + λ22(t) = 0, λ́22(t) |s=t = 0. (4.17)

Thus, the Lagrange multipliers are λ11(s), λ12(s), λ21(s) and λ22(s) = −1 [1].
We can take the linearized solution c11 = 1

2(2 − Ae−2t), c12 = 1
2(1 − Be−2t), c21 = 1

2(1 − Ce−2t)
and c22 = 1

2(2−De−2t) as the initial approximation, the condition C(0) gives us A = −36117
10000 ,B =

C = − 7809
10000 and D = −29187

10000 .Then we get:

c11,1(t) = 1 − t −
36117

10000
e−2t +

54780183

40000000
−

95661

20000
e−2t −

136541817

40000000
e−4t +

5

8
ln (e−2t)

c12,1(t) =
1

2
−

7809

10000
e−2t +

39605133

50000000
−

2067

1000
e−2t +

63744867

50000000
e−4t +

1

2
ln (e−2t)

c21,1(t) =
1

2
−

7809

10000
e−2t +

39605133

50000000
−

2067

1000
e−2t +

63744867

50000000
e−4t +

1

2
ln (e−2t)

c22,1(t) = 1 + t −
29187

10000
e−2t +

1968771

8000000
+

10113

4000
e−2t +

18257229

8000000
e−4t +

5

8
ln (e−2t)

In same manner,the rest of the components of the iteration formulae can be obtained using MAT-
LAB package. Hence by equation(2.12), µ(0)T = (−1814

625
−21947
10000 )T . Thus, the solution is given

as;

x1(t) =

(
233

1000
e(

1071

625 )t +
9767

10000
e−( 1071

625 )t

)

cos

((
9677

10000

)

t

)

−

(
723

5000
e(

1071

625 )t +
5833

5000
e−( 1071

625 )t

)

sin

((
9677

10000

)

t

)

(4.18)

x2(t) =

(
7

40
e(

1071

625 )t +
33

40
e−( 1071

625 )t

)

cos

((
9677

10000

)

t

)

+

(
261

5000
e(

1071

625 )t +
8979

10000
e−( 1071

625 )t

)

sin

((
9677

10000

)

t

)

(4.19)

µ1(t) =

(
259

5000
e(

1071

625 )t −
14771

5000
e−( 1071

625 )t

)

cos

((
9677

10000

)

t

)

−

(
367

5000
e(

1071

625 )t −
31177

10000
e−( 1071

625 )t

)

sin

((
9677

10000

)

t

)

(4.20)

µ2(t) =

(
381

2500
e(

1071

625 )t −
23471

10000
e−( 1071

625 )t

)

cos

((
9677

10000

)

t

)

+

(
1

80
e(

1071

625 )t −
1293

625
e−( 1071

625 )t

)

sin

((
9677

10000

)

t

)

(4.21)
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using equation(2.9), the control variables are given as

u1(t) =

(
1021

10000
e(

1071

625 )t −
26507

10000
e−( 1071

625 )t

)

cos

((
9677

10000

)

t

)

+

(

−
61

2000
e(

1071

625 )t +
1049

2000
e−( 1071

625 )t

)

sin

((
9677

10000

)

t

)

(4.22)

u2(t) =

(

−
381

2500
e(

1071

625 )t +
23471

10000
e−( 1071

625 )t

)

cos

((
9677

10000

)

t

)

+

(

−
1

80
e(

1071

625 )t +
1293

625
e−( 1071

625 )t

)

sin

((
9677

10000

)

t

)

(4.23)

The analytic objective value is I = 2.5466. The objective value obtained by shooting method[4]
is I = 2.5837, why the objective value by conjugate gradient method(CGM) is I = 2.5820. The
graphs below show the agreement of the numerical methods with the analytical solution. The CGM
solution agrees more favourably compared with the shooting method and most importantly at the
boundary conditions.
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Figure 1: The graphs of state variables x1(t) and x2(t) against time for example(1)

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

t

u
1

(t
)

 

 

Analytical Method
Shooting Method
CG Method

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2

2.5

t

u
2

(t
)

 

 

Analytical Method
Shooting Method
CG Method

Figure 2: The graphs of control variables u1(t) and u2(t) against time for example(1)
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Example 2. Consider the constrained optimal control problem

min I(x, u) =
1∫

0

(2x2
1 + x1x2 + x2

2 + u2
1 + 1

2u1u2 + u2
2) dt

such that

(4.24)

ẋ1 = 2x1 − x2 + u1 + u2

ẋ2 = x1 − x2 − u1
(4.25)

where x(0) = 12×1, P =

(
2 1

2
1
2 1

)

, Q =

(
1 1

4
1
4 1

)

, A =

(
2 −1
1 −1

)

and B =

(
1 1
−1 0

)

. By

eq(2.10) M is given as :

M =











2 −1
... 4

5 −2
5

1 −1 −2
5

8
15

· · · · · · · · ·
4 1 −2 −1

1 2
... 1 1











(4.26)

By equation(2.13), we have the resulted non-linear, coupled system of ordinary differential equa-
tions;

ċ11 = 4 − 4c11 − c12 − c21 +
2

5
c11c12 +

2

5
c11c21 −

8

15
c12c21 −

4

5
c2
11 (4.27)

ċ12 = 1 − c12 + c11 − c22 −
4

5
c11c12 +

2

5
c11c22 −

8

15
c12c22 +

2

5
c2
12 (4.28)

ċ21 = 1 − c21 + c11 − c22 −
4

5
c11c21 +

2

5
c11c22 −

8

15
c21c22 +

2

5
c2
21 (4.29)

(4.30)

ċ22 = 2 + 2c22 + c12 + c21 −
4

5
c12c21 +

2

5
c12c22 +

2

5
c21c22 −

8

15
c2
22 (4.31)

(4.32)

Solving equations(4.27), (4.28), (4.29) and (4.31) as in example 1,we obtained

C(0) =

(
−52385

10000
3979
10000

3979
10000 − 8521

10000

)

(4.33)
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Hence by equation(2.12), µ(0)T = (−24241
5000 − 113

250)T . Thus, the solution is given as;

x1(t) =

(
301

10000
e(

20483

10000)t +
9699

10000
e−( 20483

10000)t

)

cos

((
9809

10000

)

t

)

−

(
571

10000
e(

20483

10000)t +
183

250
e−( 20483

10000)t

)

sin

((
9809

10000

)

t

)

(4.34)

x2(t) =

(
277

10000
e(

20483

10000)t +
4861

5000
e−( 20483

10000)tt

)

cos

((
9809

10000

)

t

)

−

(
23

5000
e(

20483

10000)t −
37071

10000
e−( 20483

10000)t

)

sin

((
9809

10000

)

t

)

(4.35)

µ1(t) =

(
27

1250
e(

20483

10000)t −
24349

5000
e−( 20483

10000)t

)

cos

((
9809

10000

)

t

)

−

(
503

10000
e(

20483

10000)t −
2639

500
e−( 20483

10000)t

)

sin

((
9809

10000

)

t

)

(4.36)

µ2(t) =

(
1101

10000
e(

20483

10000)t −
5621

10000
e−( 20483

10000)t

)

cos

((
9809

10000

)

t

)

−

(
83

10000
e(

20483

10000)t +
9357

2500
e−( 20483

10000)t

)

sin

((
9809

10000

)

t

)

(4.37)

using equation(2.9), the control variables are given as

u1(t) =

(
501

10000
e(

20483

10000)t −
8241

5000
e−( 20483

10000)t

)

cos

((
9809

10000

)

t

)

+

−

(
157

10000
e(

20483

10000)t 2567

625
e−( 20483

10000)t

)

sin

((
9809

10000

)

t

)

(4.38)

u2(t) =

(
233

10000
e(

20483

10000)t −
5057

2500
e(

20483

10000)t

)

cos

((
9809

10000

)

t

)

−

(
53

2500
e(

20483

10000)t −
16123

10000
e−( 20483

10000)t

)

sin

((
9809

10000

)

t

)

(4.39)

The analytic objective value is I = 2.6460. The objective value obtained by shooting method
is I = 2.6965, why the objective value by conjugate gradient method(CGM) is I = 2.6946. The
graphs below shows the solutions of the numerical methods with the analytical solution. The CGM
solution agrees more favourably compared with the shooting method and most importantly at the
boundary conditions as in example 1 above.

5 Conclusion

The results obtained by the discretized continuous algorithm via quadratic programming for
solving constrained optimal control problems is inevitable in real-world problems, where they
are becoming too complex to allow analytical solution. The algorithm converges in four cycles
and is well suited for a certain class of discretized constrained optimal control problems. The
conjugate gradient method(CGM) competes more favourably than the shooting method since its
objective values 2.5820 and 2.6946 are much closer to the analytic solutions 2.5466 and 2.6460
than the shooting method’s objective values 2.5837 and 2.6965 repectively, more importantly
at the boundary points of the system variables. It demonstrates superiority over other method
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Figure 3: The graphs of state variables x1(t) and x2(t) against time for example(2)
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Figure 4: The graphs of control variables u1(t) and u2(t) against time for example(2)

such as function space algorithm[17] and partial conjugate gradient method[2] in the sense that
step length is computed in finite arithmetic and both the gradient and hessian are easily com-
puted. Also, it is preferable to other numerical approaches that inculcate conjugate gradient
method[9],[13], and [14] as tool for determining the local optimal point. The algorithm is flex-
ible and it can be adopted for optimal control problems constrained by non-linear differential
equation.
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