AMO - Advanced Modeling and Optimization, Volume 11, Number 4, 2009

A two-dimensional search for a Gauss-Newton algorithm

A.B. Forbes
National Physical Laboratory, Teddington, United Kingdom
M.C. Bartholomew-Biggs
University of Hertfordshire, Hatfield, United Kingdom

Abstract

This paper describes a fall-back procedure for use with the Gauss-Newton method for non-
linear least-squares problems. While the basic Gauss-Newton algorithm is often success-
ful, it is well-known that it can sometimes generate poor search directions and exhibit slow
convergence. For dealing with such situations we suggest a new two-dimensional search
strategy. Numerical experiments indicate that the proposed technique can be effective.

1 Introduction

This report describes a method for non-linear least-squares calculations whose
main ideas are explained in detail in section 2 below. Basically it uses a stan-
dard Gauss-Newton algorithm with the additional distinctive feature that a two-
dimensional search procedure is used on any iteration when the Gauss-Newton
step proves unsatisfactory. The effectiveness of this fall-back 2D search strategy is
illustrated by numerical results presented in section 3.

The approach is implemented as a fortran90 dgitlesolver which is intended

to be suitable for a wide range of least-squares problems (such as those encoun-
tered on a day-to-day basis at the National Physical Laboratory). A convenient and
flexible user-interface is provided by means dianessoutine [1] which is not
prescriptive about the form of the function evaluation or the algebraic details of the
calculation of the Gauss-Newton search direction. Hence a user is free to exploit
special features of a particular problem such as sparsity or structure.

When an iterative algorithm is implemented in software intended for general use
an important issue is the robustness of the termination tests. It is desirable, as far
as possible, that the performance of the algorithm should be insensitive to changes
of scaling on the variables or the function (such as might occur due to a change
of physical units). The stopping rules @N_solver are intended to fulfil this
requirement — although they do require some tolerance parameters to be specified
which reflect the user’s own insight into acceptable solution accuracy. Section 3.2
gives some experimental evidence about changes in behaviaiir 8é1ver due

to rescaling of problems.

The concluding section outlines some further developments of the algorithmic
ideas inGN_solver with a view to future versions of the software.

AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

435

2 GN_solver

GN_solver is an implementation of a Gauss-Newton algorithm for nonlinear least-
squares problems of the form

Minimize F(x) = i fi(x)2. (1)

GN_solver requires a user-supplied subroutine which, for any values of the opti-
mization variablexq, .., X, evaluates the subfunctiors, .., f,, and also the Jaco-
bian matrixJ with elements);j = 9f; /0x;.

The interface between the user-routine @Ndsolver is aharnesssubroutine (as
described in [1]). This calls the user’s routine and — according to a flag set by
GN_solver — it returns either

() the values of the subfunctiorfs

or (i) the valuesfy, .., f, and the elements of gradiegi= 2J7

or (iii) the valuesfs,.., fm, 01,..,0n and (an approximation to) the Gauss-Newton
directionp = (JTJ)~1JT 1.

The interface harness routine allow$o be calculated in a way that is efficient and
appropriate to the features of a particular problem (see [1]).

The method implemented @N_solver is basically a straightforward Gauss-Newton
algorithm. Thek-th iteration begins with a current solution estimateind calcu-
lates the Gauss-Newton directign= (J] J)~1J/] fx. A convergence test is then
performed which terminates the process if

| fil|2 < me (2)

or
lokl2 < \/nm\/(Skalz) 3)

or

n
[Ipll2 < (ta+€)(n+|[x|[2) and |gk/|2 < aso's(er [fll2)

and [(||fk-1l[2 = [[fkl[2)[< mrs. (4)

In these testsg denotes machine precision whilgandts are small positive toler-
ances to be specified by the user. The tests are based on suggestions made by Gill
etal [2].

If convergence does not occur then a new pgint = xx + spis usually obtained
by a line search. The case when this does not happen is when the calculated Gauss-
Newton direction does not satisfy a descent property

—P" gk < V[pllal |9kl l2-

436

In this case, an alternative directipris computed using a two-dimensional search
procedure outlined below in sections 2.3 and 2.4.

Two kinds of line search are available@_solver. The first is an Armijo-type

search which uses only function values while the second combines the Armijo
search with the secant method and involves calculating both the function and the
gradient at every trial point. The first alternative isvaaksearch which merely
ensures an acceptable decrease in the function value. The second method, however,
is capable of performing perfectsearch to find the one-dimensional minimum of

F along the directiorp. For a broader discussion of both types of line search see,
for instance, [2] or [3].

Both line search algorithms are given below in sections 2.1 and 2.2. For the mo-
ment we note that the algorithm can specify a vayg such that the search is
clearly successfuf

||Xk4-1 — X/ |2 > Smin||PI|2

which implies that the change in the variables is not less than some chosen fraction
of the Gauss-Newton step. Similarly, a line search déarly unsuccessfid the
relative change in the variables is comparable with machine precision —i.e.

X1 =Xkl foo < ([Xl |eo +€).-

After a clearly unsuccessful search the iterative process terminates while a clearly
successful search is followed by the start of a new iteration. If, however, the line
search yields a new point which lies between these alternatives, the algorithm has
the option of performing &wo-dimensional seardh the plane ofp andgy in order

to find a new point which is better thag, 1. This search, and the conditions which
trigger it, are described in sections 2.3 and 2.4 below.

Some authors [4],[5] have suggested using a quasi-Newton search direction as a
fallback option when a Gauss-Newton step is unsuccessful. Our reason for not
using this option inGN_solver relates to the harness interface. Its purpose is

to allow a user to computp efficiently taking into account any structure in the
Jacobian. Some nonlinear least-squares applications have thousands of parameters
but very exploitable structure in the Jacobian which can make the Gauss-Newton
direction quite cheap to compute. However it may be much less straightforward
for any quasi-Newton update to take advantage of the problem structure and this
could mean that the use of a quasi-Newton direction could be relatively inefficient.

2.1 A weak line search algorithm

The following is an Armijo algorithm for a weak line search to yield an acceptable
decrease in the functidn, defined by

NP' OF (%) < F (Xct1) — F (%) < (1—n)p" OF (o).

437

Itis used inGN_solver for 0 < n < 0.25 and involves parameteté< 1), C(> 1)
ande.

Givenx, p, Fc = F (%), 0 = p' OF (%), sandn

Setg =0, Dy =1,i4 =0

Start extrapolation loop:

Repeat
Set £+
xt =xc+sp FF=F(x"), D= @
SOk

If n <D <1-nthens =sand exit loop
If D < nthens =s, D; =D and exit loop
Set 0.55

s =s, D| =D, s=Min[Cs, m]
end repeat

Start interpolation loop:

Repeat If n <D <1-n thens = sand exit loop
If D<nthens =s, D =D

fD>1-ntheng =s D =D

Setsp =cs+(1-0C)s, sp=Ccg +(1-C)s

Set
%zs+$§:3?®—3%SZMmﬁmeHm%H
Set T
X" =x+sp Fr=F(x"),D= (F =R
SOk

If ||XT —X||e < €|X0]|o0 + € S€tifai = 1 and exit loop

end repeat
If ifa = O thenx 1 = X", R 1 = FT; otherwise search has failed.

2.2 A perfect line search algorithm

The following is a combined Armijo/secant algorithm for a strong or perfect line
search to yield a decrease in the magnitude of the projected gradient, given by

1p"OF (Xci1)| < Hp" OF (%)]-

This is used iIrGN_solver with p=1—2n and 025< n < 0.5.

Givenxg, p, Fo = F(X0), go = OF (Xo), sandp
Run the Armijo algorithm witim = 0.25 to obtain values ands; =s

438

Set) =X +9P, X% =X+SP

Evaluatel =F(x), g = p'OF(X), Fr =F (%), gr = p' OF (%)
If |or| < plok| then returrs,, %, F

If gr < gk then sefy) = 1 and returrs;, %, F (not a minimum)
Repeat

Set

as

== x'=x+sp FF=Fx"), g =p'OF(x"
@ —a) k+sp (x7), g"=p OF(X")

S=9§—

If |g™| < pgk| then exit loop

If F* > F then setta) = 1 and exit loop

If lor| < o[thenses =s, R =F, g =0

Sets =s", R =F", g =g

end repeat

If itay = O returnxg, 1 = X+, F.1 = FT as the line minimum

Otherwise returx 1 = X", .1 = F' as an improved point (not a minimum).

2.3 The two-dimensional search algorithm

In the event that the Gauss-Newton step proves unsatisfactory for one of the reasons
specified in section 2.44N_solver seeks a new pointt by performing a two-
dimensional search in the plane spanned by the Gauss-Newton dirp&iahthe
negative gradient-gx. Specifically, this search looks for the least valué-an a
circular arc centred or, with radiusp and can be outlined as follows:

Givenp andgy = UF (x«) (assumed not parallel) and a radp/(s> 0)

Construct the unit vectay = gx/||0k||2

Setu= p—§" pg (so thatg’u = 0) and seti= u/||u]|>.

Setd = cos [~ p'§/||pll2] B

Find 8* to minimize@(0) = F (% — (pcosB)g+ (psinB)d) for 8 > 6 > 0.

Returnx™ = x¢ — (pcosB*)§+ (psin®*)d

In GN_solver the minimization ofp(8) is done by seven iterations of the bisection
method. This is chosen on the expectation thatill be about 90 and so seven
iterations will located* to a precision of less tharP 1

The next section shows how this 2D search is incorporatedinteolver.
2.4 Triggering a two-dimensional search

There are two situations in which a two-dimensional search may be needed.
(a) If a (weak or perfect) search aloterminates with a step size< Spin.

In this case, if the new poin 1 = X+ spandfc1 = F (1) then the following
procedure is used to determine whether a two-dimensional search is appropriate.

439

EvaluateD = (Fc 1 — F)/(sp' OF (X)).

If D<1ands/(1—D) < Smin
EvaluateFs = F (X + sminp). If Fs > K¢ perform a 2D search with = s||p||2
If F* < Fp1 Setxgyr1 =X+

Start a new iteration fromy 1.

The secondary test that must be satisfied before a 2D search is attempted is one
which suggests that the steplength, would produce an increaseln This test is
included because a weak line search sometimes accepts a poistwith, even

though the Gauss-Newton step could have yielded a much better reduction. In this
situation the additional computing cost of a 2D search is not usually justified.

(b) If the search directiop gives insufficient descent.

If —p"g< ¢€||p||2||g/|2 then a two dimensional search is used to find a better search
direction, as follows.

Perform a 2D search with = 0.001| p||» and obtain a new poin¢"
Perform a line search along the directipa- x* — x.

3 Numerical results

We guote some trial results obtained wiih solver is applied to the following
problems.

Problem 1lis the Rosenbrock problem
F(X) = 100(x2 — x2)? + (1 —x—1)?

using the non-standard starting pofrt7, 49).
Problem 2s the extended scaled Rosenbrock problem

10* (Xep1 — %) 2 + (1 — %)

M s

F(x) =

k=1

starting atx = (—0.5, 0.25, 0.0625 0.003906 0.0000053
Problem 3s

30 . . .
F(x) = 2512 where § = e /1041 x &2 — xges
i=

using the starting point= (0.5, 0.5, 0.5, 0.0)
Problem 4is

20 ' . '
F(x) = .215‘2 where s = e /10454 0.05 — x,6* — xge™
1=

440

using the starting point= (5.67, —0.0083 0.283 0.0782
Problem 5s

41 -
F(X) :_21512 where § = X; +Xo|i /8 — X3 — (1.77—0.15i /8+0.737%%6) +- (—0.1)
i=

using the starting point= (1.0, —1.0, 1.1, 1.1)

For all these problems the convergence tests (2) — (4) were used with0—16
andt, =1f = 10°°.

We now give some results which show the effect of using different valugsaoti

Smin- Choosing) = 0.1 implies that the line search is quite weak, with a new point
being accepted if it gives quite a modest reduction in the valde dfcreasing
causes. 1 to be closer to a one-dimensional minimum along the diregbicemd

the choicen = 0.499 causes the line search to be very close to perfect. Increasing
Smin away from zero raises the threshold for a Gauss-Newton step tdebdy
successfubnd hence tends to increase the number of two-dimensional searches
that are performed.

The entries in the tables below give the numbers of iterations and function evalua-
tions needed to solve the test problems stated above. \&her 0 the figure in
brackets shows how many two-dimensional searches were performed. The quoted
values ofsyin vary from problem to problem, according to the smallest value of the
trigger threshold which produces any change from basisffie= 0 case.

n 0.499 0.45 0.25 0.1
Smn=0.0 | 69 367 | 68 301 | 80 308 | 81 305

Smin = 0.04 | 64(1) 377| 64(1) 308| 80(0) 308| 81(0) 305
Smin=0.05 | 60(2) 384| 61(2) 319| 71(2) 317| 77(1) 309

Table 1: Iterations and function calls f6N_solver on Problem 1

n 0.499 0.45 0.25 0.1
Smin=0.0 | 158 905 158 739 203 789 203 786
Smin = 0.03 | 144(2) 887| 144(2) 723| 198(1) 797| 202(1) 805
Smin = 0.04 | 135(6) 954| 136(6) 787| 174(4) 790| 199(2) 815

Table 2: Iterations and function calls f6N_solver on Problem 2

The way in which performance is affected by the choicgisfshown most clearly
when spin = 0 so that there are no two-dimensional searches. The expectation
is that asn increases the number of iterations will decrease while the number of
function calls per iteration will increase. Results show that this is usually the case
(and remains so whegyin > 0).

441

n 0.499 0.45 0.25 0.1
Smn=0.0 | 119 662 | 124 617 | 119 580 | 212 1219
Smin=0.02 | 119(0) 662| 114(3) 586| 104(2) 444| 61(2) 270
Smin=0.03 | 101(5) 686| 85(8) 572 | 95(5) 478 | 74(4) 355

Table 3: Iterations and function calls f6K_solver on Problem 3

n 0.499 0.45 0.25 0.1
Swn=0.0 | 173 879 | 175 847 168 787 173 802
Smin=0.01 | 132(4) 879 | 132(4) 717| 137(5) 710 | 127(5) 624
Smin= 0.015| 110(15) 989| 110(15 831] 117(27) 1052 112(23) 928

Table 4: Iterations and function calls féK_solver on Problem 4

n 0.499 0.45 0.25 0.1
Swn=0.0 | 116 795 | 108 613 | 121 674 | 113 610
Smin = 0.01| 57(5) 439] 56(5) 362 75(10) 508| 69(10) 471
Smin=0.02 | 46(8) 446 47(8) 378| 62(12) 486| 66(11) 477

Table 5: Iterations and function calls f6K_solver on Problem 5

For all five problems there is evidence that it can be beneficial to use two-dimensional
searches when the basic line search takes a step less;tham Problems 1 and

2 we see modest reductions in iteration count accompanied by small increases in
numbers of function calls. In Problems 3 and 4, for smaller valugs affew two-
dimensional searches produce a substantial decrease in both iteration count and
numbers of function evaluations. For Problem 5 there are appreciable improve-
ments in iteration count and function evaluations for all values.of

The choice ofsy;n, the threshold for triggering two-dimensional searches, seems,
unfortunately, to be rather problem-dependent. Below a certain level it will, of
course, have no effect; but as it becomes large enough to cause a small number of
2D searches to occur then the consequences are initially quite beneficial. However,
assmin increases further, some sort of law of diminishing returns seems to operate.
Thus it appears that the standard line search should not be superseded too readily
by the 2D alternative.

3.1 The cost of the two-dimensional search
In order to assess the efficiency of the two-dimesnional search procedure we need

to look more closely at what is meant bjueaction callin the results in Tables 1 —5.
The quoted figures simply record the number of times the harness routine is called.

442

A two-dimensional search involves seven iterations of the bisection method which
employ 17 calls to the harness routieach requiring only the evaluation of the
subfunctions;f For every Gauss-Newton iteration that is saved, however, we also
save a harness-routine call involving the additional and expensive calculation of a
Gauss-Newton direction. Properly to evaluate the benefits of the two-dimensional
searches, therefore, we need to keep distinct counts of numbers of evaluations of
residualsf, gradientg and search directiop. As a specific example, consider
Problem 3 withn = 0.499. Whensyi, = 0 there are 119 "expensive” calls to the
harness routine to calculafe g and the Gauss-Newton directign In addition

there are 543 "medium-cost” calls to the harness routine to supply foahydg.

In contrast, whersyin = 0.03, the five two-dimensional searches take 85 of the
cheapest harness evaluations yielding valuelsarily. The consequent reductions

in numbers of high- and medium-cost harness calls are, respectively, 18 and 43.

In order to quantify savings in arithmetic effort whem>> n we can make the
following estimates. We can sssume that a function and gradient call costs roughly
n times a function-only call and that a function, gradient and search direction call
costs roughlyn? times a function-only call. Therefore the two-dimensional search
is beneficial if

B extraCr
~ n(decrease i€rqp) + N(decrease iCrg)

P2p <1

For problem 3, withn = 4, pop = 85/(16 x 18+ 4 x 43) ~ 0.185 indicating that

there is an overall saving of effort. The following tables shoyy for each test
problem and they the 2D search is beneficial in about 90% of the tests. The best
values ofp,p are not necessarily in the places where we intuitively put them based
on counts of iterations and function calls.

n 0.499| 0.45| 0.25| 0.1
Smin=0.04| 0.7 | 061 1 1
Smin=0.05| 0.65 | 0.74| 0.5 | 0.5

Table 6: Performance gapp for Problem 1

n 0.499| 045| 0.25 | 0.1
Smin=0.03| 0.06 | 0.06| 0.012| 1.7
Smin=0.04| 0.14 | 0.14| 0.07 | 0.32

Table 7: Performance gafp for Problem 2

443

n 0.499| 045| 0.25| 0.1
Smin=0.02| 1 0.11| 0.04 | 0.006
Smin=0.03| 0.18 | 0.11| 0.08 | 0.013

Table 8: Performance gappp for Problem 3

n 0.499| 0.45| 0.25| 0.1
Smin=0.01 | 0.09 | 0.05| 0.08| 0.05
Smin=0.015| 0.19 | 0.14| 0.33| 0.22

Table 9: Performance gapyp for Problem 4

n 0.499| 0.45| 0.25| 0.1
Smin=0.01| 0.03 | 0.04| 0.09]| 0.1
Smin=0.02| 0.05 | 0.06| 0.09| 0.1

Table 10: Performance gapp for Problem 5

3.2 Invariance to scaling

An important issue with regard to general purpose softwarelikeolver is that
behaviour should be relatively insensitive to scaling of the function or variables
(which might depend on a user’s choice of units, for example). The tests (2) —
(4) are intended to be fairly robust and to ensure that, so long as a user makes
reasonable choices &f 14 andt¢, the algorithm will neither terminate a long
way from a solution nor waste many iterations making trivial improvements in
the vicinity of a solution. The next two tables show that the 2D search is fairly
insensitive to scaling.

Table 11 shows that the behaviour @f_solver does not change significantly
when the functiorf is scaled by a constant Comparison of these results with
those in the previous section shows that the changes in numbers of iterations and
function evaluations is relatively insensitive to such scaling on the objective func-
tion. Table 12 gives a similar set of results showing performandogolver

when the variables in the problem are scaled by a faztd®nce again the varia-

tions in numbers of function calls and iterations are very small.

The results in this section suggest that the convergence tests (2) — (4) are quite
robust. It is also noteworthy that the fall-back two-dimensional search strategy
does not appear to be affected by scaling on the function or the variables, since the
number of special iterations is the same for the scaled and unscaled versions of the
problems in our experiments.

444

Problem 1
o N =0.499 snin=0.0 | n=0.25 syin=0.04 | n=0.1, Syir =0.05
1000 69(0) 367 80(0) 308 77(1) 309
0.001 69(0) 367 79(0) 306 76(1) 307
Problem 2
o n=0.499 snin=0.0 | N =0.25, Syin=0.03 | n=0.1, Syjn=0.04
1000 159(0) 907 198(1) 797 199(2) 815
0.001 158(0) 905 198(1) 797 199(2) 815
Problem 3
o N =0.499 Snin=0.0 | N =0.25, Syin=0.02 | n =0.1, Syin=0.03
1000 120(0) 664 105(2) 446 74(4) 355
0.001 118(0) 660 103(2) 442 73(4) 353
Problem 4
o n =0.499 $,in=0.0 | N =0.25, $pin=0.01 | n =0.1, sujn=0.015
1000 173(0) 879 137(5) 710 112(23) 928
0.001 172(0) 877 136(5) 708 111(23) 926
Problem 5
o n=0.499 syin=0.0 | n=0.25 S;jn=0.01 | n=0.1, Sujn=10.02
1000 116(0) 795 75(10) 511 66(11) 480
0.001 115(0) 793 75(10) 508 66(11) 477

Table 11: Performance @iN_solver when function is scaled

4 Discussion and further work

We have described a robust version of the Gaiss-Newton method which includes
a two-dimensional search to prevent slow convergence or premature termination.
This has been implemented as the algorittin solver and results quoted in

the previous section indicate that it fulfills its purpose of being a reliable general-
purpose code for solving non-linear least-squares problems. We have paid particu-
lar attention to testing the robustness of its convergence tests and the effectiveness
of the fall-back two-dimensional search to be used if the Gauss-Newton direction
proves unsatisfactory.

The current version of the program allows a user to specify paranmggand smin

which control the accuracy of the line search and the threshold steplength which
triggers the two-dimensional search. The test results do not suggest hard and fast
guidelines for choosing parameter values to give the "best” performance on any
particular problem. However it seems safe to us0n > 0.1 and 002 > spin > 0.
Fine-tuning of the parameters is probably worthwhile only for users who routinely
solve data-fitting problems involving one type of highly nonlinear model.

We conclude by mentioning some further possible refinemerés teolver.

445

Problem 1
o N =0.499 snin=0.0 | n=0.25 syin=0.04 | n=0.1, Syir =0.05
1000 69(0) 367 79(0) 306 76(1) 307
0.001 69(0) 367 80(0) 308 76(1) 307
Problem 2
o n=0.499 snin=0.0 | N =0.25, Syin=0.03 | n=0.1, Syjn=0.04
1000 158(0) 905 198(1) 797 199(2) 815
0.001 158(0) 905 198(1) 797 199(2) 815
Problem 3
o N =0.499 Snin=0.0 | N =0.25, Syin=0.02 | n =0.1, Syin=0.03
1000 119(0) 662 104(2) 444 74(4) 355
0.001 120(0) 664 105(2) 446 74(4) 355
Problem 4
o n =0.499 $,in=0.0 | N =0.25, $pin=0.01 | n =0.1, sujn=0.015
1000 172(0) 877 137(5) 710 112(23) 928
0.001 173(0) 879 137(5) 710 111(23) 926
Problem 5
o n=0.499 syin=0.0 | n=0.25 S;jn=0.01 | n=0.1, Sujn=10.02
1000 115(0) 793 75(10) 508 66(11) 477
0.001 116(0) 795 75(10) 510 66(11) 480

Table 12: Performance 6iN_solver when variables are scaled

4.1 Replacing the bisection method in the 2D search

Although the bisection method has worked quite well as a method of finding a new
point in the p,g-plane, the algorithm in section 2.3 may not be the most efficient
approach that could be taken. It could prove more economical in terms of func-
tion evaluations to combine bisection with quadratic searching. As soon as hisec-
tion locates a range in which the least function value is at the midpoint we know
that a quadratic fitted polynomial will have a minimum within the range and we
can expect to estimate the true minimum more quickly and accurately by repeated
guadratic interpolation than by continuing with bisection.

4.2 Combining extrapolation with the 2D search

Suppose two-dimensional search in cémeof section 2.4 yields a poin€ such
that F(xt) < F(xt1), wherex*t1 is the point reached by the standard line
search along. Then, instead of simply setting“*?) = x* it might be beneficial
to extrapolate by means of a line search along the new direption™— x¥ (as is
done in casé€b) of section 2.4). A suitable trigger for doing such an extrapolation

446

could be based on evaluating

D_ F(xt) —F(x®)
g (xt —x(k)

If D > 0.75 (say) then a larger step to (at leadt) + 25 would probably produce
a significant further decrease én

4.3 Using the latest gradient in the 2D search

In case(a) of section 2.4 the two-dimensional search is in the plane defingal by
and—g®, the steepest descent direction at the start of the current iteration. How-
ever, a reason for a line search algntp terminate with a small step< smin may

be that the gradient vector is changing rapidly. If this is so, then it may be more
effective to perform a two-dimensional search in the plane definguldyd some
combination ofg¥) andgktl) where—g**D, the steepest descent direction at the
stopping point of the line search.

References

[1] Cox, M.G., A.B. Forbes, P.M. Fossati, P.M. Harris and I.M. Smith, Tech-
niques for the efficient solution of large-scale calibration problems, Technical
Report CMSC 25/03, National Physical Laboratory, Teddington, U.K., 2003.

[2] Gill P.E., Murray, W., and Wright, M.H., Practical Optimization, Academic
Press, London, New York, 1981

[3] Bartholomew-Biggs M.C., Nonlinear Optimization with Engineering Appli-
cations, Springer 2008

[4] Bartholomew-Biggs M.C., The estimation of the Hessian matrix in nonlinear
least squares problems with nonzero residuals, Math. Prog., 12:67—-80, 1977.

[5] Al-Baali M. and Fletcher R., Variational methods for non-linear least squares.
J. Oper. Res. Soc., 36:405-421, 1985.

447

