
AMO - Advanced Modeling and Optimization, Volume 11, Number 4, 2009

A GENETIC SYMBIOTIC ALGORITHM APPLIED TO

THE CUTTING STOCK PROBLEM WITH MULTIPLE

OBJECTIVES

Rodrigo Rabello Golfeto

rodrigo.golfeto@gmail.com

Fluminense Federal University - UFF

Antônio Carlos Moretti

moretti@ime.unicamp.br

University of Campinas - UNICAMP

Luiz Leduíno de Salles Neto

luiz.leduino@unifesp.br

Federal University of São Paulo - UNIFESP

Abstract

This work presents a genetic symbiotic algorithm to solve the one-dimensional cutting stock
problem with multiple objectives. We considered two important objectives for an industry (1)
cost of trim loss and (2) cost of setup. We use a symbiotic relationship, between the population
of solutions and the population of cutting patterns, together with a niche strategy to obtain an
approximation of the Pareto-front. The evolutionary approach promotes a significant diversity
in the population, which is a desirable condition to solve a multi-objective combinatorial opti-
mization problem. Results of the computational experiments with instances from a chemical-fiber
company and with random instances are reported.

Keywords: Cutting Stock Problem, Genetic Symbiotic Algorithm, Multi-objective

Combinatorial Optimization.

1 Introduction

The cutting stock problem (CSP) is a classical problem in the area of Operations Research. It can
be stated as the problem of finding the best way of cutting demanded items from a stock rolls of
length W such that the trim loss is minimized and the total demand is satisfied. This problem
arises in the production of paper (Haeesler (1976), Diegel (1988)), steel (Eilon (1960), Wascher et al.

(1985)), window manufacturing (Stadler (1990)), etc. A CSP can be decomposed into two distinct
subproblems: (1) the generation of the cutting patterns and (2) the determination of its frequency in
the final solution.

Cutting Stock Problems is one of the first applications of Operations Research, it was first studied
by Kantorovich in the thirties. Problems of the same nature were treated by Paull and Walter (1954),
Metzger (1958) and Eilon (1960). However, as observed by Dowsland and Dowsland (1992), the
methods used at that time were only appropriate for small problems. Gilmore and Gomory (1961,
1963) developed a clever procedure to deal with large problems. Haessler (1975) was the first work
to treat the nonlinear cutting stock problem, considering the reduction of trim loss and the setup
number of the cutting machine.

A reasonable goal to be met in a industry is to minimize the number of master rolls (i.e., objects)
used to produce the demanded items. In some cases, minimize the number of objects used are not

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

473

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

the only goal for the manager. In fact, when we have a large demand that needs to be met in a short
period of time, the number of machine setup takes a relevant importance. Wascher (1990) criticizes
the traditional planning models for cutting stock problems, he says that they do not consider all the
factors of the process which tend to have effects on the company’s profit, such as the setup number,
or the amount of stocked material caused by the various cutting process, etc. However, Wascher does
not include the setup in his interactive multi-objective approach.

Combinatorial problems involving setup costs are known to be very hard to solve. In particular
this problem presents two conflicting objectives: (1) Minimize the trim loss and (2) the total number of
setup used. The difficulty on solving this problem is due to the fact that the objective function besides
being nonlinear it is also discontinuous. Recent approaches can be found in Diegel et al. (1996), Foester
et al. (2000), Vanderbeck et al. (2000), Belov et al. (2003), Umetani et al. (2003,2006), Yanasse
et al. (2006), Lee (2007) and Moretti et al. (2008). We have not seen a multi-objective approach
considering, trim loss and setup, in a cutting stock problem with any number of demanded items.
In this work we present a Genetic Symbiotic Algorithm (Symbio) to multi-objective cutting stock
problem (MoCSP), where the objectives functions are trim loss and setup.

The outline of this paper is as follows: Section 2 introduces the cutting stock problem. Section
3 gives a general introduction of the multi-objective optimization and the Multi-objective Cutting
Stock Problem (MoCSP). Section 4 presents the description of our approach: a Genetic Symbiotic
Algorithm (Symbio) to MoCSP. Experimental results are presented and analyzed in Section 5. Finally,
in Section 6, we conclude the paper and give an overview of possible future work.

2 One-Dimensional Cutting Stock Problem

The Standard Cutting Stock Problem is characterized by cutting stock rolls of size W (called objects)
into smaller pieces of size wi (where W > wi, i = 1, 2, . . . m), with the objective of satisfying the
demand di for each one of these m items. According to the typology of Wascher et al. (2007) this
problem is classified as SSSCSP. Each combination of items in an object is called cutting pattern and
each changing of a cutting pattern has a setup cost to prepare the cutting machine. The setup number
has a great importance when we need to meet a large demand of items in a short period of time. We
want to find a trade-off between the setup number and the trim loss. The mathematical model to
minimize cost of the trim loss and cost of the setup number can be stated as:

Minimize c1

(

W ×
n
∑

j=1

xj −
m
∑

i=1

widi

)

+ c2

n
∑

j=1

δ(xj)

s.t.
n
∑

j=1

aijxj ≥ di, i = 1, ...,m.

xj ∈ N, j = 1, ..., n.

where c1 is the cost of the trim loss; aij is the number of times item i appears in the jth cutting
pattern; xj is the number of objects processed with the cutting pattern j; c2 is the setup cost and

δ(xj) =

{

1 if xj > 0,
0 if xj = 0.

In the literature, Diegel et al. (1996) were the only to mention real-life values for c1 and c2.
According to Diegel, an exact relation between c1 and c2 depends on several factors as: demand,
deadlines, labor costs, etc. The major advantage of a multi-objective approach is to give a set of
solutions which are not evaluated by a common scalar function, i.e., the optimization process is, in
theory, not biased toward a particular type of solution that depends on c1 and c2.

474

A genetic symbiotic algorithm applied to the cutting stock problem

3 The Multi-objective Cutting Stock Problem

A Multiple Objective Program (MOP) can be written as:

Min {f1(x) = z1}
Min {f2(x) = z2}

...
...

Min {fk(x) = zk}

s. t. x ∈ S

where: k is the number of objectives; f : Rn → Rm is the vector objective function; S ⊂ Rn is the
feasible region; zi is the criterion value; z is the criterion vector.

Definition [Dominance] Let z1, z2 ∈ R
k be two criterion vectors. Then, z1 dominates z2 if and

only if z1 ≤ z2 and z1 6= z2 (that is, z1
i ≤ z2

i for all i and z1
i < z2

i for at least one i).

A criterion vector is non-dominated if it is not dominated by any other feasible criterion vector.
Let Z = {z ∈ R

k : z = f(x), x ∈ S} be the feasible region in criterion space. We use the notation
z1 ≻ z2 to indicate that the vector z1 dominates the vector z2. Or equivalently z2 ≺ z1.

Definition [Non-dominance] Let z̄ ∈ Z. Then, z̄ is non-dominated if and only if does not exist
another z ∈ Z such that z ≤ z̄ and z 6= z̄. Otherwise, z̄ is a dominated criterion vector.

Although the idea of dominance refers to vectors in the criterion space, the idea of efficiency refers
to points in decision space.

Definition [Efficiency] A point x̄ ∈ S is efficient if and only if there does not exist another x ∈ S
such that f(x) ≤ f(x̄) and f(x) 6= f(x̄). Otherwise, x̄ is inefficient.

Therefore, a point x̄ is efficient if its criterion vector is not dominated by any criterion vector
of other point in S. That is, it is not possible to move in a feasible direction to decrease one of
the objectives without necessarily increasing at least one of the other objective values. The term
efficiency is also known as Pareto optimal and the curve in the space of the objective functions formed
by non-dominated vectors that are in the Pareto optimal set is called the Pareto-front.

Solving a multi-objective optimization problem is to find the set of efficient solutions. In the
present work we are particularly interested on finding the set of efficient solutions X∗ of the MoCSP:

(MoCSP)

{

x∗ = effx f(x) = (f1(x), f2(x))
s. t. x ∈ X

where

• f1(x) =

(

W ×
n
∑

j=1

xj −
m
∑

i=1

widi

)

≡ trim loss

• f2(x) =
n
∑

j=1

δ(xj) ≡ setup.

• X = {x ∈ Zn, x ≥ 0 : yi =
n
∑

j=1

aijxj − di ≥ 0, i = 1, ...,m}.

The MoCSP is a multi-objective combinatorial optimization (MOCO) which differs from the
traditional single objective optimization in several ways (see Ehrgott (2004)):

• The usual meaning of the optimum makes no sense in the multiple objective case because a
solution that optimizes all objectives simultaneously does not exist in general.

475

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

• The identification of a best compromise solution requires to take in account the preferences
expressed by the decision maker.

• The MOCO problems can be very hard to solve exactly (see, Ehrgott (2000)). Even if they are
derived from easy single objective optimization problems.

It is known that the multi-objective linear programming problem

Min{(c1x, c2x, ..., cqx) : Ax = b, x ≥ 0x ∈ ℜn}

the set of efficient solutions is exactly the set of solutions that can be obtained by solving the linear
programming problem Min {

∑q

j=1
λjc

jx : Ax = b, x ≥ 0}, where
∑n

j=1
λj = 1, λj ≥ 0. But the

discrete structure of the MOCO problem makes this result invalid, since there exist efficient solutions,
which are not optimal for any weighted sum of the objectives.

Let

Z≥ = Convex hull of [Z∗ ⊕ {z ∈ Rk such that z ≥ 0}]

where Z∗ is the Pareto-Front and ⊕ means the set addition and consider the following definitions.

Definition [Unsupported] Let z ∈ Z∗. Then, if z is on the boundary of Z≥, z is a supported
non-dominated criterion vector. Otherwise, z is an unsupported (convex dominated) non-dominated
criterion vector.

Inverse images of supported non-dominated criterion vectors are said to be supported efficient
points (in the decision space) and inverse images of unsupported non-dominated criterion vectors are
said to be unsupported efficient point (in the decision space).

Unsupported non-dominated criterion vectors are dominated by some convex combination of other
non-dominated criterion vectors. In multiple objective combinatorial optimization the unsupported
non-dominated criterion vectors are not rare. In this case it is not possible to generate unsupported
criterion vectors using the weighted sum strategy. Next example shows this situation in a MoCSP
problem.

Example 1: Consider the data

• W = 20;

• m = 4;

• w = (w1, w2, w3, w4) = (10, 6, 5, 4);

• d = (d1, d2, d3, d4) = (600, 153, 300, 15);

To make the notation easier, let us represent the jth-cutting pattern as a vector aj ∈ Zm, where

the ith component is the quantity of items i produced by one application of the cutting pattern.
Enumerating all the solutions we can conclude that have three efficients solutions.

Efficient Solution 1:

• Setup = 4;

• Trim Loss = 102;

• Cutting Pattern 1: a1 = (2, 0, 0, 0) with x1 = 300;

• Cutting Pattern 2: a2 = (0, 3, 0, 0) with x2 = 51;

• Cutting Pattern 3: a3 = (0, 0, 4, 0) with x3 = 75;

• Cutting Pattern 4: a4 = (0, 0, 0, 5) with x4 = 3.

476

A genetic symbiotic algorithm applied to the cutting stock problem

Efficient Solution 2:

• Setup = 3;

• Trim Loss = 542;

• Cutting Pattern 1: a1 = (2, 0, 0, 0) with x1 = 300;

• Cutting Pattern 2: a2 = (0, 1, 2, 1) with x2 = 150;

• Cutting Pattern 3: a3 = (0, 3, 0, 0) with x3 = 1.

Efficient Solution 3:

• Setup = 2;

• Trim Loss = 582;

• Cutting Pattern 1: a1 = (2, 0, 0, 0) with x1 = 300;

• Cutting Pattern 2: a2 = (0, 1, 2, 1) with x2 = 153.

Looking at Figure 1, we see that the Pareto-Front is nonconvex, therefore, the weighted sum
strategy will not be able to compute all efficients solutions.

Figure 1: Example 1

In general, we can not generate all efficient points with the approach

Min{

k
∑

i=1

λifi(x) such that x ∈ S},

in this case the use of an evolutionary method for MoCSP can be more appropriate.
In the literature we find only one paper that works with multi-objective cutting stock problem

involving setup (see, Kolen (2000)). But, this paper works only with small instances

• the number of different items varies between 2 and 8;

• the width of demanded items is less than 1/3 of the size W of the stock.

477

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

On the other hand, our method is tested in instances coming from a chemical fiber company in
Japan (see Umetani et al. (2003)) where:

• the number of different items varies between 4 and 20;

• the width of demanded items varies between 5,5% and 40% of W .

Also, we tested the method in 10 instances generated by CUTGEN1 (see, Gau 2000), where the
number of items is between 10 and 20. The size of the items is between 1 and 80% of the size of W .

Also, in Kolen (2000) the number of processed objects is given and it is constant.

In Section 5 we compared our results with the results obtained by Lee (2007) and Umetani et al.

(2003, 2006).

4 Genetic Symbiotic Algorithm

Genetic algorithm (GA) have theirs basis in the works of Holland (1962), Bremermann (1962) and
Fraser (1957). However, only in the work of Holland (1975) the genetic algorithm was, in fact,
introduced. In the past decade it became a promising method for solving optimization problems.

GA is a particular class of evolutionary computation (EC) that uses techniques inspired in the
theory of evolution, where the stronger organisms have more chances to reproduce and pass their
characteristics to the next generation. This is used as paradigm to solve problems.

Some concepts associated with genetic algorithm are:

Fitness: indicates the level of adaptability of one individual to environment.

Genes: functional blocks of DNA.

Genome: a collection of genes of one individual.

Selection: is the mechanism responsible to select the best individuals in a population. The most
used types of selection are: tournament, elitism, roulette.

Crossover: also called recombination, it is a genetic operator used to combine two individuals to
generate a new individual. There are many types of crossover, the most used are: One-point,
Two-point and Uniform.

Mutation: The mutation operator consists of a random modification, usually with low probability,
in the value of an or more genes of the an individual. This is an operator executed after the
crossover.

Coevolution: it is a technique where several populations are used to increase the diversity of the
candidate solutions through a migration mechanism. This technique will be discussed in details
in Subsection 4.2.4.

We worked with a biological concept called symbiosis, where it is possible to ally abilities of
different individuals with the objective to solve a common problem. In our method, we applied
coevolution techniques with the theory of niches to obtain an approximation of the Pareto-Front.

4.1 Symbiosis

In Allaby (1998), the term symbiosis is defined as a general term describing the situation where
dissimilar organisms live together in a close association. As originally defined, the term embraces
all types of mutualism and parasitic relationship. Its modern use is often restricted to mutually
beneficial species interaction. Mutualism is defined as an interaction between members of two species

478

A genetic symbiotic algorithm applied to the cutting stock problem

with benefits for both. Pianka (1994) shows some examples of interactions among species as, for
example, nectar-feeding birds and flowering plants, ants and plants, birds and buffalos.

The works of Eguchi et al. (2003), Hirasawa et al. (2000) and Mao et al. (2000) also simulate
the symbiosis relationships. However, in theirs algorithms each individual of the population is treated
like one different specie that develops a symbiosis relationship with another individual. In Hirasawa
et al. (2003), the authors give one example of one possible relationship: “if individual i exists near
individual j and the fitness of individual i is greater than that of individual j, then individual i exploits
individual j”.

The genetic symbiotic algorithm (GSA), also called cooperative algorithm (Potter 1997, Kim et

al. 2000), basically decomposes the problem in n subproblems using n different species. Dividing
the problem into n distinct populations we can solve the problem utilizing simple structures, that
working together can be more powerful than complex structures. Kim et al. (2001, 2006) proposed
an endosymbiotic evolutionary algorithm for optimization where the idea basic is the incorporation of
the evolution of the eukaryotic cells (Margullis 1981) into the existing symbiotic algorithms. In this
approach when an individual meets a partner giving a high fitness, the whole combination envolves
for some time without changing its partner. Tsujimura et al. (2001) presented um symbiotic genetic
algorithm to the job shop schedulling. Chang et al. (2002) presented a symbiotic evolutionary for
dynamic facility layout problem.

4.2 Implementation

The main difference between the GSA versus the classical genetic algorithm (CGA), when applied to
CSP, is the ability of constructing cutting patterns and candidate solutions at the same time. That is,
the cutting patterns are not a part of the solution, although the solution is dependent of the cutting
patterns, we can work with them separately.

Khalifa et al. (2006) solve the CSP using a genetic algorithm, where the genes of each solution
are processed in pairs and the first gene of each solution represents the frequency of the pattern which
is represented by the second gene. In our implementation the second gene represents an individual of
the population of patterns. For example, Figure 2 shows patterns 37, 11 and 32 with theirs frequencies
2, 4 and 5, respectively.

Figure 2: Structures of the genes.

The biological relationship that is closer to our implementation is the mutualism, since both
individuals can take advantage of the relationship. The relationship in this case represents the level
of adaptability to the environment.

In the next subsections we explain the structure of each population, the niches and the coevolution
system. At this point is important to establish that we call the individuals of the first population
by solutions and the individuals of the second population by patterns. Observe that we work with
several populations of solutions and cutting patterns, we consider each group of them as an association.
Therefore, we have two different populations (solutions and cutting patterns) in each association.

479

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Figure 3: Uniform crossover

The algorithm ends when the maximum number of 10,000 generations is reached.

4.2.1 Individual-Solutions

Below, we describe the parameters of the first specie (i.e., solutions):

• Population size: 3, 000 individuals, in spite of the high computational cost, to work with
a population of this size promotes a great diversity, and this is important to avoid an early
convergence of the algorithm;

• Type of selection: elitism, top 1/3 of the best individuals;

• Crossover rate: 2/3, this value was determined by trial-and-error. We believed that this
represents a good trade off between preservation and generation of new individuals ;

• Crossover type: uniform, 70% of chance for the best individual (see figure 3);

• Mutation rate: we calculate the probability of 2 genes mutating; that is, if the individual has
k genes, the probability of each gene mutating is 2/k (see figure 4).

Figure 4: Mutation of an individual/solution

To determine the size of the DNA chain (i.e., the number of genes of an individual), we estimate
the maximum number of setups that one problem might have. We choose this number to be equal m
since the problem of minimizing the trim loss in a cutting plan can be written as a linear program-
ming problem, where each constraint represents the demand of an item. The number of genes of an
individual-solution is fixed as the double of the maximum number of setups.

The frequency of each pattern, which is represented by the odd gene, has bounds. This restricts
the size of the search region. The lower bound is fix to zero, and the upper bound is fixed as the
biggest demand in the cutting plan. This is done to allow just one type of item in a cutting pattern.

The fitness of each objective function is computed as follows:

• f∗
1 (x) = W ×

n
∑

j=1

xj −
m
∑

i=1

widi + ρ

• f∗
2 (x) =

n
∑

j=1

δ(xj) +

m

i=1

wi|Γi−di|

m

i=1

widi

+ ρ

480

A genetic symbiotic algorithm applied to the cutting stock problem

where: Γi represents the amount of items of type i in the solution; ρ is a penalty if the solution is
infeasible.

The term Γi, in function f∗
2 , validate solutions with any or small excess of production, allowing

two individual-solutions to be considered non-dominated with the same setup, increasing the diversity
of the population. However, in the last generation the parameters Γi are suppressed of function f∗

2

and only the non-dominated solutions are given in the final solution.
To avoid an early convergence of the method, two solutions with same values of f∗

1 (x) and f∗
2 (x)

are not allowed. When this happens one of the solutions receives a great penalty. Besides, at every
100 generations we generate 100 randomly individuals and place them in the elite list, replacing the
100 worst solutions. This is another strategy to increase the diversity in the population.

The values of f∗
1 (x) e f∗

2 (x) are used to determine the strength fitness Si (see Zitzler et al.

(2001)) for each individual i in the population of solutions. This is done to rank the solutions using
the dominance concept. The value of Si is calculated as

Si = |{j, j ∈ Q, such that i ≺ j}|

where Q is the set of the individuals in the population of solutions.
In fact, with this definition, all solution with Si equal to zero will be considered non-dominated.

4.2.2 Individual-Patterns

The parameters of the population of cutting patterns are different of the parameters of the population
of solutions:

• Population size: 900 individuals;

• Type of selection: elitism, 2/3 of the best individuals;

• Crossover rate: 1/3, obtained in an experimental way;

• Crossover type: 2 points (see figure 5);

• Mutation rate: 1% of probability of at the most one gene mutates (see figure 6).

Figure 5: Two-point crossover

Figure 6: Mutation of an individual/pattern

481

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

The length of the DNA chain is equal to the ⌊W/ min
1≤i≤m

{wi}⌋ to guarantee that it is possible to

create a pattern using only one item type.
However, some of cutting patterns do not use all genes available in the DNA chain, since we

consider the items in the cutting pattern until the sum of their lengths do not exceed the size of the
object.

We calculate the fitness of an individual-pattern in the elite list according to the following pro-
cedure

For i = 1 to EliteSolutions

For each pattern j into the solution i Do

If S(i) = 0 Then

FitnessPattern(j) = FitnessPattern(j) + 10

Else

FitnessPattern(j) = FitnessPattern(j) + 1 + (1 / i)

End if

End For

End For

Besides, we keep the individual-patterns associated with the best 20 individual-solutions inside
each niche.

4.2.3 Niches

Since the number of comparisons necessary to calculate Si grows too fast in relation the number of
individuals in the population of solutions, a niche strategy is adopted to make the algorithm more
efficient.

To reduce this cost, each value of f2 (representing the setup) is used as one distinct niche. In
other words, we put together the individuals with the same setup number and we use the concept of
local dominance to calculate Si.

However, this strategy may cause a problem. Given two solutions, α1 and α2, where α1 ≻ α2. If
f2(α1) 6= f2(α2) then the two solutions are not compared and α2 maybe considered as a non-dominated
solution. To avoid this, we compare all solutions in niche p (where p ≤ m is equal the setup number)
with the best solutions of niches p − 1, p − 2.... In this case if the solution of niche n is dominated by
the best solution of an inferior niche, the corresponding Si is penalized by 10 points.

After determining Si, we put the individual-solutions in a fitness ascending order and include them
again in the niches. The position of the individual-solution in the niche is important, since we use the
value of the fitness to calculate the roulette of the 5 top individual-solutions in each niche. The best
individual-solution in each niche has the value of fitness equal 2, while the other individual-solutions
have their fitness lower than 2.

The strategy of developing solutions in all niches is important, since if no change happens in
the fitness of the dominated solutions in the niches of high setups, the solutions in these niches are
probably lost, and we do not want to lose information, since, it can be hard to recover it.

The niche is useful to establish which solutions are recombined. It is easier to see that the crossover
in the inner niche has a greater chance to generate improved individual-solutions. Therefore, we estab-
lish that 70% of crossover operations are made with individuals of the same niche. Another important
function of niche is to maintain the diversity in population, since we are preserving individuals with
different setups then the random crossovers are used to maintain the diversity in the population.

Although we perform 70% of crossovers in the inner niches, we still have to establish a criterion
to choose which niches generate new individuals. To do so, we use the fraction between the number
of dominated solutions and the number of solutions generated by the niche and, after that, we use a
roulette to choose the niche.

The experiments suggest that eliminating individual-solutions by the distance between them, an
common technique in multi-objective algorithms, is not efficient in this problem and, furthermore,

482

A genetic symbiotic algorithm applied to the cutting stock problem

using another notion of distance, like the difference between the demands or the cutting patterns,
is too expensive (in terms of computational time). Therefore, the strategy of generating individuals
from the niches less promising is valid to maintain the diversity in the population.

4.2.4 Coevolution

We work with three different associations, each association is composed by the two populations,
that work in a cooperative and independently way. The symbiotic relationship occurs between the
population of solutions and the population of patterns in each association.

The migration rate among the associations is relatively small, each association receives 6 indi-
viduals each 1, 000 generations; the quantity of individuals that is transfered from one association to
another is not fixed. In a cycle an association can receive 6 solutions from one association and in
the next cycle 3 solutions from each association. Although, apparently small, this value is enough to
produce diversity.

The main difference among the associations is the way the value of fitness function φi is computed.
Another difference is that we allow infeasible solutions. Before explain this differences, we define the
lower bound in the number of setups

ls =













m
∑

i=1

wi

W













We can state that solutions with the number of setup less than ls, do not exist. If a solution with
this number of setup is generated it is destroyed, although we can not state that there exist solutions
with ls setups. Below, we define each association.

Association 1: This association is related to the minimization of the trim loss. Infeasible solutions
will be added to niches up to its limit of 100 individuals and the function φi is given by

φi =
1

f∗
1 (xi)

+
1

1 + Si

Therefore, the individuals with low trim loss have greater probability to generate new individuals.

Association 2: This association is related to the minimization of the number of setup. The function
φi can be stated as follow

φi =
1

f∗
2 (xi)

+
1

1 + Si

In this association the individuals with low setup is more probable to generate new individuals.

Association 3: This association is different from the previous associations for three reasons,

1. the solutions are added to the niches if there exists at least a feasible solution in the niche,
that is, the niche is opened with a feasible solution;

2. the number of solutions in a niche is not limited;

3. the fitness function φi = 1

1+Si

do not prioritize any objective.

483

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

4.2.5 Pseudo-Code

The steps below describe how to obtain a set of candidates to efficient points for the MoCSP:

Algorithm - Symbio

Step 1: Initialize the population of solutions with random values

Step 2: Initialize the population of patterns with random values

Step 3: Compute the f∗
1 and f∗

2 values of the individual-solutions

Step 4: Insert each individual-solution in its respective niche

Step 5: Compute the value of Si for each individual-solution

Step 6: Compute the value of φi for each individual-solution based on the rules of each association

Step 7: Order the individual-solutions based on the φi values

Step 8: Insert each individual-solution in its niches based on the rules of each association

Step 9: Calculate the fitness of individual-patterns

Step 10: Select the patterns with the best fitness and put these patterns in the elite list of the first 20

individual-solutions of each niche

Step 11: Use the crossover and mutation operators to generate new individuals in each population

Step 12: If the current generation is multiple of 1, 000 migrate the individual-solutions among the as-

sociations

Step 13: If any stopping criterion is satisfied then Stop, else return to Step 3.

4.2.6 An example

In this section, we propose a small example to show how the method SYMBIO works in a cutting
stock problem.

• W = 10;

• m = 4;

• w = (w1, w2, w3, w4) = (1, 2, 3, 4);

• d = (d1, d2, d3, d4) = (200, 150, 100, 100).

484

A genetic symbiotic algorithm applied to the cutting stock problem

For this small example we defined the following parameters.

• Individual-solutions:

Population size: 4 individuals;

Type of selection: elitism, top 3/4 of the best individuals;

Crossover rate: 1/4.

Crossover type: uniform, 70% of chance for the best individual.

• Individual-Patterns

Population size: 5 individuals;

Type of selection: elitism, 4/5 of the best individuals;

Crossover rate: 1/5;

Crossover type: 2 points;

Mutation rate: 1% of probability of at the most one gene mutates.

For this example, each individual-pattern is represented by 6 genes and the associations use the
same population of patterns in the beginning of the process.
Patterns population: Pattern 1: (1,2,1,4,1,2); Pattern 2: (1,2,3,4,4,2); Pattern 3: (3,3,4,1,4,2);
Pattern 4: (1,1,1,2,3,2); Pattern 5: (1,4,4,1,2,2). Although each pattern has 6 genes, we do not use
all of them necessarily. We just consider the item in the pattern if the sum of its size with the sizes
of all the previous items (in the same pattern) do not exceed the size of the stock (i.e.,W). We call
these items as active, the other items are not active in the pattern.

Below, we show the population of solutions for each type of association. Each individual is
represented by a triple (ijk), where the i is the number of the association that the individual is
related, j is the niche number of the individual and k is an arbitrary number that identifies the
individual inside the niche. Since m = 4, each individual of the population of solutions has 8 genes,
where the even gene is the frequency of the pattern stored in the next gene (odd gene).

Association 1:

• Individual 131: (75, 1, 50, 2, 50, 3, 0, 4)

• Individual 132: (50, 5, 50, 1, 100, 2, 0, 3)

• Individual 141: (25, 1, 25, 3, 50, 4, 10, 5)

• Individual 142: (20, 1, 50, 2, 30, 3, 45, 4)

Association 2:

• Individual 211: (75, 1, 50, 2, 50, 3, 0, 4)

• Individual 221: (50, 5, 50, 1, 100, 2, 0, 3)

• Individual 222: (100, 4, 50, 5, 0, 1, 0, 5)

• Individual 232: (25, 4, 20, 5, 100, 2, 0, 1)

Association 3:

• Individual 321: (100, 1, 100, 2, 0, 3, 0, 4)

• Individual 322: (100, 1, 50, 2, 0, 5, 0, 3)

• Individual 331: (20, 3, 75, 4, 40, 5, 0, 1)

• Individual 341: (30, 2, 30, 3, 60, 4, 20, 5)

485

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Solution f∗
1 Γ f∗

2 S φ

131 550 0.3333 3.3333 0 1.0018
132 800 0.6666 3.6666 1 0.50125
141 9910 0.0416 10004.0467 1 0.5001
142 250 0.2083 4.2083 0 1.004

211 800 0.6667 1.6667 0 1.6
221 550 0.9583 2.9583 1 0.8380
222 300 0.25 2.25 0 1.4444
231 350 0.25 3.25 1.5 0.7077
232 250 0.2083 3.2083 0 1.3116

321 800 0.6667 2.6667 1 0.5
322 300 0.25 2.25 0 1
331 150 0.125 3.125 0 1
341 200 0.16667 4.1667 0 1

Table 1: Fitness φ of each solution

Table 1 shows, for each individual (ljk) in the population of solutions, the values of f∗
1 , Γ =

(
∑m

i=1
wi |Γi − di|)/(

∑m

i=1
widi), f∗

2 , S and φ, where Γi is the quantity of the item i produced by that
solution and φ is the fitness of the individual computed as suggested in section 4.2.4.

Once the fitness of each individual-solution is computed, SYMBIO computes the fitness of the
individual-pattern for each association as described in section 4.2.2. Table 2 shows the fitness of each
pattern in each association where the column “ Pattern (ij)” means pattern j in association i.

Pattern (ij) Fitness
11 22.5833
12 21.3333
13 21.25
14 11.25
15 2.5833

21 0.2
22 20
23 0.45
24 20.25
25 20.2

31 10.25
32 10.25
33 20
34 30
35 30

Table 2: Fitness of each pattern

After computing the fitness, symbio begins the operations of crossover and mutation in each
population inside the associations. Let us analyze the first population of solutions in each one of the
associations. Since we use elitism with rate equals to 3

4
and we have a population of size 4, only one

individual will be generated. Table 3 shows, for each association, which index (ijk) will be replaced
(the one with smallest fitness), which parents were chosen and what is the new individual generated
by the crossover and mutation operations.

486

A genetic symbiotic algorithm applied to the cutting stock problem

New individual
Solution replaced Parent 1 Parent 2 After Crossover After Mutation

141 131 142 141:(20, 1, 50, 2, 30, 3, 45, 4) 141:(25, 1, 50, 2, 20, 3, 45, 4)
231 222 232 231:(25, 4, 100, 5, 0, 2, 0, 1) 231:(25, 4, 100, 5, 10, 2, 0, 1)
321 331 341 321:(30, 3, 30, 4, 60, 5, 0, 1) 321:(30, 3, 20, 4, 50, 5, 0, 1)

Table 3: Crossover

New individual
Pattern replaced Parent 1 Parent 2 After Crossover After Mutation

15 11:(1,2,1,4,1,2) 12:(1,2,3,4,4,2) 15:(1,2,3,4,1,2) 15:(1,2,3,3,1,2)
21 24:(1,1,1,2,3,2) 25:(1,4,4,1,2,2) 21:(1,1,4,1,3,2) 21:(1,1,4,1,3,1)
31 34:(1,1,1,2,3,2) 35:(1,4,4,1,2,2) 31:(1,1,4,1,3,2) 31:(2,1,4,1,3,2)

Table 4: Mutation

Now, let us show the evolution of the population of patterns. We adopted the notation jk to
represents the pattern k in association j. Table 4 shows the the pattern that were replaced (the one
with the smallest fitness) in each association, the parents who will generate a new individual and the
individual after mutation.

After the iteration,if the stopping criterion is not satisfied then the process continues. After some
predefined number of iterations symbio does some migrations of individual-solution and individual-
pattern from one association to another.

5 Computational Experiences

We worked with the same test problems used in Lee (2007) and Umetani (2003) plus ten more problems
generated by CUTGEN1 (Gau 1995). The 40 instances used in Lee (2007) are available from Umetani
(2007), they come from a chemical fiber company in Japan. The first 20 instances use stock rolls of
size W = 5180 and the remaining 20 instances use W = 9080. The number of items varies from 4 to
20. As in Lee (2007), we add together the demands di of the items with the same width wi. As said
before, the width of the items vary from 5,5% to 40% of the width W of the stock roll. The method
ILS (Iterated Local Search) developed by Umetami et al. (2003) is based on a local search heuristic
that uses pricing information.

The Tables 6, 7, 8 and 9 present the comparison of results for the instances where W = 5180.
Our method is denoted by SYMBIO, Lee’s method is denoted by CRAWLA and Umetani’s method
is called ILS. Looking at the tables, we observe that Symbio presents better results in relation to
the other methods when the number of demanded items is smaller and worst results, when compared
with Lee’s approach, when the number of items is larger. In the Tables 10, 11, 12 e 13 the results are
related to the problems where W = 9080. We present in the respective column of each method the
percentage of trim losses obtained with the respective number of different cutting patterns (setup), in
the same way that was done in Lee (2007).

We analyze in detail three different instances, in all of them the size of the stock rolls is W = 5180.
We use the dominance concept to do the graphs and we just present the best solutions of the method
ILS. The problems are described below.

[Fiber06:] In this problem the SYMBIO obtained better results than the others two methods,
presenting solutions that dominate all the other ones. When the setup is equal to 5, Symbio obtains
the same results of ILS (Figure 7).

[Fiber13a:] After analyzing this problem, we see that the solutions of the SYMBIO and of the
ILS are complementary, while the solutions of CRAWLA are totally dominated (Figure 8).

487

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Figure 7: Fiber06.

Figure 8: Fiber13a.

[Fiber26:] In this problem, despite of SYMBIO having found good solutions, all of them are
dominated by the other methods (Figure 9).

We also tested symbio in 10 problems generated by CUTGEN1 (Gau 1995) to make possible the
comparison done with the method presented in (Umetani 2006): a local search algorithm that uses two
types of local search: (1) the 1-add neighborhood and (2) the shift neighborhood. Linear programming
techniques were aggregated to the local search procedures to reduce the number of solutions in each
neighborhood and to improve its performance. A sensitivity analysis technique was introduced to
solve the large number of associated LP problems quickly. Umetani et al. (2006) compared ILS
with KOMBI234, SHP and with an exact branch-and-price method (BP) proposed by Belov and

488

A genetic symbiotic algorithm applied to the cutting stock problem

Figure 9: Fiber26.

Scheithauer (2000), which proposed a method similar to the work of Vanderbeck (2000), but, with a
small number of variables. In Vanderbeck (2000), he investigates the problem of minimizing a number
of different cutting patterns as a nonlinear integer programming, where a number of objects is fixed
and determined after solving the problem by Gilmore-Gomory strategy. In this paper, Vanderbeck
uses a Dantzig-Wolfe decomposition, developed in Vanderbeck (1999), to solve the resulting integer
programming problem. Umetani et al. (2006) claims that the algorithm ILS obtains better quality
solutions than those obtained by the SHP, KOMBI234, BP approaches.

Table 5 shows the data of these problems. Consider W = 1000 and v1 × 1000 ≤ wi ≤ v2 × 1000
for i = 1, ...,m and recall that m is the number of demanded items, wi is the size of item i and d is
the average demand of the items (see Gau et al. (1995) for details).

Instance v1 v2 m d

cutgen01 0.01 0.2 10 10
cutgen02 0.01 0.2 10 100
cutgen03 0.01 0.2 20 10
cutgen04 0.01 0.2 20 100
cutgen08 0.01 0.8 10 100
cutgen09 0.01 0.8 20 10
cutgen10 0.01 0.8 20 100
cutgen13 0.2 0.8 10 10
cutgen15 0.2 0.8 20 10

Table 5: Random Generated Instances and their parameters

Since ILS (Umetani et al. 2006) minimizes the setup and the number of used objects, Table 14
shows the nondominated solutions obtained by ILS and by Symbio. Both methods obtained the same
solution in 3 out of the 10 problems: cutgen08, cutgen12 and cutgen15. The solutions obtained by
Symbio dominated the solutions obtained by ILS in 2 problems: cutgen01 and cutgen02. In problems
cutgen03, cutgen04, cutgen07, cutgen09 and cutgen10, ILS dominated Symbio.

489

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

It took 60-80 minutes to SYMBIO to run each problem and it was faster in the problems with
several items. This happens because the more niches the algorithm has less comparisons it will have
to do. In the small problems the algorithm possessed at the most 4 niches, while in larger problems
this number is more than 10. The curve of the computational time for SYMBIO can be seen in the
Figure 10.

Figure 10: Computational Time.

The implementation of the method was made in FORTRAN 90/95 utilizing the Microsoft FOR-
TRAN Power Station compiled in a micro-computer AMD SEMPRON 2300+ 1,533 MHz with 640MB
of RAM. The source code is available from the web-page http://www.otimizacao.net.

6 Conclusions and Perspectives

The main contribution of this work is twofold, (1) it is the first approach of cutting stock problem with
multiples objectives that involves the cost of the setup and (2) is the first application of a symbiosis
relationship among different species in a genetic algorithm.

The method produces good approaches of the Pareto-Front for larger part of the test problems
when taking into account the results of the other three methods.

An aspect that can be improved in the proposed method is the computational time. However,
the method has great potential for improvement of its computational time with the use of parallel
processing since the three associations can be processed in a parallel and asynchronous way. Besides,
a fine adjustment of the algorithm can adapt the method for several circumstances.

Acknowledgements: The authors are very grateful to Shunji Umetani for providing the results
obtained by his method and the anonymous referees for many helpful comments which resulted in
a greatly improved paper. The authors have been partially supported by M.E.C. (Spain), Project
MTM2007-063432. The second author is also supported by CNPq (Brazil), Project 307907/2007-4.

490

A genetic symbiotic algorithm applied to the cutting stock problem

References

Allaby M. (1998). Dictionary of Ecology, Oxford University Press, New York.
Bagchi T.P. (1999). Multiobjective Scheduling by Genetic Algorithms. Kluwer Academic Publishers.
Belov G., Scheithauer G. (2003). The Number of Setups (Different Patterns) in One-Dimensional

Stock Cutting, Technical Report MATH-NM-15-2003, Dresden University.
Bremermann H. J. (1962). Optimization through evolution and recombination, In: Self-Organizing

Systems [edited by M.C. Yovits, G.T. Jacobi and Goldstine G.D.], pp: 93-106, Spartan Books.
Chang, M., Ohkura, K., Ueda, K. and Sugiyama, M. (2002). A symbiotic evolutionary for dynamic

facility layout problem. In Proceedings of the Evolutionary Computation, 1745-1750.
Coello C.A. (2001). An Updated Survey of GA-Based Multiobjective Optimization Techniques,ACM

Computing Surveys 32, No. 2, 109-142.
Coello, C.A., Van Veldhuizen, D., and Larnont, G. (2002). Evolutionary Algorithms for solving

multi-objective problems. Kluwer Academic Publishers.
Coello C.A. (2004). List of references on evolutionary multiobjective optimization.

http://www.lania.rmx/~ccoello/EMOO/.
Deb K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley.
Diegel, A. (1988). Cutting paper in Richards Bay: dynamic local and global optimization in the trim

problem, Orion 3, 42-55.
Diegel, A., Montocchio, E., Walters, E., Schalkwyk, S. and Naidoo, S. (1996). Setup minimising

conditions in the trim loss problem. European Journal of Operational Research 95, 631-640.
Dowsland, K. and Dowsland, W. (1992). Packing Problems. European Journal of Operational Re-

search 56, 2-14.
Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operation

Research 444, 145-159.
Eguchi, T., Hirasawa, K. and Hu, J. (2003). Symbiotic Evolutional Models in Multiagent Systems.

The 2003 Congress on Evolutionary Computation 2, 739-746.
Ehrgott, M. and Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective

combinatorial optimization. OR Spektrum 22, 425-460.
Eilon, S. (1960). Optimizing the shearing of steel bars. Journal of Mechanical Engineering Science

2, 129-142.
Foester, H. and, G. (2000). Pattern Reduction in One-dimensional Cutting-Stock Problems. Interna-

tional Journal of Prod. Res. 38, 1657-1676.
Fonseca C.M., Flenfing P.J., Zitzler E., Deb K. and Thiele L. (2003). Evolutionary Multi-Criterion

Optimization. EMO 2003, Second International Conference, Faro, Portugal, April 2003 Proceed-
ings, Lecture Notes in Computer Sciences 2632. Springer Verlag.

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers: I. Introduction.
Austral. J. Biol. Sci. 10, 484-491.

Gau, T. and Wascher, G. (1995). CUTGEN1: A Problem Generator for the Standard One-dimensional
Cutting Stock Problem, European Journal of Operational Research 84, 572-579.

Gilmore, P. C. and Gomory, R. E. (1961). A Linear Programming Approach to the Cutting Stock
Problem. Operations Research 9, 849-859.

Gilmore, P. C. and Gomory, R. E. (1963). A Linear Programming Approach to the Cutting Stock
Problem. Operations Research 11, 863-888.

Haessler, R. (1975). Controlling Cutting Pattern Changes in One-Dimensional Trim Problems. Op-

erations Research 23, 483-493.
Hardley, C. J. (1976). Optimal cutting of zinc-coated steel strip. Operational Research 4, 92-100.
Hinxman, A. (1980). The trim loss and assortment problems: a survey. European Journal of Opera-

tional Research 5, 8-18.
Hirasawa, K., Ishikawa, I., Hu, J., Jin, C. and Murata J. (2000). Genetic Symbiosis Algorithm,

Proceedings of the Congress on Evolutionary Computation 2, pp: 02-xxvi.
Holland, J. H. (1962). Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 3,

491

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

297-314.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan Press.
Johnston, R. E. (1986). Rounding algorithms for cutting stock problems. Asia-Pacific Journal of

Operational Research 3, 166-171.
Kantorovich, L. V. (1960). Mathematical Methods of Organizing and Planning Production. Manage-

ment Sci. 6, 366-422.
Khalifa, Y., Salem, O. and Shahin, A. (2006). Cutting Stock Waste Reduction Using Genetic Algo-

rithms. Proceedings of the 8th Conference on Genetic and evolutionary computation, 1675-1680.
Kolen, A. W. J. and Spieksma, F. C. R. (2000). Solving a bi-criterion cutting stock problem with

open-ended demand: a case study. Journal of the Operational Research Society 51, 1238-1247.
Lee, J. (2007). In situ column generation for a cutting-stock problem. Computers & Operations

Research 34, Issue 8, 2345-2358.
Kim, Y. K., Kim, J. Y. and Kim, Y. (2000). A coevolutionary algorithm for balancing and sequecing

in mixed model assembly lines. Applied Intelligence 13, 247-258.
Kim, J. Y., Kim Y. and Kim Y. K. (2001). An endosymbiotic evolutionary algorithm for optimization.

Applied Intelligence 15, 117-130.
Kim, Y. K., Kim, J. Y. and Kim, Y. (2006). An endosymbiotic evolutionary algorithm for the

integration of balancing and sequecing in mixed-model U-lines. European Jounal of Operational

Research 168, 838-852.
Liang, K., Yao, X., Newton, C. and Hoffman, D. (2002). Evaluation of algorithms for one-dimensional

cutting. Computers & Operations Research 29, 1207-1220.
Mao, J., Hirasawa, K., Hu, J. and Murata, J. (2000). Genetic Symbiosis Algorithm for Multiobjective

Optimization Problem, Proceedings of the IEEE International Workshop on Robot and Human
Interactive Communication, 137-142.

Margulis, L. (1981). Symbiosis in Cell Evolution, W.H. Freeman, San Francisco.
Metzger, R. W. (1958). Stock Slitting. Elementary Mathematical Programming, Wiley.
Osyczka A. (2001). Evolutionary Algorithms for Single and Multicriteria Design Optimization, Studies

in Fuzziness and Soft Computing 79. Physica Verlag.
Paull, A. E. and Walter, J. R. (1954). The trim problem: an application of linear programming to the

manufacture of news-print paper. Presented at Annual Meeting of Econometric Society, Montreal,
10-13.

Pianka, E. R. (1994). Evolutionary Ecology. Harper Collins College Publisher, New York.
Potter, M. A. (1997). The design and analysis of a computational model of cooperative coevolution.

Ph.D. Dissertation, George Mason University.
Romero, C. (1993). Teoría de la decisión multicriterio: Conceptos, técnicas y aplicaciones, Alianza

Editorial.
Moretti, A. C., Salles Neto, L. L. (2008). Nonlinear cutting stock problem model to minimize the

number of different patterns and objects. Computational & Applied Mathematics 27, 61-78.
Stadler, H. (1990). A one-dimensional cutting stock problem in the aluminum industry and its solu-

tion. European Journal of Operational Research 44, 209-223.
Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation and Application, John

Wiley & Sons.
Tsujimura, Y., Mafune, Y. and Mitsuo, G. (2001). Effects of symbiotic evolution in genetic algorithms

for job-shop scheduling, IEEE. Umetani, S., Yagiura, M. and Ibaraki, T. (2003). One Dimensional
Cutting Stock Problem to Minimize the Number of Different Patterns. European Journal of

Operational Research 146, No.2, 388-402.
Umetani S., Yagiura M., Ibaraki, T. (2006). One Dimensional Cutting Stock Problem with a Given

Number of Setups: A Hybrid Approach of Metaheuristics and Linear Programming, Journal of

Mathematical Modelling and Algorithms 5, 43-64.
Umetani S. (2007). http://www-sys.ist.osaka-u.ac.jp/~umetani/index-e.html.
Vanderbeck F. (1999). Computational study of a column generation algorithm for bin packing and

cutting stock problems, Math. Program. 86, 565-594.

492

A genetic symbiotic algorithm applied to the cutting stock problem

Vanderbeck F. (2000). Exact Algorithm for Minimising the Number of Setups in the One-Dimensional
Cutting Stock Problem, Oper. Res. 48, 915-926.

Wascher, G., Carow, P., & Muller, H. (1985). Entwicklung eines flexiben Verfahrens für Zuschnei-
deprobleme in einem Kaltwalzwerk. Zeitschrif für Operations Research 29, B209-B230.

Wascher, G., (1990). An LP-based approach to cutting stock problems with multiple objectives.
European Journal of Operational Research 44, 175-184.

Wascher, G. and Gau, T. (1996). Heuristics for the Integer One-dimensional Cutting Stock Problem:
a computational study. OR Spektrum 18, 131-144.

Wascher, G., Haussner H. and Schumann. (2007). An improved typology of cutting and packing
problem. European Journal of Operational Research 183, 1109-1130.

Watson, R. A. and Pollack, J. B. (1999). How Symbiosis Can Guide Evolution, Advances in Artificial
Life: 5th European Conference, Springer.

Yanasse H.I., Limeira M. (2006). A hybrid heuristic to reduce the number of different patterns in
cutting stock problems, Comput. Oper. Res. 33, 2744-2756

Zitzler, E., Laumanns, M., and Thiele. M. (2001). SPEA2: Improving the Strength Pareto Evolu-
tionary Algorithm, Technical Report 103, Computer Engineering and Networks Laboratory (TIK),
Swiss Federal Institute of Technology (ETH) Zurich.

Zitzler, E., Deb K., Thiele L., Coello C. and Corne D. (2001). Evolutionaw Multi-Criterion Optimiza-
tion, Lecture Notes in Computer Sciences, 1993. Springer Verlag.

493

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Instance Setups ILS crawla Symbio

Fiber06 7 5.19
6 5.19
5 5.19 5.19
4 8.28 8.28
3 8.28 12.47 8.28
2 48.5 17.55

Fiber07 10 4.98
9 4.98
8 4.98
7 4.98
6 8.16
5
4
3 8.16 4.98
2 11.34 11.34
1 68.61 68.61

Fiber08 10 4.47
9 4.47
8 4.47
7 4.47
6 4.47
5
4
3 4.46 4.46
2 5.67 5.67
1 126.94

Fiber09 9 9.27
8 9.27
7 11.29
6 11.29
5 11.29
4 11.29
3 23.43 11.29
2 47.71 47.71

Fiber10 14 4.20
13 4.20
12 4.20
11 4.20
10 4.20
5 4.20
4 5.69 4.20
3 7.18 5.69
2 22.06 22.06

Table 6: Setups and percentage trim losses obtained by ILS, crawla and Symbio (5180).

494

A genetic symbiotic algorithm applied to the cutting stock problem

Instance Setups ILS crawla Symbio

Fiber11 12 6.06
11 6.06
10 4.52
9 4.52
8 6.06
7
6
5 6.06
4 7.59 6.65
3 10.67 9.13
2 52.16

Fiber13a 14 2.41
13 4.24
12 2.41
11 4.24
10 4.24
8
7
6
5 6.07
4 13.38 7.90
3 28.01 13.38
2 51.79

Fiber13b 9 6.59
8 6.59
7 6.59
6 6.59
5 6.59
4 6.59 6.59
3 10.27 10.27
2 105.83 21.29

Fiber14 11 5.45
10 5.45
9 5.45
8 7.61
7 9.76
5 5.45 5.45
4 9.76 9.76
3 14.06 14.06
2 63.56 85.08

Fiber15 14 4.76
13 4.76
12 4.76
11 4.76
10 6.56
4 4.76 4.76
3 10.17 6.56
2 49.91 39.07

Table 7: Setups and percentage trim losses obtained by ILS, crawla and Symbio (5180).

495

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Instance Setups (n) ILS crawla Symbio

Fiber16 10 7.68
9 6.46
8 8.91
7 8.91 4.01 4.01
6 27.26 5.24 5.23
5 11.35 7.68
4 13.80 16.25
3 45.62 66.41

Fiber17 9 5.46
8 6.69 4.24
7 7.92
6 17.28 4.24 5.46
5 22.63 6.69 6.69
4 7.92 11.59
3 29.99 29.99

Fiber18 11 5.10
10 6.16
9 5.10 5.10
8 10.41 6.16
7 11.47
6 5.10 7.22
5 6.16 10.40
4 7.22 11.46
3 18.90 82.59

Fiber19 25 4.98
24 5.77
23 4.98
22 4.98
21 4.98
9 5.77 5.77
8 6.56 6.56
7 7.35 7.35
6 8.14 8.93
5 9.72 10.51
4 14.45 24.71
3 46.82

Fiber20 8 13.41
7 19.71 7.11 7.11
6 26.02 10.26 13.41
5 54.37 22.86 16.56
4 57.52 54.37

Table 8: Setups and percentage trim losses obtained by ILS, crawla and Symbio (5180).

496

A genetic symbiotic algorithm applied to the cutting stock problem

Instance Setups ILS crawla Symbio

Fiber23 15 4.98
14 2.84
13 6.41
12 9.27
11 17.84 8.55
10 9.26
9 2.84 10.69
8 4.27 12.12
7 5.70 14.98
6 7.84 17.83
5 19.98 21.40
4 67.11

Fiber26 29 3.39
28 2.31
27 3.39
26 3.39
25 3.93
10 8.78
9 9.31
8 4.47 10.93
7 5.01 15.78
6 7.16
5 15.78 28.16
4 78.24 96.01

Fiber28a 11 9.70
10 10.91 8.49
9 10.91 9.70
8 18.14 4.88 13.31
7 26.58 7.29 19.34
6 9.70 32.60
5 13.32 50.69
4 28.99

Fiber28b 17 8.27
15 5.69
14 6.55 7.40
13 6.55 9.12
12 8.27
11 6.55 9.98
10 10.84
9 5.69 13.42
8 5.69 17.72
7 8.27 22.87
6 15.14 41.78
5 34.90 96.77

Fiber29 13 11.03
12 9.40
11 14.30 7.76
10 9.40 9.40
9 12.66 4.50 11.03
8 9.40 14.29
7 14.29 22.46
6 24.09 43.68
5 32.26 53.48

Table 9: Setups and percentage trim losses obtained by ILS, crawla and Symbio (5180).

497

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Instance Setups (n) ILS crawla Symbio

Fiber06 5 8.46
4 8.46
3 8.46 8.46 3.03
2 19.30 8.46
1 73.53 73.53

Fiber07 4 5.95
3 5.95
2 5.95 5.95 5.95
1 17.10 17.10

Fiber08 4 3.13
3 7.34 1.03 1.03
2 17.87 7.34 3.13
1 32.60 32.60

Fiber09 5 9.95
4 9.95 6.41
3 9.95 9.95 6.41
2 27.69 13.50
1 254.69

Fiber10 5 6.98
4 6.98 1.76
3 9.59 4.37 4.37
2 14.81 9.59
1 72.21

Table 10: Setups and percentage trim losses obtained by ILS, crawla and Symbio (9080).

Instance Setups ILS crawla Symbio

Fiber11 5 7.77
4 5.08 7.77
3 10.47 10.47 5.08
2 34.71 13.16
1 228.70

Fiber13a 6 5.79
5 8.99
4 12.20 8.99
3 15.40 8.99
2 31.43 12.20
1 406.49

Fiber13b 4 15.97
3 9.53 3.08
2 22.42 9.53 9.53
1 138.39 138.39

Fiber14 5 5.63
4 5.63 1.85
3 43.35 5.63 5.63
2 24.49 20.71

Fiber15 5 10.81
4 7.64 4.48
3 32.97 7.64 4.48
2 23.47 10.81
1 200.77

Table 11: Setups and percentage trim losses obtained by ILS, crawla and Symbio (9080).

498

A genetic symbiotic algorithm applied to the cutting stock problem

Instance Setups ILS crawla Symbio

Fiber16 7 2.96
6 7.25 5.10
5 7.25 7.25 7.25
4 13.68 9.39 9.39
3 17.97 20.12
2 45.86

Fiber17 12 5.33
11 5.33
10 3.18
5 3.18 3.18
4 5.33 5.33
3 7.48 13.93
2 26.83 24.68

Fiber18 6 6.07
5 15.37 2.35 2.35
4 19.09 4.21 4.21
3 7.93 7.93
2 33.98 35.84

Fiber19 8 3.77
7 6.54
6 6.54 3.77
5 5.15
4 3.27 6.54
3 6.10 12.07
2 49.96

Fiber20 7 15.97
6 15.97
5 15.97 10.45 27.12
4 15.97 37.71
3 27.01 64.20
2 137.46

Table 12: Setups and percentage trim losses obtained by ILS, crawla and Symbio (9080).

499

R.R. Golfeto, A.C. Moretti, L.L. de Salles Neto

Instance Setups ILS crawla Symbio

Fiber23 7 11.41
6 12.67 6.41 8.91
5 16.42 7.66 10.16
4 11.41 20.18
3 20.18 36.45

Fiber26 10 5.72
9 6.66 6.66
8 7.61 7.61
7 8.55 9.49
6 1.94 10.44
5 3.83 11.38
4 10.44 23.65
3 33.09 46.30

Fiber28a 8 9.88
7 9.88 7.77
6 18.33 9.88
5 5.66 14.11
4 11.99 20.45
3 20.45 41.56
2 60.60

Fiber28b 12 3.93
11 6.94
10 14.47
8 9.95
6 3.93 12.96
5 6.94 22.00
4 14.47 41.58
3 29.53

Fiber29 13 5.90
12 8.76
11 11.62
9 8.76
6 5.90 11.62
5 8.76 17.34
4 20.21 31.65
3 45.97

Table 13: Setups and percentage trim losses obtained by ILS, crawla and Symbio (9080).

500

A genetic symbiotic algorithm applied to the cutting stock problem

Instance Setups ILS Symbio

cutgen01 4 13
3 14
3 13
2 15

cutgen02 8 128
7 129
5 123 130
4 126 134
3 129 150
2 139

cutgen03 6 25
5 26
4 24 27
3 25 30

cutgen04 15 236
14 237
13 238
12 239
11 226
10 243
9 246
8 227 252
7 228 256
6 231 258
5 232 264
4 238 293
3 249 301

cutgen07 7 80
5 66

cutgen08 5 647 647

cutgen09 15 91 96
14 92
13 93 97
11 94 98
10 97 99

cutgen10 15 917 979
14 921
13 935 984
12 940 994
11 948 1009
10 970 1059
9 1065

cutgen13 7 80 80

cutgen15 13 127 127

Table 14: Setups and number of processed objects obtained by ILS and Symbio in 10 instances of
CUTGEN1.

501

