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Abstract. Edge colouring of an undirected graph G = (V,E) is assigning a colour to each edge

e ∈ E so that any two edges having end-vertex in common have different colours. That is, the

edge colouring problem asks for assigning colours from a minimum number of colours to edges

of a graph such that no two edges with the same colour are incident to the same node. The

minimum number of colours required for an edge colouring of G is denoted by χ′(G).

A cactus graph is a connected graph in which every block is either an edge or a cycle. In

this paper, we colour the edges of a cactus graph with minimum number of colours.
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1 Introduction

Cactus graph is a connected graph in which every block is either a cycle or an edge, in other

words, no edge belongs to more than one cycle. Cactus graph have extensively studied and

used as models for many real world problems. This graph is one of the most useful discrete

mathematical structure for modelling problem arising in the real world. It has many applications
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in various fields like computer scheduling, radio communication system etc. Cactus graph have

studied from both theoretical and algorithmic points of view. This graph is a subclass of planar

graph and superclass of tree.

A proper colouring of G = (V,E) is a map c : E → S (where S is the set of available colours)

with c(e) 6= c(f) for any adjacent edges e, f . The minimum number of colours needed to properly

colour the edges of G, is called the chromatic index of G and denoted by χ′(G). The span of an

edge colouring is the maximum colour number assigned to any edge of G. The edge colouring

number of a graph G, denoted by χ′(G), is the least integer k such that all the edges of the

graph are coloured by k-colours.

Let ∆ = ∆(G) denote the maximum degree of the vertices of the graph G. Obviously,

χ′(G) ≥ ∆ since all edges incident to the same vertex must be assigned different colours and the

upper bound of χ′(G) ≥ 2∆ − 1 also follow easily. Vizing [9, 10] and Gupta [4] independently

proved that ∆+1 colours suffice when G is a simple graph. Next Vizing proved the theorem that

for any simple graph G, ∆ ≤ χ′(G) ≤ ∆+1 [9, 11]. Again we have from König’s [5] theorem that

every bipartite graph can be edge coloured with exactly ∆ colours, i.e., χ′(G) = ∆. Shanon [8]

proved that every graph can be edge coloured with at most 3∆/2 colours, that is, χ′(G) ≤ 3∆/2.

A few other upper bounds on χ′(G) have been known Andersen [1], Goldberg [3], Nishzeki and

Kashiwagi [6].

Goldberg [2, 3] and Seymour’s [7] conjecture is that if χ′(G) ≥ ∆ + 2, then χ′(G) =

maxH⊆G[
e(H)

n(H)/2 ].

Again if Kn be a complete graph of n vertices, then

χ′(Kn) =







n− 1, if n is even,

n, if n is odd.

holds.

2 The edge colouring of induce sub-graphs of cactus graphs

Let G = (V,E) be a given graph and subset U of V the induced subgraph by U , denoted by

G[U ], is the graph G′ = (U,E′), where E′ = {(u, v) : u, v ∈ U and (u, v) ∈ E}.

The cactus graphs have many interested subgraphs, those are illustrated below. An edge, is

nothing but P2, so χ
′(P2) = 1. The star graph K1, ∆ is a subgraph of cactus graph, therefore

one can conclude the following result.
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Figure 1: Induce subgraphs of cactus graph.
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Figure 2: Edge colouring of two cases of cycle

Lemma 1 For any star graph K1,∆, χ
′(K1, ∆) = ∆, which is equal to n − 1, where n is the

number of vertices.

Lemma 2 For any cycle Cn of length n, χ′(Cn) =







∆, if n is even,

∆+ 1, if n is odd.

Proof. Let Cn be a cycle of length n. We classify Cn into two groups, viz., C2k, C2k+1, i.e.,

one contains even number of edges and another contains odd number of edges.

Let e0, e1, e2, . . ., en−1 be the n number of edges of the cycle Cn. The edge colourings of that

cycle are as follows.

Case I. Let n = 2k (even), then the colour sequence of edges of C2k are as

c(ei) =







1, if i = 2k,

2, if i = 2k + 1.

Case II. Let n = 2k + 1 (odd).

In this case, the colouring for first 2k − 1 edges e0, e1, e2, . . ., e2k−1 = en−2 are same as in

Case I. And for the last edge en−1, c is redefine as

c(en−1) = 3.

We know that for any cycle, ∆ = 2.
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Figure 3: Edge colouring of two cases of Sun

Thus, from the above two cases (shown in Figure 2), it follows that

χ′(Cn) =







2 = ∆, if n is even,

3 = ∆+ 1, if n is odd.

2

Lemma 3 For any sun S2n, χ
′(S2n) = ∆ where ∆ is the degree of S2n.

Proof. Let S2n be constructed from Cn by adding an edge to each vertex. To colour this

graph we consider two cases.

Let e0, e1, e2, . . ., en−1 be the edges of Cn and ei is adjacent to ei+1. Here e0 is adjacent to e1

and en−1. To complete S2n, we add an edge e′i to each vertex vi of Cn. We consider two cases.

Case I. Let n = 2k (even). As Lemma 2, the colouring of Cn is given by

c(ei) =







1, if i = 2k,

2, if i = 2k + 1,

And the colouring of e′i are assign as

c(e′i) = 3, for i = 0, 1, . . . , n− 1.

Case II. Let n = 2k+ 1 (odd). In this case the colouring of edges of the cycle Cn are same as

in Case II given in Lemma 2.

Now we colour the other edges e′i of S2n. The colouring of first e′0, e
′
1, e

′
2, . . ., e

′
n−3 edges are

as

c(e′i) = 3, for i = 0, 1, . . . , n− 3.

And for two remaining edges e′n−1, e
′
n−2 the values of c are
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Figure 4: Illustration of Lemma 4

c(e′n−2) = 1 and c(e′n−1) = 2.

Hence χ′(S2n) = 3 = ∆. 2

Corollary 1 Let a graph G contains a cycle Cn of length n and one or more (but less than n)

vertices contain edges. If ∆ be the degree of G then χ′(G) = ∆.

Lemma 4 Let G be a graph obtained from S2n by adding an edge to each of the pendent vertex

of S2n, then χ
′(S2n) = λ(G) = ∆ = 3.

Proof. Follows from Figure 4. 2

Let us consider a graph which contains two cycles Cn and Cm of lengths n and m respectively

and they have a common cutvertex v0. Then we denote this graph as Cn
⋃

v0
Cm (= G). The

number of vertices and edges of G are n+m and n+m−1 respectively. The colouring procedure

is describe in the following lemma.

Lemma 5 Let G = Cn
⋃

v0
Cm then χ′(Cn

⋃

v0
Cm) = 4 = ∆, where ∆ is the degree of the

common vertex v0.

Proof. Let Cn and Cm be two cycles of G. Let e0, e1, e2, . . ., en−1 be the edges of Cn such

that ei is adjacent to ei+1, 0 ≤ i ≤ n− 2 and e0 is adjacent to en−1.

Again e′0, e
′
1, e

′
2, . . ., e

′
m−1 be the edges of Cm such that e′0 is adjacent to e

′
1 and e

′
m−1. Also,

e′i is adjacent to e
′
i+1, 0 ≤ i ≤ m− 2.

Now we colour the edges of Cm by considering two cases, viz., m = 2k (even) and m = 2k+1

(odd).
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Case I. If n = 2k and m = 2k.

The colour sequence of Cn is same as in Case I given in Lemma 2. Now the colour sequence

of Cm are as follows.

Here we colour the first edge e′0 by 3 and last edge e′m−1 by 4, i.e.,

c(e′0) = 3 and c(e′m−1) = 4.

Then the colour sequence of the remaining edges of Cm (considering Cm as Cn) are same as in

Case I of Lemma 2.

If n = 2k and m = 2k + 1.

Here also we colour the first and last edges e′0 and e
′
m−1 by 3, 4 respectively. And the colour

sequence of the remaining edges of Cm (considering Cm as Cn) are same as in Case II of Lemma

2.

Case II. If n = 2k + 1 and m = 2k.

The colour sequence of Cn are same as in Case II of Lemma 2. Now the colour sequence of

edges of Cm are as follows.

Here we colour the first edge e′0 by 2, i.e., c(e′0) = 2. And the colouring of the remaining edges

e′i, i = 1, 2, . . . ,m− 1 are same as the above case [for n = 2k and m = 2k].

If n = 2k + 1 and m = 2k + 1.

Here we colour the first edge e′0 by 2. And the remaining edges will be coloured as in same

manner given in above case I [for n = 2k and m = 2k + 1].

Hence χ′(Cn
⋃

v0
Cm) = 4 = ∆. 2

Some times a cycle C3 of length 3 is called a triangle. A triangle may be a subgraph of a

cactus graph. Also, a triangle shape star, (i.e., all the triangles have a common cutvertex) be

a subgraph of a cactus graph. Now, we consider a triangle shape star for edge colouring. Let

T0, T1, . . . , Tn−1 be the n triangles meet at a common cutvertex v0 and we denote this graph

by G1, which is equivalent to
⋃

v0

Ti. The number of vertices and edges of G1 are 2n+ 1 and 3n
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respectively. The labelling procedure is describe in the following lemma.

Lemma 6 Let G1 =
⋃

v0

Ti be a triangle shape star. Then χ′(G1) = ∆, where v0 is the common

cutvertex of Ti’s and ∆ is degree of v0.

Proof. Let us denote the n such triangles by T0, T1, T2, . . . , Tn−1 shown in Figure 6. Let ei,

e′i, e
′′
i are the edges of Ti, i = 0, 1 . . . , n− 1.

The colouring of edges of Ti’s as follows.

For i = 0, 1, . . . , n − 1, c(ei) = 2i + 1, c(e′i) = 2i + 2 and c(e′′0) = 3, c(e′′i ) = 1, for i =

1, 2, . . . , n− 1.

Now, the minimum number of colouring of the edge e′n−1 of the triangle Tn−1 is

c(e′n−1) = 2(n− 1) + 2 = 2n.

Here ∆ = 2n, therefore χ′(G1) = 2n = ∆. 2

Corollary 2 If each vertex of star shape triangle (except cutvertex) has another edges then the

value of χ′ remains unchanged.

Lemma 7 Let a graph G contains n number of cycles of length 3 and m number of cycles of

length 4. If they have a common cutvertex with degree ∆ then χ′(G) = ∆.

Proof. Let T0, T1, . . . , Tn−1 be the n number of cycles of length 3 and R0, R1, . . . , Rm−1 be

the m number of cycles of length 4 given in Figure 7. Let v0 be the cutvertex. Again let ei, e
′
i,

e′′i be the edges of Ti and e
1
j , e

2
j , e

3
j , e

4
j be the edges of Rj .

Case I. When m=1.
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When G contains n number of C3 and one C4, then the colouring of edges of R0 are (according

to the previous lemma) as

c(ek
0) =































2n+ 1, when k = 1;

1, when k = 2;

2, when k = 3;

2n+ 2, for k = 4.

Here ∆ = 2n+ 2, therefore c(e40) = ∆.

Case II. When m=2.

i.e., G contains n number of C3’s and two C4’s. The colour of edges of R2 are assign as per

following rule.

c(ek
1) =































2n+ 3, when k = 1;

1, when k = 2;

2, when k = 3;

2n+ 4, for k = 4.

Here ∆ = 2n+ 4, therefore c(e41) = ∆.

In general, we colour the edges of Rm as

c(ek
m) =































2n+ 2m− 1, when k = 1;

1, when k = 2;

2, when k = 3;

2n+ 2m, for k = 4.

Here ∆ = 2n+ 2m, therefore c(e4m) = ∆.

Hence χ′(G) = ∆. 2

Corollary 3 If a graph G contains finite number of cycles of any length with a common cutver-

tex, then χ′(G) = ∆, where ∆ is the degree of cutvertex.
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Lemma 8 Let G be a graph which contains finite number of cycles of any length and finite

number of edges. If they have a common cutvertex with degree ∆ then χ′(G) = ∆.

Proof. First we prove that if G contains n number of cycles of length 3, m number of cycles

of length 4 and p number of edges then χ′(G) = ∆.

Case I. When p=1.

i.e, G contains n number of C3’s, m number of C4’s and one edge. Let e01 be that edge. Here

we follow the previous lemma. Then the colouring of that edge is c(e01) = 2n+ 2m+ 1.

Here ∆ = 2n+ 2m+ 1, therefore c(e01) = ∆.

Case II. When p=2.

i.e, G contains n number of C3’s, m number of C4’s and two edges. Let e02 be the second

edge. Then c(e02) = 2n+ 2m+ 2.

Here ∆ = 2n+ 2m+ 2, therefore c(e02) = ∆.

Then by mathematical induction we prove that when G contains n number of C3’s, m number

of C4’s and p number of edges then χ′(G) = ∆.

Therefore, the general form of this lemma can be proved using the mathematical induction.

2

Corollary 4 When the end vertices of the edges of the graph G have another edges and each

vertex of the cycles have another edges and each vertex of the cycle have another edges, then the

value of χ′ remains unchanged.

Lemma 9 Let G be a graph contains a cycle of any length and each vertex of the cycle has

another cycle of any length. Then if ∆ is the degree of G, then χ′(G) = ∆.

Proof. At first we prove that if G contains a cycle of any length and each vertex of the cycle

have another cycles of length 3 then χ′(G) = ∆.
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Let e0, e1, e2, . . ., en−1 be the edges of Cn and e01, e02, e03; e11, e12, e13; . . . ; en−1,1, en−1,2, en−1,3

be the edges of all C3’s. That is, here the number of cutvertices is n.

Case I. Let n = 2k, i.e., even.

In this case, the colour sequence of the edges e0, e1, e2, . . ., en−1 is assign according as Lemma

2 (for n = 2k) and the colour of all C3’s are as follows.

The colour of the edges of main cycle are either 1 or 2. Here ei1 and ei3 of C3’s are adjacent

to ei and ei+1. The colours of ei1 and ei3 should not be 1 or 2 but we may assign its colour by

3 or 4. The edges ei2 are not adjacent to ei and ei+1. So we assign its colour by 1 or 2. Thus

the colour sequence of all C3’s are as follows:

for i = 1, 2, 3,

c(eij) =



















3, for j = 1;

1, for j = 2;

4, for j = 3.

Case II. Let n = 2k + 1, i.e., odd.

In this case, the colour sequence of the edges e0, e1, e2, . . ., en−1 of main cycle Cn are same

as in Case II of Lemma 2 (for n = 2k).

Now, the colour sequence of the edges e01, e02, e03; e11, e12, e13; . . . ; en−3,1, en−3,2, en−3,3 of

C3’s are same as in Case I. And we colour the remaining two C3’s as

c(en−2,j) =



















1, for j = 1;

2, for j = 2;

4, for j = 3.

and c(en−1,j) =



















2, for j = 1;

1, for j = 2;

4, for j = 3;

respectively.
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Thus from the above two cases, it follows that χ′(G) = 4 = ∆. Similarly, when the cut

vertices of G contain cycles of lengths four, five or more, then, χ′(G) = ∆.

So the general form of lemma can be proved using mathematical induction. 2

Corollary 5 If the vertices of all C3’s contain one, two or more edges then χ′ value remains

unchanged.

Corollary 6 If each vertex of a cycle of any length contains two, three or more cycles of any

length, then the value of χ′ value remains unchanged.

From Figure 11 we see that the degree of the graph is 8 and the value of χ′ is 8, i.e., χ′(G) = ∆.

Now, we label another important subclass of cactus graph called caterpillar graph.

417



r r r r r r r@
@@

¡
¡¡

b b
b

b
b

b

b
r r r r
e0
(1)

e1
(2)

e2
(1)

e3(2) en−1

3 4 5

1 1

3
4 5

6

1 1

Figure 12: Here ∆ = 6 and so χ′(G) = 6 = ∆

3 Edge Colouring of Caterpillar Graph

Definition 1 A caterpillar C is a tree where all vertices of degree ≥ 3 lie on a path, called

the backbone of C. The hairlength of a caterpillar graph C is the maximum distance of a non-

backbone vertex to the backbone.

Lemma 10 If G be a caterpillar graph and ∆ be its degree, then χ′(G) = ∆.

Proof. Let Pn be a path of caterpillar graph, where Pn contains n number of edges e0, e1, e2,

. . ., en−1. At first we colour the edges of the caterpillar graph and then colour the other edges

of that graph.

Now, we colour the edges of Pn as follows:

c(ei) =







1, for i = k;

2, for i = k + 1;

where k = 0, 1, 2, . . . , n− 1.

We may not assign same colours as path Pn of the other edges of the caterpillar graph, as

they are adjacent. So, we may colour the other edges by 3, 4, and so on (minimum number of

colouring depends on the degree of that graph).

The edge colouring of the caterpillar graph is shown in Figure 12.

So, we see from Figure 12 that when the degree of the graph increases the minimum number

of colouring increases and is exactly equal to its maximum degree of of vertex. Here from Figure

12 we see that ∆ = 6 therefore χ′(G) = ∆.

Hence the proof. 2

418



4 Edge Colouring of Lobster

Another subclass of cactus graph is called lobster graph. The definition of lobster graph is given

below.

Definition 2 A lobster is a tree having a path (of maximum length) from which every vertex

has distance at most k, where k is an integer.

The maximum distance of the vertex from the path is called the diameter of the lobster graph.

There are many types of lobsters given in literature like diameter 2, diameter 4, diameter 5, etc.

Lemma 11 Let G be a lobster graph. If ∆ be the maximum degree of the lobster graph, then

χ′(G) = ∆.

Proof. Let Pn be the path (of length n) of the lobster graph. Let e0, e1, . . ., en−1 be the edges

of Pn. First we colour the edges of Pn as follows:

c(ei) =







1, for i = k;

2, for i = k + 1;

for k = 0, 1, 2, . . . , n− 1.

Then we colour the other edges of that graph. Let li be the other edges where i = 0, 1, 2, . . ..

The colours of the edges of Pn are either 1 or 2. Here li’s are adjacent to ei and ei+1, 0 ≤ i ≤ n−2.

So, we may not colour the edges li’s by 1 or 2. We may colour the edges by 3, 4 or more (it

depends on the degree of each vertex).
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Figure 13: A diameter 2 lobster graph

Form Figure 13 we see that maximum degree of the two diameter lobster graph is 10, i.e.,

∆ = 10. Also we see that maximum colour number is 10 which is equal to the degree of vertex

of 2-diameter lobster graph.
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Figure 14: A diameter 5 lobster graph

Form Figure 14 we see that maximum degree of the 5 diameter lobster graph is 11, i.e.,

∆ = 11. Also we see that maximum colour number is 11 which is equal to the maximum degree

of the vertex of 5-diameter lobster graph.

From the above results we say that in general, for any lobster graph G, χ′(G) = ∆, where ∆

is maximum degree of the vertex. 2

The edge colouring of all subgraphs of cactus graphs and their combinations are discussed in

the previous lemmas. From these results we conclude that the value of χ′ of any cactus graph

can not be more than ∆ + 1. Hence we state the following theorem. Figure 15 illustrate the

edge colouring of a cactus graph.

Theorem 1 If ∆ is the degree of a cactus graph G, then ∆ ≤ χ′(G) ≤ ∆+ 1.
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