
AMO-Advanced Modeling and Optimization, Volume 11, Number 4, 2009

Asymptotical Behaviour of Directed Graphs

Angel Garrido, Facultad de Ciencias de la UNED

Abstract

Among the di¤erent graphs, Bayesian Networks are the most sucessful
class of models to represent uncertain knowledge. But the representation
of conditional independencies (CIs, in acronym) does not have uniqueness.
The reason is that probabilistically equivalent models may have di¤erent
representations. And this problem is overcome by the introduction of
the concept of Essential Graph, as unique representant of each equiva-
lence class. They represent CI models by graphs. Such mathematical and
graphical tools containing both, directed or/and undirected edges; hence,
producing respectively either Directed Graphs (DGs), in particular acyclic
elements, or Directed Acyclic Graphs (DAGs), either Undirected Graphs
(UGs), or Chain Graphs (CGs), in the mixed case.

So, DAG models are generally represented as Essential Graphs (EGs).
Knowing the ratio of EGs to DAGs is a valuable tool, because through
this information we may decide in which space to search. If the ratio is
low, we may prefer to search the space of DAG models, rather than the
space of DAGs directly, as it was usual until now. The most common
approach to learning DAG models is that of performing a search into the
space of either DAGS or DAG models (EGs). It is preferable, from a
mathematical point of view, to obtain the more exact solution possible,
studying its asymptotic behaviour. But also it is feasible to propose a
Monte Carlo Chain Method (MCMC) to approach the ratio, avoiding the
straightforward enumeration of EGs. And a many more elegant construct,
if very di¢ cult, through the Ihara Zeta function for counting graphs.

Here we will shown some new results about the Graphs and its equiv-
alence classes. And also the study of the enumerative asymptotic behav-
iour, according its di¤erent possible situations.

Keywords: Graph Theory, Combinatorics, Enumeration of graphs,
Asymptotical Analysis.

Mathematics Subject Classi�cation: 68R10, 68R05, 05C78, 78M35.

1. Introduction
An Essential Graph (EG) is a very useful graphical representation of any

Markov equivalence classes.
In relation with the Essential Graph, each directed edge would have the

same direction in all the graphs that belongs to its equivalence class. There is
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a bijective correspondence (one-to-one) among the set of Markov equivalence
classes and the set of essential graphs, their representatives.

The labeled or unlabeled character of the graph means whether their nodes
or edges are distinguishable or undistinguishable.
For this, we will say that it is vertex-labeled, vertex-unlabeled, edge-labeled,

or edge-unlabeled.

The labeling will be considered as a mathematical function, referred to a
value or name (label), assigned to its elements, either nodes, edges, or both,
which makes them distinguishable.
Because many times it will be useful to associate with each edge a number,

called its weight, acting as label.
In such way,we must to assign certain mastery of some link on another. Then,

we call such mathematical constructs edge-weighted, or more simply, weighted-
graphs, usually denoted by

w (a; b)

So, if we take the set of n-essential graphs, and denote its cardinal by a
n
;

applying the IEP, we may obtain

an =
P

s=1;:::;p
(�1)s+1

P
ij

j2f1;:::;sg

c (Ai1 \Ai2 \ ::: \Ais)

where

A
k
= fG 2 E : k is a terminal node of Gg ;

with

k = 1, 2, . . . , n [*]

2. Searching for adequate bounds
Let a

n
be the number of essential (labeled) DAGs.

And also let a
n�
be the number of (labeled) DAGs.

Then, a
n
is given by the recurrence equation

an =
Pn

s=1
(�1)

s+1

Cn;s

�
2
n�s

� n+ s
�s

an�s

with a
0
= 1

Whereas (Robinson, 1973) obtain for the number of labeled n-DAGs,
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a
n
�=
Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s
�s

a
n�s�

with a
0
�= 1

The basic idea is to count the number of n-DAGs considering each digraph as
created by adding terminal nodes to a DAG with lesser number of nodes. After
this addition, we obtain a new DAG. So, the new formula would be recursive,
and it is a direct application of the IEP. From which, we can reach directly the
equation.

We may rewrite the equation as

Pn

s=0
(�1)

n�s
C
n;s

�
2
s � s

�n�s
a
s
= 0

with n � 1:

Another case of application of Inclusion-Exclusion Principle is to �nd the
cardinal of the set of essential DAGs, E, with a set of nodes f1; 2; : : : ; ng.
For this, we will start from a family of sets as the aforementioned fA

k
gnk=1 :

Therefore, to know the cardinal of E, �rst we compute the intersection that
appears in the last summatory, for j = 1, 2, . . . , n. With the total allowed
connection numbers, from a given node being

2
n�s � n+ s

So, the number of possible ways of adding directed edges from the essential
graph until all the s terminal nodes will be

[2
n�s � n+ s]s

If we denote an the number of essential n�DAGs; this would be

a
n
=
Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s � (n� s)

�s
a
n�s

with a
0
= 1

Robinson obtains a very similar expression. In such case, the purpose was
to obtain a number of labeled n-DAGs. It would be

a
n
�=
Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s
�s
a
n�s�

with a
0
�= 1
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If we denote e
n
the number of essential n-graphs, also labeled, it holds

a
n
� e

n
� a

n
�

I.e. both precedent values, a
n
and a�

n
; are the lower and upper bounds of

e
n
; for each selected order, n:
So, it holds

1
13:6 �

an
a�n

And also

1
13:6an�� en � a�n

where we obtain lower and upper bounds for the cardinal of essential graphs.

3. The Ihara zeta function
The Riemann Zeta Function may be de�nable on all the complex values, s,

such that

Re(s) > 1

Being this de�nition possible by the series

� (s) �
1P
n=1

1
ns

And also may be representable by the Euler´ s Product Formula, by the
convergent product over all the primes, denoted by p; in this way

� (s) �
Q
p

1
1 � p�s

It is an important special function that arises in de�nite integration, being
intimately related with deep results surrounding the Prime Number Theorem.
The notation for the variable as s, instead of the usual complex z, is preserved

until today in deference to Bernhard Riemann and its seminal paper of 1859.
Taking on the real line the subinterval (1;+1) � R; the Riemann zeta

function can be also de�ned by this improper integral,

� (s) � 1
�(s)

1R
0

xs�1

ex � 1 dx =
1

�(s) limb!1

bR
0

xs�1

ex � 1 dx
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About the expression "zeta function", it must be certainly said in plural,
because there are many versions, adapted to di¤erent situations and �elds of
applications.

For instance,

- Artin - Mazur zeta function of a Dynamical System,

- Dedekind zeta function of a number �eld,

- Epstein zeta function of a quadratic form,

- Ihara zeta function of a graph,

- Igusa zeta function,

- Wierstrass zeta function, connected with ellipticfunctions,

and many others.

For our purposes, we take advantage on the fact that the Riemann Zeta
Function may be generalizable to graphs, according (Ihara, 1966).
This function was �rst de�ned in terms of discrete subgroups. J. P. Serre

suggested can be reinterpreted graph-theoretically.
And it was (Sunada, 1985) who put this into practice.
In this version, it is denoted by &

G
, and de�ned by

&
G
(s) �

"Q
p

�
1� sL(p)

�#�1

This product is taken over all prime walks, p, on the graph G, being L(p)
the length of the prime p.
Also &

G
is always the reciprocal of a polynomial

&
G
(s) � 1

det (I � T s)

where T is edge adjacency operator (Hashimoto, 1990).
Recall that the adjacency operator, A, is acting on the space of functions

de�ned on the set of nodes of G = (V; E). Being o(e) and t(e) the origin and
terminus of e, respectively, it is de�ned by

(Af) (x) =
P
e2Ex

f [t (e)]

where E
x
� fe 2 E : o (e) = xg

(Bass, 1992) also gave a determinant formula involving the adjacency oper-
ator.

For any Graph, G, the function &
G
can be expressed in terms of &, depending

of their distinct dimensional values, here denoted by n.
So,
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If n = 1, then &
G
(s) = 2& (s)

If n = 2, then &
G
(s) = 4& (s� 1)

If n = 3, then &
G
(s) = 4& (s� 2) + 2& (s)

If n =1, then &
G
(s) = 8

3 & (s� 3) +
16
3 & (s� 1)

And in the limit, when n!1; it holds

&
G
(s) = 2

n
&(s�n+1)
�(n)

with s next to the transition point

&
G
(s) is a decreasing function of s, that is,

&
G
(s

1
) > &

G
(s

2
) ; if s

1
< s

2

If the average degree of nodes, also called mean coordination number of the
graph, is �nite, then there exists exactly a value of s, denoted stransition; where
the Zeta Function changes from in�nite to �nite, or vice versa. It is also called
dimension of the Graph, or the Complex Network.

4. About its asymptotic behaviour
Analyzing the asymptotic behaviour of the ratio, i.e. studying the conver-

gence of ratios among the number of classes, or essential graphs, and the number
of graphs (exactly DAGs), we may develop

A (n) � an
an�
)

) limn!1 A (n) = limn!1

Pn

s=1
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�sPn

s=1
(�1)s+1Cn;s(2n�s)

s
an�s�

=

=
limn!1

�Pn

s=1
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
limn!1

nPn

s=1
(�1)s+1Cn;s(2n�s)

s
an�s�

o =

=
limn!1

�
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
limn!1

n
(�1)s+1Cn;s(2n�s)

s
an�s�

o =

=
limn!1

�
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
limn!1

n
Cn;s(2n�s)

s
an�s�

o =

=
limn!1

��
2
n�s

�(n�s)
�s
an�s

�
limn!1

n
(2n�s)

s
an�s�

o =

=
limn!1

��
2
n�s

�(n�s)
�s�

limn!1

n
(2n�s)

so limn!1fan�sg
limn!1fan�s�g =

= lim
n!1

 �
2
n�s

�(n�s)
�s

(2n�s)
s

!
lim

n!1

�
an�s
an�s�

�
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Or analogously we may consider

lim
n!1 A (n) = limn!1

Pn

s=1
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�sPn

s=1
(�1)s+1Cn;s(2n�s)

s
an�s�

=

= lim
n!1

Pn

s=1

�
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
n
(�1)s+1Cn;s(2n�s)

s
an�s�

o =

=
P1

s=1
lim

n!1

�
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
n
(�1)s+1Cn;s(2n�s)

s
an�s�

o =

=
limn!1

�
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
limn!1

n
(�1)s+1Cn;s(2n�s)

s
an�s�

o =

=
limn!1

�
Cn;s

�
2
n�s

�(n�s)
�s
an�s

�
limn!1

n
Cn;s(2n�s)

s
an�s�

o =

=
limn!1

��
2
n�s

�(n�s)
�s
an�s

�
limn!1

n
(2n�s)

s
an�s�

o =

=

"
limn!1

�
2
n�s

�(n�s)
�s

(2n�s)
s

# h
limn!1fan�sg
limn!1fan�s�g

i
=

= lim
n!1

�
2
n�s

�(n�s)
2n�s

�s

lim
n!1

�
an�s
an�s�

�
But we will dispose of previous and known results, as

fixed s; n�s
2n�s

! 0
+ ) 1�

�
n�s
2n�s

�
! 1

�

Hence,

lim
n!1

(Pn

s=1

�
2
n�s

�(n�s)
2n�s

�s

A (n� s)
)
=

=

�
1� lim

n!1

Pn

s=1

�
(n�s)
2n�s

�s�
flim

n!1 A (n� s)g

being

A (n� s) � an�s
an�s�

and
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1� &
G
(n� s) = lim

n!1

Pn

s=1

�
2
n�s

�(n�s)
2n�s

�s

That is,

&
G
(n� s) � lim

n!1

Pn

s=1

�
(n�s)
2n�s

�s
So, returning to our initial step,

lim
n!1 A (n) = limn!1

nh
1� &

G
(n� s)

i
A (n� s)

o
=

=
h
1� lim

n!1 &
G
(n� s)

i
[lim

n!1 A (n� s)]

Considering the subsequent collection of partial sums, depending on n,

Pn

s=1

n�s
2n�s

it holds Pn

s=1

h
1� n�s

2n�s

i
= n�

Pn

s=1

n�s
2n�s

)

)
Pn

s=1

h
1� n�s

2n�s

is
� n�

Pn

s=1

�
n�s
2n�s

�s
and its asymptotical behaviour, when n!1, these may establish a correspon-
dence with a modi�ed version of the Zeta Function of Riemann, �

G
. It is the

so called Ihara-Selberg of the n-graph Gn:
But operating here on the increasing value of n �s, i.e., with

�
G
(n� s)

So, we obtain that denoting the ratio among terms of the series as

c = lim
n!1

�Pn

s=1
(�1)

s+1
C
n;s

�
2
n�s

�(n�s)
�s
a
n�s

�
nPn

s=1
(�1)s+1C

n;s (2
n�s)

s
a
n�s�

o

and taking into account which
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c = limn!1

�Pn

s=1

����(�1)s+1Cn;s �2n�s�(n�s)�s
����an�s

�
nPn

s=1

���(�1)s+1C
n;s (2

n�s)
s ���an�s�o =

= lim
n!1

�����(�1)s+1Cn;s �2n�s�(n�s)�s
����an�s�n���(�1)s+1C

n;s (2
n�s)

s ���an�s�o =

= lim
n!1

�����Cn;s �2n�s�(n�s)�s
����an�s�n���C

n;s (2
n�s)

s ���an�s�o =

=
�
lim

n!1

n
1� &

G
(n� s)

o�
(lim

n!1 A (n� s))

In our case, once �xed s, for every natural n,

a
n�s � an�s�)

) (�1)
s+1

C
n;s

�
2
n�s � (n� s)

�s
an�s � (�1)

s+1

C
n;s

�
2
n�s
�s
an�s�

This proves the convergence of the series, and as a consequence, the conver-
gence of the ratio among both.
As

(n� s) � 0

then

2
n�s � (n� s) � 2n�s

So, being n 2 N;it holds

C
n;s
2 N; 8s:1 � s � n

and therefore h
2
n�s � (n� s)

is
�
�
2
n�s
�s
)

) C
n;s

�
2
n�s � (n� s)

�s
� C

n;s

�
2
n�s
�s
)

)
Pn

i=1
(�1)

s+1

C
n;s

�
2
n�s � (n� s)

�s
a
n�s �

Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s
�s
a
n�s�

Hence, from the convergence of the second series we induce the convergence
of the �rst. And symmetrically, in case of divergence of the �rst, the divergence
of the second.

Furthermore
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an�s � a�n�s ;8n; once �xed s)

) 9�
1
=
h
1� limn!1 &

G
(n� s)

i
[limn!1 A (n� s)]

once �xed s, when n increases to 1;

�1 =
1

10 &(5=2) =
1

5&
G
(5=2)

equivalence classes for each digraph, or equivalently,

�
�1

1
= 10 & (5=2) = 5=2 &

G
(7=2)

digraphs for each equivalence class, or essential graph.

In the bidimensional case, it holds

9��
2
� lim

n!1

�n
&
G
(n)
o �
A
�
(n� s)

��
)

) ��
2
= 1

10 & (3=2) =
1
40 &G (5=2)

and so dually,

9
�
��
2

��1
� lim

n!1

�n
&
G
(n)
o �
A
�
(n� s)

���1
)

)
�
��
2

��1
= 10

&(3=2) =
4

&
G
(5=2)

5. Conclusion
It will be so reached the limit situation, re�ecting the degree of �tness to

the proposed model.
Now we can support on a many more powerful analytical framework, so

improving our theoretical basis, being coherent with the precedent results.
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