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Abstract

In this paper, by using a modified BFGS (MBFGS) update, we propose a structured
MBFGS update for the nonlinear least squares problem. We then propose a hybrid method
that combines the Gauss-Newton method with the structured MBFGS method for solv-
ing the nonlinear least squares problem. We show that the hybrid method is globally and
quadratically convergent for zero residual problems, and globally and superlinearly con-
vergent for the nonzero residual problems. We also show that the unit step is essentially
accepted. We also present some preliminary numerical results which show that the hybrid
method is comparable with existing structured BFGS methods.

Keywords: least squares problems, Gauss-Newton method, structured MBFGS method,
global convergence

1. Introduction

Let ri : Rn → R, i = 1, . . . , m be twice continuously differentiable. Consider the following
nonlinear least squares problem:

min
x∈Rn

f(x)
4
=

1
2
R(x)T R(x) =

1
2

m∑

i=1

ri(x)2, (1.1)

where R(x) = (r1(x), . . . , rm(x))T . Problem (1.1) is called zero residual if at a solution x∗,
R(x∗) = 0. Otherwise, it is called nonzero residual.
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By direct computation, it is easy to obtain the following expression for the gradient and
Hessian matrix of f at x:

g(x)
4
= ∇f(x) = J(x)T R(x), G(x)

4
= ∇2f(x) = C(x) + S(x),

where J(x) stands for the Jacobian matrix of R(x) at x,

C(x) = J(x)T J(x) and S(x) =
m∑

i=1

ri(x)∇2ri(x).

The structured quasi-Newton methods for solving (1.1) are extensions of quasi-Newton
methods for unconstrained optimization problems. They exploit the structure of G(x). Specif-
ically, a structured quasi-Newton method uses the first order information of C(x) exactly
while approximates the second order term S(x) by some matrix A(x) such that matrix B =
C(x) + A(x) is an approximation of G(x).

Let xk be the current iterate. Following Dennis [5], we have

G(xk+1)sk ≈ ŷk,

where sk = xk+1 − xk and

ŷk = J(xk+1)T J(xk+1)sk + (J(xk+1)− J(xk))T R(xk+1).

Thus, as an approximation of S(xk), matrix Ak should be updated such that matrix Ak+1

satisfies the secant condition

Ak+1sk = (J(xk+1)− J(xk))T R(xk+1). (1.2)

The structured quasi-Newton methods have been studied by many authors [1, 2, 6, 7, 8, 9,
12, 19, 20]. Dennis, Martinez, and Tapia [6] described the structure principle and proved the
superlinear convergence of the structured BFGS method. Al-Baili and Fletcher [1], Fletcher
and Xu [11] and Lukšan and Spedicato [15] proposed the hybrid method which combines the
Gauss-Newton method with the BFGS method. This hybrid method is superlinearly convergent
for nonzero problems and quadratically convergent for zero residual problems. Huschens [12]
derived a factorized self-adjusting structured quasi-Newton method. This factorized method is
superlinearly convergent for nonzero problems and quadratically convergent for zero residual
problems. Recent progress in factorized quasi-Newton methods can be found in [18, 21, 22, 24].

As far as we know, there is no global convergence result for the structured quasi-Newton
methods. A major difficulty for the globalization of the structured quasi-Newton methods
lies in that the direction generated by the structured quasi-Newton method may not be a
descent direction of f . It is well-known that in a standard quasi-Newton method such as
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the BFGS or the DFP method, if the Wolfe-Powell type line search is used, the generated
iterative matrices are positive definite and quasi-Newton directions are descent directions for the
objective function f . For structured quasi-Newton methods, however, Wolfe-Powell types line
search is not enough to guarantee the positive definiteness of the iterative matrices. Therefore
the structured quasi-Newton directions may not be descent directions of f . Another difficulty in
globalizing the structured quasi-Newton methods lies in the non-convexity of f . The standard
quasi-Newton methods including the BFGS method are not globally convergent for non-convex
minimizations [4].

In this paper, by the use of a modified BFGS method proposed by Li-Fukushima [13], we
develop a structured MBFGS method. An advantage of this structured MBFGS method is
that the iterative matrices are positive definite whatever line search is used. By combining
this method with the Gauss-Newton method, we propose a hybrid method. The proposed
method is globally and superlinearly convergent for nonzero residual problems and is globally
and quadratically convergent for zero residual problems. Indeed, we will show that when k is
sufficiently large, the proposed hybrid method reduces to the structured MBFGS method if the
problem is nonzero residual, or to the Gauss-Newton method if the problem is zero residual.

In the next section, we propose the method and establish its global convergence. In Sections
3, we prove the superlinear/quadratic convergence of the proposed method. We will also show
the acceptance of the unit step in Section 3. In Section 4, we present some preliminary numerical
results.

2. The Algorithm and Its Global Convergence

As described in Section 1, in a structured quasi-Newton method, the approximation Bk =
C(xk)+Ak of G(xk) is computed via updating Ak such that the secant equation (1.2) is satisfied.
Let us recall the structured secant method by Dennis-Martinez-Tapia [6]. At iteration k, we
let

sk = xk+1 − xk, ŷ#
k = (Jk+1 − Jk)T Rk+1, ŷk = C(xk+1)sk + ŷ#

k .

Let
Bk+1 = C(xk+1) + Ak+1. (2.1)

where Ak+1 is an approximation of S(xk+1) which is updated by

Ak+1 = Ak +4(sk, ŷ
#
k , Ak, vk),

where 4 is defined by

4(s, y, B, v) =
(y −Bs)vT + v(y −Bs)T

vT s
− (y −Bs)T svvT

(vT s)2
.
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The relation between Bk and Bk+1 is

Bk+1 = Bs
k +4(sk, ŷk, B

s
k, vk),

where Bs
k = C(xk+1) + Ak. The BFGS update corresponds to the case where vk = ŷk +

[ŷT
k sk/(sT

k Bs
ksk)]1/2Bs

ksk, which is stated as follows.

Bk+1 = Bs
k −

Bs
ksks

T
k Bs

k

sT
k Bs

ksk
+

ŷkŷ
T
k

ŷT
k sk

. (2.2)

This structured quasi-Newton method is locally superlinearly convergent [6]. Moreover,
if xk is close to a solution x∗ where G(x∗) is positive definite, Bk is positive definite under
some conditions. However, when xk is far away from x∗, it is not know under what conditions
Bk is positive definite. We note that the update formula (2.2) is different from the standard
BFGS formula due to the difference between Bs

k and Bk and the different definition of ŷk. It is
well-known that the standard BFGS update can guarantee the positive definiteness of Bk+1 if
Bk is positive definite and ŷT

k sk > 0. The latter condition is satisfied if the Wolfe-Powell line
search is used. It is well-known that when f is twice continuously differentiable and convex,
then the standard BFGS method with Wolfe-Powell line search is globally convergent [17].
However, when f is not convex, the standard BFGS method may fail to be globally convergent
[4]. On the other hand, the modified BFGS (MBFGS) method proposed by Li-Fukushima [13]
is globally and superlinearly convergent even if f is not convex. We now exploit the idea of
this MBFGS method to develop a structured MBFGS method.

We let
y#

k = ŷ#
k + tksk = (Jk+1 − Jk)T Rk+1 + tksk

and
yk = ŷk + tksk = C(xk+1)sk + y# = C(xk+1)sk + (Jk+1 − Jk)T Rk+1 + tksk,

where

tk = C‖g(xk+1)‖α + max{− ŷT
k sk

sT
k sk

, 0},

and α is a positive constant.
Let Bk+1 be defined by (2.1) and Ak+1 be updated by

Ak+1 = As
k + ∆(sk, y

#
k , As

k, v̂k), (2.3)

where As
k = Bk − C(xk+1). With this update strategy, we can show that Bk and Bk+1 satisfy

the standard BFGS, namely,

Bk+1 = Bk +4(sk, yk, Bk, vk). (2.4)
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Indeed, we have
Bk+1 = C(xk+1) + Ak+1 = Bk +4(sk, y

#
k , As

k, vk). (2.5)

We also have
y#

k −As
ksk = yk − C(xk+1)sk −As

ksk = yk −Bksk.

This implies
4(sk, y

#
k , As

k, vk) = 4(sk, yk, Bk, vk).

Substituting this to (2.5), we get (2.4). In this paper, we only consider the modified BFGS
(MBFGS) update in which vk = yk + [yT

k sk/(sT
k Bksk)]1/2Bksk, namely,

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

. (2.6)

An advantage of this MBFGS update is that the inequality yT
k sk ≥ C‖gk‖α‖sk‖2 > 0 holds

for all k. Consequently, Bk+1 is positive definite as long as Bk is positive definite. This property
is independent with line search used.

The above MBFGS update is different from the MBFGS method proposed by Li-Fukushima
[13]. The difference lies in the definition of yk. In the MBFGS update formula in [13], yk =
∇f(xk+1) − ∇f(xk) + tksk. It needs to be pointed out that the parameter tk in (5.2) of [13]
neglected a factor ‖gk‖−1. The above tk is the correct one.

It can be shown that under appropriate conditions, the above structured MBFGS method is
globally and superlinearly convergent whether the problem is zero or nonzero residual. To make
the method maintain quadratic convergence property for zero residual problems, we adopt a
hybrid strategy by combining the Gauss-Newton method with the structured BFGS method.
This strategy was introduced by Fletcher-Xu [11].

Suppose x∗ is a solution of (1.1) at which g(x∗) = 0 and G(x∗) is positive define. If {xk}
converges to x∗ and f(x∗) 6= 0, then

lim
k→∞

f(xk)− f(xk+1)
f(xk)

= 0.

If {xk} converges to x∗ superlinearly and f(x∗) = 0, then

lim
k→∞

f(xk)− f(xk+1)
f(xk)

= 1.

Based on above observation, Fletcher and Xu [11] adopt the quantity f(xk)−f(xk+1)
f(xk) to distinguish

between the zero residual problem and the nonzero residual problem. We use the same strategy
to develop a hybrid method. The steps of the method are stated as follows.
Algorithm 1 (A Gauss-Newton-MBFGS Method)
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Step 0 Given constants σ ∈ (0, 1), ρ ∈ (0, 1) and ε ∈ (0, 1). Let x0 ∈ Rn. Let A0 ∈ Rn×n

be a symmetric matrix such that matrix B0
4
= C(x0)+A0 is positive definite. Let k := 0.

Step 1 Stop if ‖g(xk)‖ = 0.

Step 2 Find quasi-Newton direction pk by solving the following system of linear equations

Bkp + g(xk) = 0. (2.7)

Step 3 Find the minimum nonnegative number j, say jk, such that

f(xk + ρjpk) ≤ f(xk) + σρjg(xk)T pk. (2.8)

Let λk = ρjk .

Step 4 Let the next iterate be xk+1 = xk + λkpk.

Step 5 Update Bk to get Bk+1 by

Bk+1 =





C(xk+1), if f(xk)− f(xk+1)
f(xk)

≥ ε,

C(xk+1) + Ak+1, otherwise,

where Ak+1 is determined by (2.3) with vk = yk + [yT
k sk/(sT

k Bksk)]1/2Bksk.

Step 6 Let k := k + 1. Go to Step 1.

Remark Note that for some k, matrix C(xk+1) may be singular or nearly singular. In this
case, we may use Bk+1 = C(xk+1) + ζkI instead of C(xk+1) if [f(xk) − f(xk+1)]/f(xk) ≥ ε.
The parameter ζk can be chosen as

ζk =

{
β‖R(xk+1)‖γ , if C(xk+1) is nearly singular,
0, otherwise

with constants β > 0 and γ ∈ [1, 2]. The convergence theory of the related method can be
established in a similar way to Theorems 2.1 and 3.2. More study about this kind method can
be found in [23] and [10].

We conclude this section by proving the global convergence of Algorithm 1.
Define the index set

K = {k | f(xk)− f(xk+1)
f(xk)

≥ ε}. (2.9)

Let Ω be the level set defined by

Ω = {x ∈ Rn | f(x) ≤ f(x0)}.
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In the latter part of the paper, we always assume that the level set Ω is bounded and J(x)
is Lipschitz continuous on Ω. It is clear that the sequence {xk} generated by Algorithm 1 is
contained in Ω and hence bounded. Moreover, g(x) is Lipschitz continuous on Ω, i.e., there
exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn, (2.10)

The following theorem establishes the global convergence of Algorithm 1.

Theorem 2.1 Let {xk} be generated by Algorithm 1. Then we have

lim inf
k→∞

‖g(xk)‖ = 0. (2.11)

Proof Let the index set K be defined by (2.9). We first consider the case where K is
infinite. Let K = {k0 < k1 < · · · }. It is obvious that

f(xki+1) ≤ (1− ε)f(xki
), i = 0, 1, 2, . . . .

Since sequence {f(xk)} is nonincreasing, the last inequality implies

f(xki+1) ≤ (1− ε)f(xki−1+1), i = 1, 2, . . . .

This means that the subsequence {f(xki+1)} converges to zero and hence the whole sequence
{f(xk)} converges to zero. Consequently, every accumulation point of {xk} is a global solution
of problem (1.1). In particular, (2.11) holds.

Next, suppose that K is finite. Without loss of generality, we suppose that K is empty.
For the sake of contradiction, we assume that (2.11) does not hold. This means that there is a
constant η > 0 such that ‖g(xk)‖ ≥ η for all k. By the definition of yk and sk and the Lipschitz
continuity of J(x), it is not difficult to find constants M1 ≥ m1 > 0 such that

yT
k sk

‖sk‖2
≥ m1,

‖yk‖2

yT
k sk

≤ M1.

It follows from Theorem 2.1 of [3] that there are positive constants a1, a2 and a3 such that for
every k > 0, inequalities

a1‖pi‖2 ≤ pT
i Bipi ≤ a2‖pi‖2, ‖Bipi‖ ≤ a3‖pi‖ (2.12)

hold for at least a half of the indices i ≤ k. Let K1 be the set of indices such that (2.12) holds.
Then K1 is infinite. By the use of Lemma 5.2 of [13], there is a constant λ > 0 such that λi ≥ λ

for all i ∈ K1.
On the other hand, it is easy to see from (2.8) and the monotonicity of {f(xk)} that

limi→∞ λig(xi)T pi = 0, which implies limi∈K1, i→∞ g(xi)T pi = 0. This together with (2.7) and
(2.12) implies limi∈K1, i→∞ ‖pi‖ = 0 as well as limi∈K1, i→∞ ‖g(xi)‖ = 0, which is a contradic-
tion. Consequently, (2.11) holds. ¤
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3. The Unit Step and Convergence Rate

In this section, we show that the unit step is accepted for all k sufficiently large. We then show
that Algorithm 1 is superlinearly convergent for nonzero residual problems and is quadratically
convergent for zero residual problems. To this end, we need the following assumption.
Assumption A

(1) The sequence {xk} generated by Algorithm 1 converges to x∗ at which g(x∗) = 0 and
G(x∗) is positive definite.

(2) The second derivative G is Hölder continuous at x∗, i.e., there exist constants ν > 0
and M > 0 such that

‖G(x)−G(x∗)‖ ≤ M‖x− x∗‖ν , (3.1)

for all x in a neighborhood of x∗.
It is clear that condition (1) of Assumption A implies that G(x) is uniformly positive definite

in a neighborhood N(x∗) of x∗. That is, there exist constants Λ ≥ λ > 0 such that

λ‖p‖2 ≤ pT G(x)p ≤ Λ‖p‖2, ∀x ∈ N(x∗). (3.2)

In particular, (3.2) holds for all xk when k is sufficiently large. Therefore,

‖g(xk)‖ = ‖g(xk)− g(x∗)‖ ≥ λ‖xk − x∗‖

holds for all k sufficiently large. It is also not difficult to see that there are positive constants
m2 ≤ M2 and an integer k0 ≥ 0 such that inequalities

yT
k sk

‖sk‖2
≥ m2,

‖yk‖2

yT
k sk

≤ M2.

hold for all k ≥ k0.

Lemma 3.1 There exists positive constants βi, i = 1, 2, 3, such that for every t > k0, the
number of k for which inequalities

β1‖sk‖2 ≤ sT
k Bksk ≤ β2‖sk‖2 and ‖Bksk‖ ≤ β3‖sk‖ (3.3)

hold is at least dt/2e − k0.

Proof Let K be defined by (2.9). If f(x∗) 6= 0, then K must be finite and the method
reduces to the MBFGS method with Bk updated by (2.6). Inequalities in (3.3) follow from
Theorem 2.1 of [3]. We turn to the case f(x∗) = 0. Without loss of generality, we assume
k0 = 0. By condition (1) of Assumption A, matrix C(xk) is uniformly positive definite. Let
Kt = {k ∈ K | k ≤ t} and K̄t = {1, 2, . . . , t}\Kt. If the number of elements in K̄t is less than
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the number of elements in Kt, then the number of k ≤ t for which Bk = C(xk) is uniformly
positive definite is at least dt/2e. This implies that inequalities (3.3) hold for all k ∈ Kt with
some constants βi, i = 1, 2, 3.

Suppose that the number of elements in Kt is less than the number of elements in K̄t. By
Step 5 of Algorithm 1, {Bk}k∈Kt is bounded. In a way similar to the proof of Theorem 2.1
in [3], it is not difficult to prove that the number of k for which inequalities (3.3) with some
constants βi, i = 1, 2, 3 are satisfied is at least d(t − kt)/2e, where kt denotes the number of
elements in Kt. On the other hand, for k ∈ Kt, matrix Bk = C(xk) is uniformly positive
definite, which implies that inequalities (3.3) are also satisfied for all k ∈ Kt (with smaller β1

and larger β2 and β3 if necessary). Therefore, the number of k ≤ t for which inequalities (3.3)
are satisfied is at least dt/2e. The proof is complete. ¤

The following lemma can be proved in a way similar to the proof of Theorem 3.8 in [14].

Lemma 3.2 Let Assumption A hold. Then we have

∞∑

k=0

‖xk − x∗‖ν < ∞. (3.4)

For the sake of convenience, we introduce some notations. Let Hk be the inverse of Bk and
Q = G(x∗)−1/2. Let ‖ · ‖F denote the Frobenius norm of matrices. For a matrix A, we let
‖A‖Q = ‖QT AQ‖F . Denote

τk = max{‖xk − x∗‖ν , ‖xk+1 − x∗‖ν} and

and

µk =
‖Q−1[Hk −G(x∗)−1]yk‖
‖Hk −G(x∗)−1‖Q−1‖Qyk‖ . (3.5)

Let γk = gk+1 − gk. We get

γk − yk = JT
k+1Rk+1 − JT

k Rk − [JT
k+1Jk+1sk + (Jk+1 − Jk)T Rk+1 + tksk]

= JT
k (Rk+1 −Rk)− JT

k+1Jk+1sk − tksk

= JT
k+1(Rk+1 −Rk − Jk+1sk) + (Jk − Jk+1)T (Rk+1 −Rk)− tksk.

Therefore, there exist some constants M2 > 0 and M3 > 0 such that for all k /∈ K sufficiently
large,

‖γk − yk‖ ≤ ‖Jk+1‖‖Rk+1 −Rk − Jk+1sk‖+ ‖Jk − Jk+1‖‖Rk+1 −Rk‖+ tk‖sk‖
≤ M2‖sk‖2 + tk‖sk‖ ≤ M2‖sk‖2 + M3‖sk‖α+1. (3.6)
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Moreover, we have

‖yk −G(x∗)sk‖ ≤ ‖yk − γk‖+ ‖γk −G(x∗)sk‖
≤ M2‖sk‖2 + M3‖sk‖α+1 + M‖sk‖ν+1 (3.7)

holds for all k /∈ K sufficiently large.
By the use of (3.6) and (3.7), similar to the proof of Lemma 3.7 in [13], it is not difficult to

prove the following lemma.

Lemma 3.3 Let Assumption A hold. Then there are positive constants bi, i = 1, 2, · · · , 7 and
ξ ∈ (0, 1) such that for all k /∈ K sufficiently large,

‖Bk+1 −G(x∗)‖Q ≤ (1 + b1τk)‖Bk −G(x∗)‖Q + b2τk + b3tk (3.8)

and

‖Hk+1 −G(x∗)−1‖Q−1 ≤ (
√

1− ξµ2
k + b4τk + b5tk)‖Hk −G(x∗)−1‖Q−1

+ b6τk + b7tk. (3.9)

The following theorem shows that the Dennis-Moré condition holds.

Theorem 3.1 Let Assumption A hold. Then the Dennis-Moré condition

lim
k→∞

‖(Bk −G(x∗))sk‖
‖sk‖ = 0 (3.10)

holds.

Proof It is clear that for all k ∈ K,

‖Bk+1 −G(x∗)‖Q = ‖C(xk+1)−G(x∗)‖Q

and
‖Hk+1 −G(x∗)−1‖Q−1 = ‖C(xk+1)−1 −G(x∗)−1‖Q−1 . (3.11)

We also have that for all k 6∈ K, inequalities (3.8) and (3.9) hold. By inequality (3.4) and the
twice continuous differentiability of the residual function R, it is not difficult to deduce that

∞∑

k=0

τk < ∞ and
∞∑

k=0

tk < ∞.

This implies that the sequences {‖Bk−G(x∗)‖Q} and {‖Hk−G(x∗)−1‖Q−1} are convergent. In
particular, sequences {‖Bk‖} and {‖Hk‖} are bounded. Taking limits in both sides of (3.9) and
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(3.11), we get either limk→∞ ‖Hk − G(x∗)−1‖Q−1 = 0 or limk→∞ ξk = 0. Taking into account
that {‖Bk‖} and {‖Hk‖} are bounded, we get

lim
k→∞

‖[Hk −G(x∗)−1]yk‖
‖Qyk‖ = 0. (3.12)

This together with (2.7) and Assumption A implies (3.10). ¤

The next theorem shows that Algorithm 1 is superlinearly convergent for nonzero residual
problems and is quadratically convergent for zero residual problems. Moreover, the unit step
is accepted for all k sufficiently large.

Theorem 3.2 Let Assumption A hold. If we choose σ ∈ (0, 1/2), then {xk} converges to x∗

superlinearly if f(x∗) 6= 0 and quadratically if f(x∗) = 0. Moreover, when k is sufficiently large,
we always have λk = 1.

Proof It is well-known that (3.10) guarantees that a quasi-Newton method with unit
stepsize converges superlinearly. It then suffices to show that when k is sufficiently large, the
unit stepsize is accepted. Since ‖pk‖ = ‖Hkgk‖ → 0, by Taylor’s expansion, it is not difficult
to get from (2.7) and (3.10) that

f(xk + pk)− f(xk)− σg(xk)T pk = −(
1
2
− σ)pT

k G(x∗)pk + o(‖pk‖2).

Therefore, we have for all k sufficiently large,

f(xk + pk)− f(xk)− σg(xk)T pk ≤ 0,

which implies that λk = 1 for all k sufficiently large. By (3.10) again, {xk} is at least superlin-
early convergent.

If f(x∗) = 0, we have by the superlinear convergence of {xk} that

lim
k→∞

f(xk)− f(xk+1)
f(xk)

= 1. (3.13)

This shows that when k is sufficiently large, we always have k ∈ K. In other words, Algorithm
1 reduces to the Gauss-Newton method. Consequently, {xk} is quadratically convergent. ¤

Theorem 3.2 shows the superlinear/quadratic convergence property of Algorithm 1. Note
that the superlinear convergence of {xk} yields (3.13). It is easy to see from Step 5 of Algorithm
1 that when k is sufficiently large, Algorithm 1 reduces to the MBFGS method if f(x∗) 6= 0, or
the Gauss-Newton method if f(x∗) = 0. The MBFGS method and the Gauss-Newton method
will not be used alternatively when k is sufficiently large.
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4. Numerical Experiments

In this section, we present some preliminary numerical experiments and compare the per-
formance of Algorithm 1 with some existing structured BFGS methods. The parameters in
Algorithm 1 are specified as follows. We take ε = 0.2, σ = 0.1 and ρ = 0.36. We choose the
parameter α by the rule:

α =

{
0.01, if ‖g(xk+1)‖ > 1,

2, otherwise.

We let the constant C in the update formula be C = 10−6 if ŷT
k sk > 0, and C = 1 elsewhere.

The initial matrix A0 is set to be A0 = 0.1f
1
2
0 I if JT

0 J0 is nearly singular. Otherwise, we simple
take A0 = 0. The subproblems were solved by factorizing Bk = LT

k DkL
k, where Lk is an upper

triangle matrix and Dk is a diagonal matrix. In the case where Gauss-Newton step is used and
JT

k Jk is nearly singular, we use a modified Gauss-Newton step, namely,

Bk = JT
k Jk + 0.1f

1
2
k I.

We stop the iteration process if the inequality ‖g(xk)‖ < 10−4, or ‖f
1
2
k ‖ < 10−6 or f(xk) −

f(xk+1) < 10−15 max{1, f(xk+1)} is satisfied. This stopping criterion was used in [1]. We also
stop the algorithm if the number of iteration is greater than 300. The computation was done
in a personal computer (Pentium IV, 1.8GHz with relation precision 2−52 = 2.2× 10−16) using
Matlab 6.5.

We first test the performance of Algorithm 1 on 34 problems that comes from [16]. For each
test problem, we test the algorithm starting from different initial points. These initial points
are x0, x1 = 100x0, x2 = −x0 and x3 = −100x0, where x0 was the given initial point in [16].
We then test the performance of Algorithm 1 on the following three problems that comes from
[1].

Problem I (Signomial problem)

ri(x) = −ei +
l∑

k=1

cik

n∏

j=1

x
aijk

j i = 1, 2, · · · ,m.

Problem II (Exponential problem)

ri(x) = −ei +
l∑

k=1

cikexp(
n∑

j=1

aijkxj) i = 1, 2, · · · ,m.

Problem III (Trigonometric problem)

ri(x) = −ei +
n∑

j=1

(aijsinxj + bijcosxj) i = 1, 2, · · · ,m.
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The parameters ei, aijk, cik, aij , bij in Problems I – III are generated randomly as described in
[1]. While testing the performance of Algorithm 1 on these problems, we also choose the initial
points x0, x1 = 100x0, x2 = −x0 and x3 = −100x0, where x0 was the given initial point in [1].

Table I shows the performance of Algorithm 1 on the above 37 problems where the columns
have the following meaning:

Prob: the name of the test problem.
Dim: the dimension (n−m) of the problem.
Init: the initial point.
It: the number of iterations.
GN: the number of iterations where the Gauss-Newton step is used.
Fun: the number of function evaluations.
f1/2: the final value of

√
f(x).

‖g‖: the final value of ‖∇f(x)‖.
Un: the number of unit steps.

We see from Table I that for most test problems and most initial points, Algorithm 1 suc-
cessfully terminates at stationary points of the problems. In general, for zero-residual problems
and small residual problems, the Gauss-Newton step was used very often, and for large residual
problems, the MBFGS step was used much. The unit step was generally accepted very often.
We also observe that Algorithm 1 fails for a few problems with some initial points such as
problem JENSAM with x1, problem OSB1 with x3 etc.. We use the symbol “-” to denote the
case where Algorithm 1 fails. It should be pointed out that for all the test problems and all
initial points, the nonconvergence of Algorithm 1 was caused by overflow.

We then compare the performance of Algorithm 1 with the method by Al-Baali, Fletcher
and Xu (see [1, 11]), which we simplify as AFX. In the method AFX, the update rule of matrix
Bk is given by

Bk+1 =





C(xk+1), if f(xk)− f(xk+1)
f(xk)

≥ ε,

Bk − Bksks
T
k Bk

sT
k Bksk

+ yky
T
k

yT
k sk

, otherwise,
(4.1)

where

yk =

{
ynew, if sT

k ynew ≥ 0.01sT
k yold,

yold, otherwise,
(4.2)

ynew = C(xk+1)sk + (J(xk+1 − Jk)T R(xk+1),

and

yold = gk+1 − gk.

We also compare the algorithm with the method by Huschens (see [12]), which we simplify

13
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as Husch. The update rule of matrix Bk in the method Husch is stated as follows.

y#
k = (Jk+1 − Jk)T Rk+1

‖R(xk)‖ ,

yk = C(xk+1)sk + ‖R(xk+1)‖y#
k ,

Bs
k = C(xk+1) + ‖R(xk+1)‖Ak,

Ak+1 = Ak +4(sk, y
#
k , Ak, v(sk, yk, B

s
k)),

Bk+1 = C(xk+1) + ‖R(xk+1)‖Ak+1.

We note that the positive definiteness of Bk in the methods AFX and Husch is not guar-
anteed. As a result, the generated direction pk may not be a descent direction of f at xk and
the line search process may fail. In order to ensure the positive definiteness of Bk, we need
to modify the update rules. Taking this into account, we only update Bk when the positive
definiteness of Bk+1 is guaranteed. Details are stated as follows. For the method AFX, we let
Bk+1 = Bk if yT

k sk ≤ 0 and (fk − fk+1)/fk < ε. Otherwise, we let Bk be determined by (4.1).
For the method Husch, we only update Bk when Bs

k is positive definite and yT
k sk > 0.

Tables II and III list the performance of Algorithm 1, AFX and Husch with Armijo search
and Wolfe-Powell search on 37 test problems, respectively. The suffix “-Ar” and ‘-WP” in the
first lines of these two tables mean that the line search used are Armijo search and Wolfe-Powell
search, respectively. For each problem, we compare the performance of Algorithm 1, AFX and
Husch starting from 10 different initial points. These initial points are ±x0, ±10x0, ±100x0,
±1000x0 and ±104x0. The meaning of the columns in Tables II and III is as follows.

Suc: the number of initial points with which the algorithms terminate at stationary
points successfully.

Avit: the average number of iterations for all initial points.
Avgn: the average number of iterations where the Gauss-Newton step is used for all

initial points.
Avf: the average number of function evaluations.
Avg: the average number of gradient evaluations.

We see from Tables II and III that Algorithm 1 is comparable with the method AFX
either with Armijo search or with Wolfe-Powell search. In particular, for test problem BEALE,
problem WOOD etc., the performance of Algorithm 1 is better than that of the method AFX.
For other test problems and most initial points, Algorithm 1 in general performs as good as
the method AFX does. Both Algorithm 1 and the method AFX perform much better than the
method Husch does.

The results in Table II show that for most test problems and most initial points, Algorithm
1 with Armijo search successfully terminates at stationary points in very few iterations. More-
over, among the 40 test problems with 400 initial points, Algorithm 1 possess the highest suc-
cessful termination ratio. The successful termination ratio of Algorithm 1 is 358/400=89.5%,

14
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while the successful termination ratio of AFX-AG method is 322/400=80.5% and the suc-
cessful termination ratio of Husch-AG method is 267/400=66.75%. The results in Table III
show that when Wolfe-Powell search is used, Algorithm 1 also possess the highest successful
termination ratio. The successful termination ratio of Algorithm 1 with Wolfe-Powell search
358/400=89.5%, while the successful termination ratio of AFX-WP method is 351/400=87.75%
and the successful termination ratio of Husch-WP method is 267/400=66.75%. From Table II
and Table III, we can see that the successful termination ratio of Algorithm 1 is independent
with the line search used, whereas the successful termination ratio of AFX-AG is less than one
of AF-WP.
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Table I Test Results of Algorithm 1 for Problems 1-37
Prob(Dim) Init It Gn Fun Un f1/2 ‖g‖ Init It GN Fun Un f1/2 ‖g‖
ROSE (2-2) x0 19 11 36 9 0.0 0.0 x2 2 2 3 2 0.0 0.0

x1 3 3 5 2 5.3e-12 1.7e-10 x3 3 3 5 2 5.1e-12 1.6e-10
FROTH (2-2) x0 7 2 10 6 4.9 8.1e-6 x2 9 4 19 6 4.9 4.3e-6

x1 19 13 22 18 4.9 3.4e-7 x3 14 14 15 14 6.2e-8 3.7e-6
BADSCP (2-2) x0 25 25 47 4 6.8e-8 8.8e-3 x2 54 32 119 21 2.0e-7 2.5e-2

x1 1 1 2 1 7.1e-5 7.1e-8 x3 151 127 211 124 6.2e-7 8.0e-2
BADSCB (2-3) x0 21 4 55 13 1.1e-7 1.6e-1 x2 21 3 56 13 2.7e-10 3.8e-4

x1 24 3 56 20 1.7e-7 2.4e-1 x3 27 3 58 18 1.0e-7 1.5e-1
BEALE (2-3) x0 6 6 8 5 9.6e-7 6.5e-6 x2 9 7 14 6 4.1e-6 2.8e-5

x1 172 6 192 162 4.8e-1 3.5e-6 x3 118 6 132 109 4.8e-1 1.2e-5
JENSAM (2-10) x0 13 3 26 8 7.9 3.0e-5 x2 16 5 64 9 7.9 2.8e-5

x1 0 0 1 0 – – x3 0 0 1 0 3.2 3.7e-13
HELIX (3-3) x0 9 9 12 7 5.2e-9 1.3e-7 x2 0 0 1 0 0.0 0.0

x1 17 16 30 15 4.8e-10 1.2e-8 x3 1 1 2 1 0.0 0.0
BARD (3-15) x0 4 4 5 4 6.4e-2 1.6e-5 x2 9 5 16 5 3.0 2.6e-10

x1 5 2 14 2 3.0 1.6e-7 x3 5 3 13 3 3.0 2.2e-10
GAUSS (3-15) x0 1 1 2 1 7.5e-5 1.8e-8 x2 9 9 13 7 7.5e-5 1.9e-7

x1 3 2 18 1 4.5e-1 3.5e-12 x3 0 0 1 0 – –
MEYER (3-16) x0 55 8 148 36 6.6 4.7e+1 x2 20 7 21 20 2.7e+4 1.7e-7

x1 1 1 5 0 4.4e+4 1.0e-7 x3 4 4 27 0 4.4e+4 1.8e-5
GULF (3-10) x0 56 12 89 42 5.2e-3 3.7e-6 x2 9 1 11 8 2.1 9.2e-5

x1 0 0 1 0 1.4e-1 0.0 x3 0 0 1 0 2.1 2.9e-80
BOX (3-10) x0 4 4 5 4 1.0e-5 2.1e-5 x2 5 4 37 3 4.1e-11 2.7e-6

x1 34 22 37 32 1.9e-1 1.1e-6 x3 0 0 1 0 – –
SING (4-4) x0 8 8 9 8 1.4e-4 1.3e-5 x2 8 8 9 8 1.4e-4 1.3e-5

x1 14 14 15 14 3.3e-4 5.1e-5 x3 14 14 15 14 3.3e-4 5.1e-5
WOOD (4-6) x0 58 12 97 44 1.2e-9 3.6e-8 x2 5 5 6 5 7.9e-9 2.4e-7

x1 63 18 93 51 1.1e-8 3.4e-7 x3 12 12 13 12 4.5e-11 1.4e-9
KOWOSB (4-11) x0 3 3 5 2 1.2e-2 4.3e-5 x2 15 13 28 6 1.2e-2 1.7e-5

x1 8 5 78 2 5.8e-2 5.4e-6 x3 5 4 33 2 5.6e-2 1.8e-5
BD (4-20) x0 20 7 48 7 2.1e+2 2.2e-7 x2 15 6 33 11 2.1e+2 1.4e-6

x1 21 10 55 15 2.1e+2 4.5e-5 x3 22 13 31 18 2.1e+2 5.1e-5
OSB1 (5-33) x0 7 7 11 4 5.2e-3 1.2e-6 x2 300 11 423 244 1.2e-1 2.4

x1 13 7 17 11 7.1e-1 1.6e-5 x3 0 0 1 0 – –
BIGGS (6-50) x0 44 17 64 29 2.2e-7 7.2e-7 x2 27 8 28 27 3.9e-1 1.5e-6

x1 3 1 7 2 2.1 7.9e-5 x3 0 0 1 0 – –
OSB2 (11-65) x0 12 7 23 6 1.4e-1 9.3e-5 x2 0 0 1 0 – –

x1 26 6 32 23 9.5e-1 1.4e-5 x3 0 0 1 0 – –
WATSON (20-31) x0 4 4 5 4 8.8e-9 5.5e-7 x2 4 4 5 4 8.8e-9 5.5e-7

x1 4 4 5 4 8.8e-9 5.5e-7 x3 4 4 5 4 8.8e-9 5.5e-7
ROSEX (30-30) x0 19 11 36 9 0.0 0.0 x2 2 2 3 2 0.0 0.0

x1 3 3 5 2 2.1e-11 6.6e-10 x3 3 3 5 2 2.0e-11 6.3e-10
SINGX (40-40) x0 8 8 9 8 4.3e-4 4.3e-5 x2 8 8 9 8 4.3e-4 4.3e-5

x1 15 15 16 15 2.6e-4 2.0e-5 x3 15 15 16 15 2.6e-4 2.0e-5
PEN1 (30-31) x0 16 12 42 9 1.1e-2 4.0e-5 x2 15 11 44 10 1.3e-2 4.7e-5

x1 21 18 43 16 1.1e-2 9.3e-6 x3 26 19 53 19 1.3e-2 7.8e-5
PEN2 (30-60) x0 36 9 64 13 1.8e-1 2.7e-5 x2 42 8 80 17 1.8e-1 4.7e-5

x1 78 44 144 21 1.8e-1 1.0e-4 x3 90 56 163 28 1.8e-1 2.6e-5
VARDIM (30-32) x0 12 12 13 12 5.3e-8 7.3e-6 x2 13 13 14 13 2.8e-8 3.8e-06

x1 18 18 19 18 8.9e-13 1.2e-10 x3 18 18 19 18 1.1e-11 1.5e-9
TRIG (30-30) x0 9 6 33 2 4.9e-5 7.0e-5 x2 4 4 5 4 4.5e-7 6.3e-7

x1 54 19 264 9 1.5e-2 3.1e-5 x3 86 32 466 8 3.2e-3 3.4e-5
ALMOST (30-30) x0 2 2 3 2 5.1e-7 4.0e-6 x2 4 4 5 4 2.4e-6 1.8e-5

x1 85 85 90 83 7.1e-1 5.2e-6 x3 69 69 79 65 7.1e-1 3.0e-11
BV (30-30) x0 1 1 2 1 3.6e-5 1.5e-6 x2 1 1 2 1 9.9e-4 3.6e-5

x1 7 7 8 7 7.7e-5 3.0e-6 x3 7 7 8 7 1.4e-4 5.7e-6
IE (30-30) x0 2 2 3 2 4.2e-7 7.7e-7 x2 3 3 4 3 4.6e-9 8.3e-9

x1 8 8 9 8 2.0e-6 3.7e-6 x3 8 8 9 8 7.0e-6 1.3e-5
TRID (30-30) x0 4 4 5 4 7.5e-10 3.3e-9 x2 81 3 152 70 9.0e-1 4.1e-5

x1 10 10 11 10 8.0e-6 3.3e-5 x3 54 12 147 45 9.0e-1 8.8e-5
BAND (30-30) x0 5 5 6 5 1.1e-8 9.2e-8 x2 13 5 23 9 1.2 3.2e-5

x1 16 16 17 16 9.8e-8 7.9e-7 x3 25 16 35 21 1.2 7.3e-5
LIN (30-50) x0 1 1 2 1 3.2 8.6e-15 x2 0 0 1 0 3.2 1.4e-15

x1 1 1 2 1 3.2 4.5e-13 x3 1 1 2 1 3.2 4.4e-13
LIN1 (30-50) x0 2 2 3 2 2.5 2.2e-5 x2 2 2 3 2 2.5 2.2e-5

x1 3 3 4 3 2.5 1.2e-6 x3 3 3 4 3 2.5 2.2e-6
LIN0 (30-50) x0 2 2 3 2 2.6 2.4e-5 x2 2 2 3 2 2.6 2.4e-5

x1 3 3 4 3 2.6 5.2e-6 x3 3 3 4 3 2.6 3.6e-6
SIG (10-50) x0 34 14 35 34 3.2e+2 4.3e-5 x2 37 14 39 36 3.3e+2 2.0e-5

x1 83 66 85 82 3.2e+2 1.0e-4 x3 84 66 89 80 3.2e+2 2.7e-4
SIG (20-100) x0 67 15 88 62 4.4e+2 8.3e-4 x2 52 16 72 49 4.8e+2 1.3e-3

x1 100 62 104 97 4.4e+2 1.3e-3 x3 106 62 107 106 4.4e+2 6.5e-4
EXP (10-50) x0 14 1 17 12 2.7e+1 3.3e-5 x2 14 2 16 13 2.7e+1 3.3e-5

x1 58 46 59 58 2.7e+1 2.1e-5 x3 69 57 70 69 2.7e+1 9.9e-5
EXP (50-150) x0 30 2 33 28 4.0e+1 4.4e-5 x2 43 3 50 37 4.0e+1 5.0e-5

x1 180 159 182 179 4.0e+1 7.9e-5 x3 164 124 167 162 4.0e+1 5.6e-5
TRG (10-50) x0 38 13 40 37 3.0e+1 9.4e-6 x2 37 13 47 32 2.9e+1 1.8e-5

x1 30 12 45 26 2.9e+1 3.0e-4 x3 26 12 39 24 3.0e+1 1.1e-3
TRG (50-250) x0 67 15 114 53 6.0e+1 9.4e-3 x2 56 12 121 45 6.0e+1 6.5e-3

x1 82 17 95 72 5.8e+1 5.7e-4 x3 105 17 136 100 5.8e+1 5.5e-3
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Table II Comparison of Algorithm 1, AFX and Husch with Armijo Search

GN-MBFGS-Ar AFX-Ar Husch-Ar
Prob Dim Suc Avit Avgn Avf Suc Avit Avgn Avf Suc Avit Avf
ROSE 2-2 10 4.4 3.6 7.7 10 4.4 3.6 7.7 3 24.7 31.0
FROTH 2-2 10 17.1 14.0 21.4 10 17.1 14.0 21.4 10 25.6 27.0
BADSCP 2-2 8 37.6 29.0 64.6 6 14.3 10.7 29.5 5 5.8 7.0
BADSCB 2-3 10 22.5 4.6 51.3 4 13.8 5.3 34.8 9 26.4 37.4
BEALE 2-3 9 131.1 6.6 155.0 1 6.0 6.0 8.0 6 22.5 31.7
JENSAM 2-10 7 12.3 7.6 32.1 5 10.8 8.4 14.2 6 33.2 38.0
HELIX 3-3 10 8.9 8.1 19.9 10 8.9 8.1 19.9 9 7.1 9.9
BARD 3-15 10 5.3 3.2 9.8 10 7.5 3.3 11.6 9 24.6 25.9
GAUSS 3-15 7 17.6 4.9 22.0 5 4.2 3.8 6.2 6 8.8 11.5
MEYER 3-16 8 4.8 3.1 20.5 8 3.1 3.0 18.9 0 – –
GULF 3-10 8 8.1 1.6 13.3 7 1.3 0.1 2.4 7 1.0 2.0
BOX 3-10 6 19.0 9.2 34.8 4 22.0 11.3 30.5 6 24.0 29.8
SING 4-4 10 14.4 14.4 15.4 10 14.4 14.4 15.4 10 29.6 33.0
WOOD 4-6 10 35.8 14.6 49.3 5 11.6 11.6 12.6 6 21.0 22.5
KOWOSB 4-11 10 8.7 6.2 32.3 9 8.4 5.9 31.9 9 13.1 14.8
BD 4-20 10 22.5 12.0 40.7 10 22.5 12.0 41.0 9 22.6 26.6
OSB1 5-33 4 14.8 12.0 17.3 4 14.8 12.0 17.3 3 10.7 12.0
BIGGS 6-50 6 20.0 8.7 29.8 4 16.8 5.8 21.3 4 14.3 16.8
OSB2 11-65 5 11.8 4.8 16.8 4 7.3 4.0 12.0 5 13.2 18.6
WATSON 20-31 10 4.0 4.0 5.0 10 4.0 4.0 5.0 10 19.0 20.0
ROSEX 30-30 10 4.4 3.6 7.7 10 4.4 3.6 7.7 2 17.5 23.0
SINGX 40-40 10 14.6 14.6 15.6 10 14.6 14.6 15.6 10 34.2 36.4
PEN1 30-31 10 22.5 18.5 49.2 10 22.5 18.5 49.2 10 20.6 21.6
PEN2 30-60 9 82.6 47.3 156.3 9 83.3 47.3 157.3 4 132.8 187.8
VARDIM 30-32 10 18.2 18.2 19.2 10 18.2 18.2 19.2 10 30.2 33.0
TRIG 30-30 10 41.5 14.7 193.0 8 27.9 12.0 133.1 10 16.5 21.3
ALMOST 30-30 10 91.7 91.5 98.7 10 91.7 91.5 98.7 2 4.5 5.5
BV 30-30 10 8.2 8.2 9.2 10 8.2 8.2 9.2 10 34.2 35.2
IE 30-30 10 9.5 9.5 10.5 10 9.5 9.5 10.5 8 16.8 18.0
TRID 30-30 10 36.0 10.7 81.0 10 36.4 10.7 81.0 10 17.2 18.2
BAND 30-30 10 20.5 15.9 25.9 10 20.5 15.9 25.9 9 24.2 25.2
LIN 30-50 10 0.9 0.9 1.9 10 0.9 0.9 1.9 10 1.8 2.8
LIN1 30-50 10 3.7 3.4 4.9 10 3.7 3.4 4.9 10 2.3 3.3
LIN0 30-50 10 3.5 3.4 4.5 10 3.5 3.4 4.5 10 2.4 3.5
SIG 10-50 10 83.4 64.2 86.1 10 83.4 64.2 86.2 0 – –

10-50 10 98.7 60.0 107.1 10 97.8 60.0 104.6 0 – –
EXP 10-50 6 31.2 19.3 32.7 6 31.2 19.3 32.7 4 26.5 28.0

50-150 6 84.8 52.3 87.8 6 84.8 52.3 87.8 3 95.3 97.0
TRG 10-50 10 31.9 11.8 41.9 10 31.8 11.8 43.2 7 36.3 42.0

50-250 9 70.3 15.2 95.6 7 73.6 15.4 94.4 6 66.3 87.2

Table III Comparison of Algorithm 1, AFX and Husch with Wolfe-Powell Search

GN-MBFGS-WP AFX-WP Husch-WP
Prob Suc Avit Avgn Avf Avg Suc Avit Avgn Avf Avg Suc Avit Avf Avg
ROSE 10 4.4 3.6 7.7 5.4 10 4.4 3.6 7.7 5.4 3 23.0 29.3 24.3
FROTH 10 17.1 14.0 21.4 18.1 10 17.1 14.0 21.4 18.1 10 25.0 26.9 26.5
BADSCP 8 40.9 27.6 64.9 44.0 8 43.1 29.3 70.1 46.3 5 5.8 7.0 6.8
BADSCB 10 13.8 4.8 35.3 18.4 10 13.8 4.8 35.3 18.4 10 20.5 32.1 28.3
BEALE 9 103.8 6.9 132.0 111.8 3 10.7 7.3 18.0 14.0 6 20.7 29.5 22.5
JENSAM 7 11.1 7.0 21.7 13.9 7 11.1 7.0 21.7 13.9 6 7.3 13.3 10.7
HELIX 10 8.9 8.1 19.9 9.9 10 8.9 8.1 19.9 9.9 10 7.8 12.2 10.2
BARD 10 5.3 3.2 9.8 6.3 10 7.8 3.3 12.5 9.4 10 13.7 19.9 19.3
GAUSS 7 19.6 7.0 27.7 24.9 7 18.7 7.4 27.6 24.3 6 3.8 8.7 7.8
MEYER 7 4.0 2.3 17.7 10.0 7 2.3 2.1 13.9 6.1 0 – – –
GULF 8 7.4 1.5 11.4 8.8 8 7.4 1.5 11.8 8.8 7 1.0 2.4 2.4
BOX 6 20.0 12.8 39.7 31.0 6 22.7 13.2 42.5 30.5 5 15.8 25.2 22.8
SING 10 14.4 14.4 15.4 15.4 10 14.4 14.4 15.4 15.4 10 30.2 33.8 31.6
WOOD 10 33.5 14.3 42.8 36.5 10 33.0 14.3 43.1 35.9 6 21.0 22.5 22.0
KOWOSB 10 10.0 5.9 33.6 12.1 10 10.5 6.5 36.5 13.5 8 11.4 15.1 14.6
BD 10 22.5 12.0 40.7 23.5 10 22.5 12.0 41.0 23.5 9 22.6 28.6 23.9
OSB1 6 33.5 15.7 58.7 41.0 5 19.8 16.6 31.6 26.4 5 11.6 19.2 16.4
BIGGS 6 15.3 6.3 21.7 18.2 6 14.8 6.0 20.5 17.8 5 11.6 15.8 15.0
OSB2 5 14.0 10.8 29.0 26.4 5 13.6 10.6 28.6 26.0 5 11.8 20.2 19.0
WATSON 10 4.0 4.0 5.0 5.0 10 4.0 4.0 5.0 5.0 10 19.0 20.0 20.0
ROSEX 10 4.4 3.6 7.7 5.4 10 4.4 3.6 7.7 5.4 1 12.0 15.0 13.0
SINGX 10 14.6 14.6 15.6 15.6 10 14.6 14.6 15.6 15.6 10 33.8 38.0 36.0
PEN1 10 22.5 18.4 52.1 24.5 10 22.4 18.4 50.6 24.4 10 20.6 21.6 21.6
PEN2 9 81.4 47.3 154.9 83.0 9 82.1 47.3 155.4 83.6 3 134.3 175.7 135.3
VARDIM 10 18.2 18.2 19.2 19.2 10 18.2 18.2 19.2 19.2 10 30.2 33.0 31.2
TRIG 10 37.8 14.8 178.4 39.5 10 37.9 14.7 183.8 39.3 8 11.6 15.4 12.9
ALMOST 10 92.2 91.9 101.7 94.1 10 92.2 91.9 101.7 94.1 2 4.5 5.5 5.5
BV 10 8.2 8.2 9.2 9.2 10 8.2 8.2 9.2 9.2 10 34.1 35.3 35.3
IE 10 9.5 9.5 10.5 10.5 10 9.5 9.5 10.5 10.5 8 16.8 18.0 17.8
TRID 10 35.0 10.7 79.4 36.1 10 35.5 10.7 79.8 36.6 10 17.0 18.4 18.2
BAND 10 20.3 15.9 26.1 21.4 10 20.3 15.9 26.1 21.4 9 24.2 25.2 25.2
LIN 10 0.9 0.9 1.9 1.9 10 0.9 0.9 1.9 1.9 10 1.8 6.3 6.3
LIN1 10 3.7 3.4 7.7 6.5 10 3.7 3.4 7.7 6.4 10 2.3 3.5 3.4
LIN0 10 3.5 3.4 4.5 4.5 10 3.5 3.4 4.5 4.5 10 2.4 6.6 5.5
SIG 10 83.4 64.2 86.1 84.4 10 83.4 64.2 86.2 84.4 0 – – –

10 97.4 60.0 104.9 99.0 10 97.5 60.0 105.2 99.4 0 – – –
EXP 6 31.2 19.3 32.7 32.2 6 31.2 19.3 32.7 32.2 4 26.5 28.0 27.5

6 84.8 52.3 87.8 85.8 6 84.8 52.3 87.8 85.8 3 95.3 97.0 96.3
TRG 10 31.6 11.8 53.5 40.3 10 31.6 11.8 53.8 40.2 7 34.6 46.0 38.3

8 74.3 15.5 115.9 87.4 8 74.5 15.5 120.9 91.8 6 57.0 101.7 67.8

17



Fei Wang, Dong-Hui Li, Liqun Qi

References

[1] M. Al-Baali and R. Fletcher, Variational methods for non-linear least-squares, Journal of
Operational Research Society, 36 (1985), 405-421.

[2] M. C. Bartholomew-Biggs, The estimation of the Hessian matrix in nonlinear least squares
problems with non-zero residuals, Mathematical Programming, 12 (1977), 67-80.

[3] R. Byrd and J. Nocedal, A tool for the analysis of quasi-Newton methods with application
to unconstrained minimization, SIAM Journal on Numerical Analysis, 26 (1989), 727-739.

[4] Y. Dai, Convergence properties of the BFGS algorithm, SIAM Journal on Optimization,
13 (2003), 693-701.

[5] J. E. Dennis, JR., A brief survey of convergence results for quasi-Newton methods, SIAM-
AMS Proceedings, 9 (1976), 185-199.

[6] J. E. Dennis, H.J. Martinez, and R.A. Tapia, Convergence theory for the structured BFGS
secant method with an application to nonlinear least squares, Journal of Optimization
Theory and Applications, 61 (1989), 161-178.

[7] J. E. Dennis Jr., D. M. Gay and R. E. Welsch, An adaptive nonlinear least-squares algo-
rithm, ACM transactions on mathematical software, 7 (1981), 348-368.

[8] J. E. Dennis, JR. and H. F. Walker, Convergence theorems for least-change secant update
methods, SIAM Journal on Numerical Analysis, 18 (1981), 949-987.

[9] J.R. Engels and H.J. Mart́ınez, Local and superlinear convergence for partially known
quasi-Newton methods, SIAM Journal on Optimization, 1 (1991), 42-56.

[10] J.Y. Fan and Y.X. Yuan, On the convergence of a new Levenberg-Marquardt method,
Technical Report, AMSS, Chinese Academy of Sciences, 2001.

[11] R. Fletcher and C. Xu, Hybrid methods for nonlinear least squares, IMA Journal of
Numerical Analysis, 7 (1987), 371-389.

[12] J. Huschens, On the use of product structure in secant methods for nonlinear least squares
problems, SIAM Journal on Optimization, 4 (1994), 108-129.

[13] D. H. Li and M. Fukushima, A modified BFGS method and its global convergence in
nonconvex minimization, Journal of Computational and Applied Mathematics, 129 (2001),
15-35.

18



Global Convergence of the Structured BFGS

[14] D. H. Li and M. Fukushima, On The Global Convergence of the BFGS Method for Non-
convex Unconstrained Optimization Problems, SIAM Jornal on Optimization, 11 (2001),
1054-1064.
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