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Convergence of a Positive Definite Symmetric
Rank One Method with Restart

Abstract. We give the convergence result of a positive definite symmetric rank
one with the line search method, namely +SSR1 method for unconstrained op-
timization. In general, the +SSR1 incorporates a restart procedure in the sym-
metric rank one (SR1) method. The restart procedure provides a replacement for
the non-positive definite or unbounded (update with zero denominator) with a
positive multiple of the identity matrix. However with this choice, the sequences
of steps produced by the +SSR1 method may not usually seem to have the uni-
form linear independence property that is assumed in some convergence analysis
for SR1. Therefore, we present an analysis that shows that the +SSR1 method
with a line search is n + 1 step q−superlinearly convergent without the assump-
tion of linearly independent iterates. Our analysis only assumes that the Hessian
approximations are positive definite and bounded asymptotically, which are the
main features of the +SSR1 method. Computational experience shows that the
+SSR1 method satisfies these requirements reasonably well in practice.
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1. Introduction

We consider the quasi-Newton methods for finding a local minimum of the
unconstrained optimization problem

min f(x); x ∈ <n (1)
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with f(x) assumed to be at least twice continuously differentiable.
The algorithms for solving (1) are iterative with the basic framework of

an iteration of a secant method described as follows:
Given the current iteration xk, the gradient of the function at xk,∇f(xk),

and a symmetric Bk ∈ <n×n (secant approximation to ∇2f(xk)), select the
new iterate xk+1 by a line search method. Update Bk+1 from Bk such that
is Bk+1 is symmetric and satisfies the secant equation Bk+1sk = yk, where
sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). In this paper, we consider
the SR1 update for the Hessian approximation,

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)T

sT
k (yk −Bksk)

. (2)

Throughout if H = B−1, the inverse update respected to SR1 is given by

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)T

yT
k (sk −Hkyk)

. (3)

Minimization algorithms using this update in both a line search and
trust region context have been shown in computational experiments by
Conn et al. [2] and by Khalfan et al. [4] to be competitive with methods
using the widely accepted BFGS update. However, the convergence of such
algorithms is not as well understood, as convergence of the BFGS method.
For instance, the BFGS method has been shown by Broyden et al. [1] to be
locally q-superlinearly convergent provided that the initial Hessian approxi-
mation is sufficiently accurate. Powell [8] proved a global convergence result
for the BFGS method when applied to strictly convex functions and used in
conjunction with line searches that satisfy the Wolfe conditions (equations
6-7). A significant difference between the BFGS and SR1 updates that con-
tributes to this situation is that while the BFGS algorithm is guaranteed to
produce a positive definite Bk+1 if Bk is positive definite and sT

k yk > 0, the
SR1 update does not have this property. Furthermore, in practical imple-
mentations of a line search SR1 method, the Hessian approximations Bk+1

may be indefinite at some iterations. Despite these drawbacks, Conn et al.
[2] proved that the sequence of matrices generated by the SR1 updates con-
verges to the actual Hessian ∇2f(x∗) at the minimizer x∗, provided that
the sequence of steps taken, {sk} is uniformly linearly independent, which
is where the denominator of the SR1 update is always sufficiently different
from zero, and that the iterates converge to x∗. Using this result it is not
difficult to prove that the rate of convergence is q−superlinear. The con-
dition of linear independence of the sequence {sk} under which Conn et
al. [2] analyze the performance of the SR1 method may be too strong in
practice. On the other hand, a study by Khalfan et al. [4] for the SR1 in a
line search context did not make a uniform linear independence assumption,
and instead made the weaker assumptions that the matrices Bk are positive
definite and uniformly bounded. Their analysis showed that the conver-
gence rate of such iterates to be n + 1−step q−superlinear and 2n−step
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q−quadratic. Motivated by this analysis, Leong and Hassan [5] proposed
a new SR1 line search methods, that is fairly standard with the suggested
features (Bk are positive definite and uniformly bounded). Their approach
is simple: a restart procedure is derived and used together with the SR1
method. The restart procedure provides a replacement for the non-positive
definite or unbounded (indefinite) Bk with a positive multiple of the identity
matrix. Many authors proposed modifications to the SR1 update to preserve
the positive definiteness of Bk, see for examples [7], [9], [10]. The +SSR1
algorithm differs from other methods in which it did not attempt to mod-
ify the SR1 updating formula; instead it uses the standard SR1 updating
formula with a restart. Hence, it is possible to extend the similar results of
Khalfan et al. [4] to the +SSR1 method. In the next section, we present the
algorithm of the +SSR1 method. Section 3 gives the convergence result of
this method by requiring only the assumption of boundedness and positive
definiteness of the Hessian approximation. Finally, computational examples
are also given in Section 4.

2. Positive Definite Symmetric Rank One Method

We begin by describing the algorithm of the +SSR1 method:
+SSR1 Algorithm.

Step 0. Given an initial point x0, an initial positive matrix H0 = I, and
set k = 0.

Step 1. If the convergence criterion

‖∇f(xk)‖ ≤ ε×max{1, ‖xk‖} (4)

is achieved, then stop.
Step 2. Compute a SR1 direction

pk = −Hk∇f(xk) (5)

where Hk is assumed to be positive definite.
Step 3. Using a line search procedure, find an acceptable steplength, λk

such that the Wolfe’s conditions

f(xk + λkpk) ≤ f(xk) + α1λkpT
k∇f(xk) (6)

and
∇f(xk + λkpk)T pk ≥ α2p

T
k∇f(xk) (7)

are satisfied. (λk = 1 is always tried first, 0 < α1 < 0.5 and α1 < α2 < 1)
Step 4. Set xk+1 = xk + λkpk.
Step 5. If yT

k sk − yT
k Hkyk ≤ 0 (i.e. Hk+1 might not be positive definite)

or
| yT

k (sk −Hkyk) |< r‖yk‖‖sk −Hkyk‖, (8)

where r ∈ (0, 1),
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or

‖Hk‖∞ = max
i

n∑
j

| aij |> L, (9)

where aij is the element of Hk and L is a preset constant, then
set Hk+1 = δkI, where

δk =
sT

k sk

yT
k sk

−

[(
sT

k sk

yT
k sk

)2

− sT
k sk

yT
k yk

]1/2

, (10)

and subsequently let pk+1 = −δk∇f(xk+1). Else compute the next in-
verse Hessian approximation Hk+1 by (3).

Step 7. Set k := k + 1, and go to Step 1.
In Step 3, note that if yT

k sk−sT
k Bksk > 0 is satisfied, then Hk is positive

definite. However, if the condition is violated, Hk might still be positive
definite provided that yT

k sk − sT
k Bksk > 0. The latter condition requires

Bk to be computed iteratively. Hence, it is not appropriate in our case. So,
we opt for a more conservative approach to restart the update whenever
yT

k sk − sT
k Bksk > 0 to avoid indefinite cases. Furthermore, if Hk is not

positive definite, it will be replaced by δk−1I. The scaling δk, defined by
(10) is derived by Leong and Hassan [5] in such a way that if Hk+1 is
updated from Hk = δk−1I using the SR1 formula, then Hk+1 must be
positive definite. In the next section we will show that for non-quadratic
strictly convex functions, if the sequence {Bk} (or {Hk}) remains positive
definite and bounded, then the +SSR1 algorithm will generate at least p
q−superlinear steps out of every n+p steps. This will enable us to prove that
convergence is 2n−step q−quadratic. The basic idea behind this is that, if
any step falls close enough to a subspace spanned by recent m ≤ n steps,
then the Hessian approximation must be quite accurate in this subspace.
Thus, if in addition the step is the full secant step −Hk∇f(xk), it should be
a superlinear step. But in a line search method, for the step to be the full
secant step, Hk must be positive definite. This property is guaranteed in the
+SSR1 algorithm. In the following section we give the detail convergence
results.

3. Convergence Rate of the SR1 without Uniform Linear
Independence

Throughout this section the following assumptions will frequently be made:

Assumption 1 i. The sequence of iterates {xk} remains in a closed, bounded,
convex set D, on which the function f is twice continuously differentiable
and has an unique minimizer at a point x∗ such that its Hessian ∇2f(x∗)
is positive definite, and ∇2f(x) is Lipschitz continuous near x∗, that is,
there exists a constant γ > 0 such that for all x, y in some neighborhood
of x∗,

‖∇2f(x)−∇2f(y)‖ ≤ γ‖x− y‖. (11)
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ii. The sequence {xk} converges to x∗.

Firstly since +SSR1 method always generate positive definite Hk, then
for a strongly convex objective function, a line search implementation with
Wolfe conditions will ensure that Assumption 1 ii. holds.

Next we state the following result, which is due to Conn et al. [2]:

Lemma 1 Let {xk} be a sequence of iterates defined by xk+1 = xk + sk

where sk = −λkB−1
k ∇f(xk). Suppose that Assumption 1 holds, that the

sequence of matrices {Bk} is generated from the SR1 updates, and that for
each iteration

| sT
k (yk −Bksk) |< r‖sk‖‖yk −Bksk‖ (12)

where r ∈ (0, 1) is a constant. Then, for each j, ‖yj −Bj+1sj‖ = 0, and

‖yj −Bisj‖ ≤
γ

r

(
2
r

+ 1
)i−j−2

ηi,j‖sj‖ (13)

for all i ≥ j + 2, where ηi,j = max{‖xq − xt‖ : j ≤ t ≤ q ≤ i}, and γ is the
Lipschitz constant from Assumption 1.

Actually, it is apparent from Lemma 1 by Conn et al. [2] that, if the up-
date is skipped (or replaced in the context of the +SSR1 method) whenever
(12) is violated, then (13) still holds for all j in which (12) is true.

In the lemma below, given by Khalfan et al. [4] showed that if the se-
quence of steps generated by an iterative process using the SR1 update
satisfies (12), and the sequence of matrices is bounded, then out of any set
of n+1 steps, at least one is good. As in the previous lemma, condition (12)
actually needs only hold at this set of n + 1 steps, as long as the update is
not made when that condition fails.

Lemma 2 Suppose the assumptions of Lemma 1 are satisfied for the se-
quences {xk} and {Bk}, and that in addition there exists M for which
‖Bk‖ ≤ M for all k. Then there exist K ≥ 0 with S = {ski

: K ≤ k1 ≤
. . . kn+1} and an index km, m ∈ {2, 3, . . . , n + 1} such that

‖(Bkm
−∇2f(x∗))skm

‖
‖skm‖

< c̄ε
1/n
M (14)

where
εM = max

1≤j≤n+1
{‖xj − x∗‖} (15)

and

c̄ = 4

[
γ +

√
n

γ

r

(
2
r

+ 1
)kn+1+k1−2

+ M + ‖∇2f(x∗)‖

]
. (16)

We will also need the following lemma, which is similar to the well-known
superlinear convergence characterization of Dennis and Moré [?].
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Lemma 3 Suppose the function f satisfies Assumption 1. If the quantities
ek = ‖xk − x∗‖ and ‖(Bk−∇2f(x∗))sk‖

‖sk‖ are sufficiently small, and if Bksk =
−∇f(xk), then

‖xk + sk − x∗‖ ≤ ‖∇2f(x∗)−1‖
[
2
‖(Bk −∇2f(x∗))sk‖

‖sk‖
ek +

γ

2
e2
k

]
. (17)

Proof. See Khalfan et al. [4].

Using these lemmas one can show that for any p > n, +SSR1 algorithm
will generate at least p− n superlinear steps for every p iterations provided
that Bk is positive definite. The following theorem is used to establish a
rate of convergence for the +SSR1 algorithm under the assumptions that
the sequence {Bk} is bounded, satisfies (12) and stays positive definite.

Theorem 1. Consider the sequence {xk} generated by the +SSR1 algorithm
and suppose that Assumption 1 holds. If there exists K0 such that Bk is
positive definite for all k ≥ K0, then for any p ≥ n + 1 there exists K1 such
that for all k ≥ K1,

ek+p ≤ αe
p/n
k (18)

where α is a constant and ei = ‖xi − x∗‖.

Proof. Since ∇2f(x∗) is positive definite, there exists K1, β1 > 0 and β2 > 0
such that

β1 (f(xk)− f(x∗))1/2 ≤ ‖xk − x∗‖ ≤ β2 (f(xk)− f(x∗))1/2 (19)

for all k ≥ K1. Therefore since +SSR1 method is a descent method (This
property is ensured by Step 3 of the +SSR1 algorithm and the Wolfe con-
ditions), for all l > k > K1 we have

‖xl − x∗‖ ≤ β2

β1
‖xk − x∗‖. (20)

Now we apply Lemma 2 to the set {sk, sk+1, . . . , sk+n} . Thus, there exist
l1 ∈ {k + 1, . . . , k + n} such that

‖(Bl1 −∇2f(x∗))sl1‖
‖sl1‖

< c̄

(
β2

β1
ek

)1/n

. (21)

Equation (21) implies that for sufficiently small ‖xl1−x∗‖ and by Lemma 3,
we can choose a steplength λl1 in +SSR1 algorithm so that xl1+1 = xl1 +sl1 .
This fact, together with Lemma 3 and (21) implies that if ek is sufficiently
small then

el1+1 ≤ α̂e
1/n
k el1 (22)

for some constants α̂.
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We may also apply Lemma 2 to the set {sk, sk+1, . . . , sk+n, sk+n+1} −
{sl1} to get l2. Hence, by repeating this step for n− p times we get a set of
integers l1 < l2 < . . . < lp−n with l1 > k and lp−n < k + p such that

eli+1 ≤ α̂e
1/n
k eli (23)

for each li. Suppose that hj = (f(xj)− f(x∗))1/2. Since we have a descent
method, it follows that

hj+1 ≤ hj . (24)

Using 19 we have that for an arbitrary k ≥ K1,

hli+1 ≤
1
β1

eli+1

≤ α̂

β1
e
1/n
k eli

≤ α̂β2

β1
e
1/n
k hli (25)

for i = 1, 2, . . . , p− n. Therefore using (19) and (24) we obtain

hk+p ≤
(

α̂β2

β1
e
1/n
k

)p−n

hk (26)

which by (19) implies that

ek+p ≤
β2

β1

(
α̂β2

β1
e
1/n
k

)p−n

ek. (27)

Thus,

ek+p ≤ α̂p−n

(
β2

β1

)p−n+1

e
p/n
k (28)

and the inequality (18) holds.

Finally, we give the rate of convergence for the +SSR1 algorithm:

Theorem 2. Under the assumptions of Theorem 1, the sequence {xk} gen-
erated by the +SSR1 algorithm is n + 1−step q−superlinear, i.e.,

lim inf
k→∞

ek+n+1

ek
= 0, (29)

and is 2n−step q−quadratic, i.e.,

lim sup
k→∞

ek+2n

e2
k

≤ ∞. (30)

Proof. Let p = n + 1, and p = 2n, respectively in Theorem 1.
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Note that one of the requirements in Theorem 1 for the rate of conver-
gence to be p−step q−superlinear, is that the sequence {Bk} generated by
the SR1 method be positive definite and bounded. Generally, Theorem 1
only requires positive definiteness at the p − n out of p ”good iterations”
(which is, steps where f is reduced). Eventually if p = n + 1 is chosen in
Theorem 2, Theorem 1 actually requires positive definiteness at only 1 step
out of n + 1 ”good iterations”. The +SSR1 algorithm satisfies this require-
ment because suppose that a non positive definite Bk−1 is replaced by δ−1

k I
then Bk+1 which is updated from δ−1

k I must be positive definite. Hence, for
every n + 1 steps greater that k, we will have at least 1 good step (which
is, where B is positive definite and bounded). In the following section, we
present computational results to illustrate the convergence of the +SSR1
method in practice.

4. Computational Results

We test the +SSR1 algorithm on a variety of test problems selected from
Moré et al. [6]. The analytic gradients is used and the gradient stopping
tolerance is 10−5. All experiments are run using double precision arith-
metic. For each test function, Table 1 reports the performance of the +SSR1
method. The table contains the followings: the test functions as given in [6],
the dimension of the problem n, the number of iterations required to solve
the problem nI , the number of function and gradient evaluations required
to solve the problem nf/g and the symbol ”–” indicates that the number of
iterations exceeds 999. We set 10−6 and L = 108 in Step 3 of the +SSR1
method, and α1 = 10−4 and α2 = 0.9 within the Wolfe conditions (6)-(7).
Numerical experiments on the performance of +SSR1 and BFGS method
can be found in Leong and Hassan [7]. Hence in this paper, we give only
the numerical results to illustrate the convergence of the +SSR1 method.
The last two columns in Table 1 indicate the number of restarts that is
due to non-positive definite of Bk (nres1) and the number of restarts when
either (8) or (9) is satisfied (nres2). The results of Table 1 are summarized
in Table 2.

From Table 2, we observe that the SR1 matrix is positive definite at least
70% of the time on every one of our test functions. In light of this, and since
Theorem 1 really only requires positive definiteness at ”good step”, chances
that superlinear steps will be taken at least every n steps by the algorithm
seem good. In other words, we know that from Theorem 1 that out of every
2n steps, at least n will be ”good steps” so long as Bk is positive definite
at these iterations. The last column in Table 1, which reports the number
of times (8) or (9) is satisfied, indicates that these conditions are rarely be
satisfied in practice. This finding is consistent with the results of Khalfan
et al. [4].
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Table 1. Performance of the +SSR1 method

Test function (n) nI nf/g nres1 nres2

Penalty I (4) 39 57 4 0
Penalty I (20) 47 80 4 0
Penalty I (100) 53 78 7 0
Penalty I (400) 60 82 3 0
Penalty II (4) 27 30 2 0
Penalty II (20) 212 325 28 0
Penalty II (100) 450 533 18 0
Penalty II (400) – – – –
Trigonometric (4) 14 21 1 0
Trigonometric (20) 61 88 9 0
Trigonometric (100) 56 84 15 0
Trigonometric (400) 75 117 21 0
Rosenbrook (4) 39 84 8 0
Rosenbrook (20) 82 132 18 0
Rosenbrook (100) 43 63 2 0
Rosenbrook (400) 62 89 11 0
Powell (4) 27 30 0 0
Powell (20) 27 31 0 0
Powell (100) 31 35 2 0
Powell (400) 33 40 3 0
Wood (4) 26 35 0 0
Wood (20) 35 52 3 0
Wood (100) 30 48 2 0
Wood (400) 61 84 13 0
Beale (4) 16 21 1 0
Beale (20) 18 27 2 0
Beale (100) 19 22 1 0
Beale (400) 14 18 0 0
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Table 2. Percentage of iterations with Hk is positive definite

Percentage <70 70-79 80-89 90-99 100

Number of test functions 0 5 6 12 4

5. Conclusions

We have attempted, in this paper, to investigate theoretical and numerical
aspects of the +SSR1 formula for unconstrained optimization. We tested the
+SSR1 method on a set of standard test problems from Moré et al. [6]. Our
test results show that on the set of problems we tried, the +SSR1 method,
is generally compliant to the results of Khalfan et al. [4]. Under conditions
that do not assume uniform linear independence of the generated steps, but
do assume positive definiteness and boundedness of the Hessian approxi-
mations, we were able to prove n + 1−step q−superlinear convergence, and
2n−step quadratic convergence, of a line search +SSR1 method.
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