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Abstract

We will shown some results about Directed Graphs and its equivalence
classes, by the study of its enumerative asymptotic behaviour, according
their di¤erent possibilities.
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1. Introduction
Graphs are mathematical objects frequently used in Computer Science, and

other important �elds. Because often we can reduce a real-world problem to a
mathematical statement about graphs. Hence, if the graph problem is solved,
then the real-world problem it is also solved.
A graph is a pair, G = (V, E), where V is a set of points, called nodes,

and E will be the set of their edges, or links, between nodes. Sometimes, it is
denominated simple graph.
Note that a simple graph represents a symmetric relation, R, according which

two nodes, a and b, being connected by an edge are related to each other in
both directions, i.e. a R b and b R a.
Many times, we said Undirected Graph (UG, in acronym), instead of simple

graph.

V and E are usually taken to be �nite, because some of the well-known
results can fails for in�nite graphs. It is due that many times the arguments are
not applicable in such in�nite case.

The order of a graph is the number of their nodes. That is, the cardinality
of the set V, sometimes denoted by jV j :
The size of a graph is the number of their edges. That is, the cardinality of

the set E, sometimes denoted by jEj :
The degree of a graph is the number of edges that connect to it.
Note that an edge that connects to the node at both ends (therefore, a loop)

is counted twice.

Let G = (V; E) be a graph. Then, we see as its complement the new graph

G =
�
V; E

�
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with the same set of nodes, but its set of edges contains the complement of E:
So, for instance, if we take the 4-cycle graph, C

4
; its complement will be C

4
;

according the representation that you can see in our �rst set of �gures.

The set of edges of an undirected graph induce a symmetric binary relation
on the set of its nodes. It is called the adjacency relation of such graph.
More formally, for each edge,

fa; bg

the nodes a and b are said to be adjacent, being denoted by

a � b

A directed graph, or abridgedly a digraph, is a graph in which each edge is
replaced by a directed edge.
That is, from the set of unordered pairs of nodes, in which

fa; bg = fb; ag

we pass to the set of ordered pairs of nodes, where

(a; b) 6= (b; a)

Mathematically expressed,

E � V X V
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being E the set of edges, and V X V the Cartesian product of V with itself.
So, the de�nition of E coincides with the proposed for a relation on the set

V: Therefore, a digraph can be used to model any relation on a set.

Note that the edges are regarded not as lines, but as arrows, going from a
tail (or start) node to an head (or end) node.
A digraph having no multiple edges or loops is called a simple digraph.

And an acyclic directed graph, or acyclic digraph, also denoted by the acronym
DAG, is a directed graph containing no directed cycles. Usually, their edges (di-
rected) are called arcs.

A graph, G, is transitive, if given any three nodes,

a; b; c 2 V (G)

if the edges fa; bg and fb; cg belongs to E (G), then also the edge

fa; cg 2 E (G)

An unlabeled n-digraph is called a Topology.

Let G be a graph. Its Line Graph, denoted by L(G); has for node set the
edge set of G, and also it has for edge set the node set of G.
I.e., they shown this interchange between the role of mathematical objects,

fpointsg $ flinesg

Or equivalently

fnodesg $ fedgesg

and vice versa, between the graph and its line graph.
For instance, given the subsequent graph, G, with their edges labeled, then

its line graph, L (G), would be as appears, according their incidence relationships
as new edges, as you can see in our second set of �gures.

There are many real-world phenomena which admits representation by graphs.
For instance,

- Computer Networks, where the set of nodes represents the set of computers
in the network.
So, there is an edge if and only if there is a direct communication between

the corresponding computers.

- Program Flowchart, where each node represents a step of computation,
whereas the directed edges between pairs of nodes represent the control �ow.

And many others applications, not only on Informatics, because it may be
on

- Airline Connections
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- Two-Player Game Tree

- Precedence Constraints (so, for jobs),

etc.

2. Enumerating Digraphs
Among the di¤erent graphs, Bayesian Networks (BNs) are a sucessful class

of models to represent uncertain knowledge. But unfortunately, the representa-
tion of conditional independencies (CIs, in acronym) does not have uniqueness.
The reason is that probabilistically equivalent models may have di¤erent repre-
sentations.
This problem is overcome by the Essential Graph, as (unique) representant

of each equivalence class. So, they represent such CI models by graphs.
Our mathematical tools contains both, directed or/and undirected edges.
Hence, producing either Directed Graphs (DGs), in particular with acyclic

elements, i. e. Directed Acyclic Graphs (DAGs), or Undirected Graphs (UGs).
Finally, also Chain Graphs (CGs), i.e. the mixed case, with joint presence

of both, directed and undirected edges.

So, DAG models are generally represented as Essential Graphs (EGs).
Then if we will known the behavior of the ratio among EGs to DAGs, we

may dispose of a valuable tool in �elds as Machine Learning, Arti�cial Vision,
and so on. Because through this information, we may decide which space is the
best to realize our search.
If the aforementioned ratio is low, we must prefer to search into the space

of DAG models, rather than into the space of DAGs directly.
The most common approach to learning DAG models is that of performing

such search into the space of either DAGs or DAG models (therefore, on EGs).

A very elegant auxiliary mathematical construct, if perhaps some di¢ cult
indeed, will be the Ihara Zeta function, devised for counting graphs.
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Recall that a DAG, G, is essential, if every directed edge of G is protected.
So, an Essential Graph (EG) is a graphical representation of a Markov equiva-
lence class.
In relation with the Essential Graph, each directed edge would have the same

direction in all the graphs that belongs to its equivalence class.
Hence, there is a bijective correspondence (one-to-one) among the set of

Markov equivalence classes and the set of essential graphs, their representatives.

From the labeled or unlabeled character of the graph depends whether their
nodes or edges are distinguishable or not.
For this, we will distinguish among vertex-labeled, vertex-unlabeled, edge-

labeled, or edge-unlabeled graphs.

The labeling will be considered as a mathematical function (labeling), as-
signed to its elements, either nodes, or edges, or perhaps to both, making them
so distinguishable.
Many times it will be useful to associate with each edge a certain number,

called its weight, acting as label. For instance, it may be an estimation of the
distance from the current node to the �nal node, in a graph of search. So, it can
estimate the optimal number of moves from now until the checkmate, playing
at chess.
In such way, we must to assign certain mastery of some link on another.

Then, we call such mathematical constructs edge-weighted, or more simply,
weighted-graphs, usually denoted by

w (a; b)

3. Searching for adequate bounds
It is possible to use generating functions to count labeled DAGs. For these,

it is convenient to make intervene the Inclusion-Exclusion Principle (IEP).
So, if we take the set of n-essential graphs, and denote its cardinal by an ;

applying the IEP, we may obtain

a
n
=

P
s=1;:::;p

(�1)s+1
P
ij

j2f1;:::;sg

c (Ai1 \Ai2 \ ::: \Ais)

where

A
k
= fG 2 E : k is a terminal node of Gg ;

with k = 1, 2, . . . , n [*]

Let a
n
be the number of essential (labeled) DAGs, and also let a

n�
be the num-

ber of (labeled) DAGs.
Then, an is given by the recurrence equation
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a
n
=
Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s

� n+ s
�s

a
n�s

with a
0
= 1

Whereas we can obtain for the number of labeled n-DAGs,

an�=
Pn

s=1
(�1)

s+1

Cn;s

�
2
n�s
�s

an�s�

with a
0
�= 1

We may rewrite the equation as

Pn

s=0
(�1)

n�s
C
n;s

�
2
s � s

�n�s
a
s
= 0

with n � 1:

Another case of application of Inclusion-Exclusion Principle is to �nd the
cardinal of the set of essential DAGs, E, with a set of nodes

f1; 2; : : : ; ng

For this purpose, we may start with a family of sets, as the aforementioned

fA
k
gnk=1

Therefore, to know the cardinal of E, �rstly we must compute the intersec-
tion that appears in the last summatory, for j = 1, 2, . . . , n. Showing the
allowed connection numbers, from a given node being

2
n�s � n+ s

So, the number of possible ways of adding directed edges from the essential
graph until all the s terminal nodes will be

[2
n�s � n+ s]s

If we denote an the number of essential n�DAGs; this would be

an =
Pn

s=1
(�1)

s+1

Cn;s

�
2
n�s � (n� s)

�s
an�s

with a
0
= 1

If the purpose were to obtain the number of labeled n-DAGs, it would be
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a
n
�=

Pn

s=1
(�1)

s+1

C
n;s

�
2
n�s
�s
a
n�s�

with a
0
�= 1

Considering e
n
the number of essential n-graphs, also labeled, it holds that

a
n
� e

n
� a

n
�

I.e. both precedent values, an and a�n ; are the lower and upper bounds of
en ; for each selected order, n:
So, it holds

1
13:6 �

an
a�n

Therefore,

1
13:6an�� en � a�n

where we obtain the bounds for the cardinality of the set of essential graphs.

3. Riemann Zeta Function
Among the Dirichlet Series, we found a very useful tool.
It is the so called Riemann Zeta Function,

& (s) =
P
n2N

1
ns =

Q
p prime

�
1� p�s

��1
with s 2 C

Where it appears as an Euler product.
And because the bounded sequence of coe¢ cients, these series converge ab-

solutely to an analytical function, on the complex open half-plane of s such
that

Re(s) > 1

It diverges on the symmetrical open half-plane of s, in the complex plane,

Re(s) < 1

Such function, if it is de�ned on the �rst region, admits analytic continuation
to all C, except when s = 1.
For s = 1, this series is formally identical to the Harmonic series, which is

well-known that diverges.
As a consequence, it will be a meromorphic function of s, being in particular,

holomorphic in a region of the complex plane, showing one pole in s = 1 ; with
residue equal to 1.

Euler found a closed formula for � (2k) ; when k non-negative integer number.
It will be expressed by
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� (2k) = (�1)k�1(2�)2kB2k

2 (2k)!

denoting by B2k the Bernoulli numbers.
Such numbers can be de�ned of di¤erent modes. So, either

- as independent terms of Bernoulli polynomials, Bn (x) ;

- by a generating function, exactly

G (x) = x
ex�1

being so

G (x) =
P
i2N�

Bn
xi

i!

when

jxj < 2�

where each coe¢ cient of the Taylor Series would be the n-th Bernoulli number,

or

- by a recursive formula

B0 = 1

Bm = �
m�1P
j=0

Cm;j

Bj

m�j+1

But as the Bernoulli numbers can be expressed in terms of the Riemann
Zeta function, they are indeed values of such function to negative arguments.

Some of the Zeta Function special values are

& (0) = �1=2

& (2) = 1 + 1

2
2 +

1

3
2 + ::: =

�
2

6

& (4) = 1 + 1

2
4 +

1

3
4 + ::: =

�
4

90

& (6) = 1 + 1

2
6 +

1

3
6 + ::: =

�
6

945

& (8) = 1 + 1

2
8 +

1

3
8 + ::: =

�
8

9450

:::

Note that we take here s even. Because for odd values of s, it appears
troubles and also irrational numbers; so, for instance,
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& (1) = 1 + 1
2 +

1
3 + :::!1

(harmonic series)

& (3) = 1 + 1
23
+ 1

33
+ ::: ' 1:2

(Ap�ery constant)

and also

& (1=2) ' �1:46
& (3=2) ' 2:6
& (5=2) ' 0:134
& (7=2) ' 1:127

:::

The Logarithm of the Zeta Function will be

log & (s) =
P
n�2

�
�(n)
log n

� �
1
ns
�

being

Re (s) > 1

Here, � (n) denote the Lambda Function, also called sometimes Von Man-
goldt function, de�ned by

� (n) =

�
log p; if n = p

k

; for n 2 N and some prime number ; p
0 ; otherwise

It is an arithmetic function that is neither additive nor multiplicative,

� (n+ n�) 6= �(n) + � (n�)
� (n � n�) 6= �(n) � � (n�)

Such Lambda function satis�es

log n =
P

djn � (d)

where the summation will be extended to all integers, d, dividing to n.

Related with the above series, we have the popular Riemann Hypothesis, still
an important open problem in current Mathematics. It is about the distribution
of zeroes of such Zeta Function.
It admits many variations, with di¤erent names, Selberg, Ihara, etc. So, for

instance, we may consider its multiplicative inverse, expressible as a series by
the Möbius Function. It can be reached, from the known series, by tools as the
Möbius Inversion and the Dirichlet Convolution. The values produced by such
function from integer arguments are called �zeta constants�.
We can observe their convergence to one from the right,
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& (s)! 1
+

Also, this functional equation is satis�ed

& (s) = 2
s

�
s�1
sin
�
�s
2

�
� (1� s) & (1� s)

which is true in all the complex �eld, relating its values in s and 1� s:
This equation has a pole simple at s = 1, with residuum equal to one. It

was proved by Riemannn (1859).
Euler conjectured an equivalent relation to the function

P
n2N�

(�1)
n+1

ns

Also there exists a symmetric version of the precedent functional equation,
reachable by the change

s 7�! 1� s

This gives an important equation relating both, Zeta and Gamma functions.

& (s) �
�
s
2

�
��

s
2 = 2

s

�
� 1�s

2 �
�
1�s
2

�
& (1� s)

The value of the Zeta function for negative even real values is then zero,

& (�2) = & (�4) = & (�6) = ::: = & (�2k) = 0

with k 2 N

They are called trivial zeroes of �:
Furthermore, it will be cancelled on values of s that belongs to the critic

rang

fs 2 C : 0 < Re (s) < 1g

which correspond to a certain vertical strip of width equal to one, into the
complex plane.
In this case, we call of non-trivial zeroes. It is so called because the di¢ culties

to �nd its position into the critical rang.

To obtain zeta function values for some negative and non integer argument,
we may proceed by

& (�1=2) = 2
�3=2

�
�1=2

�(�1=2)
sin(�s2 )&(1�s)

' �4�
2:6 ' �0:2069
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where � represents the Gamma Function of Euler.

Such functional equation also gives an asymptotic limit, proposed by (Nemes,
2007); exactly,

& (1� s) =
�
s
2�l

�sq
8�
s cos

�
�s
2

� �
1 +O

�
1
s

��
4. Ihara Zeta Function
The Zeta Function is generalizable to graphs, according to the theory elab-

orated by (Ihara, 1966). This function was �rst de�ned in terms of discrete
subgroups.
J. P. Serre suggested can be reinterpreted graph-theoretically.
It was (Sunada, 1985) who put this into practice. In this version, it is usually

denoted by &
G
, and de�ned by

&
G
(s) �

"Q
p

�
1� sL(p)

�#�1

This product is taken over all the primes, p, on the graph G, being L(p) the
length of the prime p.

The primes in graphs are equivalence classes of closed backtrackless tailless
primitive paths. As a good example, you can observe the third �gure, where we
have di¤erent primes, as may be

[C] = [E1; E2; E3]

[D] = [E4; E5; E3]

and from them, by concatenation, or juxtaposition, we obtain a new prime,

[Y ] � [C D] = [E1; E2; E3; E4; E5; E3]

Also &
G
is always representable as the reciprocal of a polynomial

&
G
(s) � 1

det (I � T s)

where T is the edge adjacency operator (Hashimoto, 1990).
For any Graph, G, the function &

G
can be expressed in terms of &, for di¤erent

dimension values, n.

So,

If n = 1, then

&
G
(s) = 2& (s)
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If n = 2, then

&
G
(s) = 4& (s� 1)

If n = 3, then

&
G
(s) = 4& (s� 2) + 2& (s)

If n =1, then

&
G
(s) = 8

3 & (s� 3) +
16
3 & (s� 1)

Let G be a graph, and

A �
�
a
ij

�
its adjacency matrix, which will be a

(c fV (G)g x c fV (G)g)�matrix

with respective entries

aij �
(
cardinal of undirected edges connecting ni to nj ; being i 6= j

double of the cardinal of loops at the node ni ; if i = j

As our graphs have no loops neither multiple edges, such entries will be
either zero or one, according to the adjacency or not adjacency of its respective
pairs of nodes.

Suppose that we take now D; as the diagonal matrix such that its entry di
is the degree of the i-th node minus one, and let
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r � 1 = c fE (G)g � c fV (G)g

Then, the Ihara zeta function will be expressed as

�
G
(s)

�1
�
�
1� s2

�r�1
det

�
I �As+Du2

�
=

=
det

�
I � A s + D u

2
�

(1 � s2)
1�r

It will be very interesting to look at the logarithmic derivative of the Ihara
zeta function,

s dds ln
�
�
G
(s)
�

We have

ln
�
�
G
(s)
�
= ln

"Q
p

�
1� s

L(p)
�#�1

=

= ln

"Q
p

�
1� s

L(p)
��1#

= �
P
p
ln

�
1� s

L(p)
�

and taking its derivative,

d
ds

�
�
G
(s)
�
= d

ds

"
�
P
p
ln

�
1� s

L(p)
�#

= �
P
p

1

1�s
L(p)

d
ds

�
1� s

L(p)
�
=

= �
P
p

1

1�s
L(p) [�L (p)] L (p) =

P
p

L(p) s

L(p)�1

1�s
L(p)

and now multiplying by s;

s dds
�
�
G
(s)
�
= s

P
p

L(p) s

L(p)�1

1�s
L(p) =

P
p

L(p) s

L(p)

1�s
L(p)

But such expression may be notably improved by the geometric series iden-
tity, P

n2N�
sn = 1

1�s

giving
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s dds
�
�
G
(s)
�
=
P
p
L (p) s

L(p)
�
1 + s

L(p)

+ s
2L(p)

+ s
3L(p)

+ :::

�
=

=
P
p
L (p)

�
s
L(p)

+ s
2L(p)

+ s
3L(p)

+ s
4L(p)

+ :::

�
If we denote

Nk =
P

p: L(p)jk

L (p)

it holds

s dds
�
�
G
(s)
�
=
P
k2N

Nk s
k

Where the coe¢ cient Nk; being associated with the term sk; will report us
the number of prime paths with a number of nodes which divides k:

Recall that &
G
(s) is a decreasing function of s. That is,

&
G
(s1) > &G (s2) ;

if s
1
< s

2

And in the limit situation, that is, if n!1; when s is next to the transition
point, it holds

&
G
(s) = 2

n
&(s�n+1)
�(n)

If the average degree of nodes, also called mean coordination number of the
graph, is �nite, then there exists exactly a value of s, denoted stransition; where
the Zeta Function changes from in�nite to �nite, or vice versa.

5. Asymptotic behavior
Analyzing the asymptotic behavior of the ratio, i.e. studying the convergence

of ratios among the number of classes, or essential digraphs, and the number of
DAGs, we may develop

A (n) � an
an�
)

) limn!1 A (n) = limn!1

Pn

s=1
(�1)

s+1
Cn;s

�
2
n�s

�(n�s)
�s
an�sPn

s=1
(�1)s+1Cn;s(2n�s)

s
an�s�

=

= lim
n!1

Pn

s=1
Cn;s

�
2
n�s

�(n�s)
�s
an�sPn

s=1
Cn;s(2n�s)

s
an�s�

=
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= lim
n!1

Pn

s=1

�
2
n�s

�(n�s)
�s
an�sPn

s=1
(2n�s)

s
an�s�

=

= limn!1

�
2
n�s

�(n�s)
�s
an�s

(2n�s)
s
an�s�

But if we denote

A (n� s) � an�s
an�s�

and

&
G
(n� s) � lim

n!1

Pn

s=1

�
(n�s)
2n�s

�s
Returning to our initial step,

limn!1 A (n) = limn!1

nh
1� &

G
(n� s)

i
A (n� s)

o
=

=
h
1� limn!1 &

G
(n� s)

i
[limn!1 A (n� s)]

Considering the partial sums Pn

s=1

n�s
2n�s

and according to its asymptotical behaviour, when n increase, i.e. when n!1,
there is a correspondence with the so called Ihara-Selberg of the n-graph Gn:

Because operating here on the increasing value of n �s, i.e. with

�
G
(n� s)

and denoting the ratio among terms of the series as

c = limn!1

�Pn

s=1
(�1)

s+1
C
n;s

�
2
n�s

�(n�s)
�s
a
n�s

�
nPn

s=1
(�1)s+1C

n;s (2
n�s)

s
a
n�s�

o

it holds

c =
�
limn!1

n
1� &

G
(n� s)

o�
(limn!1 A (n� s))

As
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an�s � a�n�s ;8n; once �xed s)

) 9�
1
=
h
1� limn!1 &

G
(n� s)

i
[limn!1 A (n� s)]

once �xed s, when n increases to 1;

�1 =
1

10 &( 52 )
= 1

5&
G(

5
2 )

equivalence classes for each digraph, or equivalently,

�
�1

1
= 10 &

�
5
2

�
= 5

2 &G
�
7
2

�
digraphs for each equivalence class.

In the bidimensional case (denoted by star notation), it holds

9��
2
� lim

n!1

�n
&
G
(n)
o �
A
�
(n� s)

��
)

) ��
2
= 1

10 &
�
3
2

�
= 1

40 &G
�
5
2

�
and so dually,

9
�
��
2

��1
� lim

n!1

�n
&
G
(n)
o �
A

�
(n� s)

���1
)

)
�
��
2

��1
= 10

&( 32 )
= 4

&
G(

5
2 )

6. Conclusion
So, �nally, we can observe such behavior in its limit, re�ecting the degree of

�tness among the proposed construct, or model, and the "real" situation.
From now, we may to take subsequent steps towards a more powerful ana-

lytical framework, which permits to improve our theoretical basis, attempting
to maintain the coherence with all these precedent results.
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