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Abstract

Our paper analyzes some new lines to advance on quickly evolving
concepts, the so-called Entropy, or its Symmetry/Asymmetry degrees,
on graphs in general. It will be very necessary to analyze the mutual
relationship between some fuzzy measures, with their very interesting ap-
plications, as may be the case of Graph Entropy and Graph Symmetry;
in particular, working on Complex Networks and Systems.
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1. Introduction
We need to analyze here some very interrelated concepts about a graph, such

as may be their Symmetry/Asymmetry degrees, their Entropies, etc. It may be
applied when we study the di¤erent types of Systems; in particular, on Complex
Networks [7].

A system [8] can be de�ned as a set of components functioning together as
a whole. A systemic point of view allows us to isolate a part of the world, and
so, we can focus on those aspect that interact more closely than others.
According Wilson [39], �the greatest challenge today, not just in cell biology

and ecology but in all of science, is the accurate and complete description of
complex systems. Scientists have broken down many kinds of systems. They
think they know most of the elements and forces. The next task is to reassemble
them, at least in mathematical models that capture the key properties of the
entire ensembles.�

Network Science is a new scienti�c �eld that analyzes the interconnection
among diverse networks, as for instance, on Physics, Engineering, Biology, Se-
mantics, and so on. Between its developers, we may remember to Duncan Watts
[37], with the Small-World Network, and Albert-László Barabasi [1-3], which de-
veloped the Scale-Free Network. About its work, Barabási has found that the
websites that form the network (of the WWW) have certain mathematical prop-
erties. The conditions for these properties to occur are threefold. The �rst is
that the network has to be expanding, growing. This precondition of growth is
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very important as the idea of emergence comes with it. It is constantly evolving
and adapting. That condition exists markedly with the world wide web. The
second is the condition of preferential attachment, that is, nodes (websites) will
wish to link themselves to hubs (websites) with the most connections. The third
condition is what is termed competitive �tness which in network terms means
its rate of attraction.

Network Theory is an quickly expanding area of Network and Computer
Sciences, and also may be considered a part of Graph Theory.

Complex Networks are everywhere. Many phenomena in nature can be mod-
eled as a network, as brain structures, social interactions or the World Wide Web
(WWW). All such systems can be represented in terms of nodes and edges. In
Internet the nodes represent routers and the edges the physical connections be-
tween them. In transport networks, the nodes can represent the cities and the
edges the roads that connect them. These edges can have weights.
These networks are not random. The topology of di¤erent networks are very

close [31]. They follow from the Power Law, with a scale free structure. How can
very di¤erent systems have the same underlying topological features? Searching
the hidden laws of these networks, modeling and characterizing them are the
current lines of research.

For their part, recall that according K. Mainzer [21-23],

"Symmetry and Complexity determines the spirit of nonlinear science" (2005).

And

"the universal evolution is caused by symmetry break, generating diversity,

and increasing complexity and energy".

2. Graph Entropy
Graph theory has emerged as a primary tool for detecting numerous hidden

structures in various information networks, including Internet graphs, social
networks, biological networks, or more generally, any graph representing rela-
tions in massive data sets. Analyzing these structures is very useful to introduce
concepts as Graph Entropy and Graph Symmetry.

We consider a functional on a graph, G = (V ;E ); with P a probability dis-
tribution on its node (or vertex) set, V .
The mathematical construct called as Graph Entropy will be denoted by

GE : It will be de�ned as

H (G ; P) = min
P

pi log pi

Observe that such function is convex.
It tends to +1 on the boundary of the non-negative orthant of Rn.
And monotonically to �1 along rays from the origin.
So, such minimum is always achieved and it will be �nite.
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The entropy of a system represent [28] the amount of uncertainty one ob-
server has about the state of the system. The simplest example of a system will
be a random variable, which can be shown by a node into the graph, being their
edges the representation of the mutual relationship between them. Information
measures the amount of correlation between two systems, and it reduces to a
mere di¤erence in entropies.
So, the Entropy of a Graph (from now, denoted by GE ) is a measure of

graph structure, or lack of it.
Therefore, it may be interpreted as the amount of Information, or the degree

of "surprise", communicated by a message.
And as the basic unit of Information is the bit, Entropy also may be viewed

as the number of bits of "randomness" in the graph, verifying that

the higher the entropy, the more random is the graph

Let G be now an arbitrary �nite rooted Directed Acyclic Graph (or DAG, in
acronym). For each node, v; we denote i(v) the number of edges that terminates
at v: Then, the Entropy of the graph is expresable as

H (G) =
P
v2V
i(v)�2

[i (v)� 1] log2
�
Card(E) � Card(V ) + 1

i(v)�1

�

H (X) may be interpreted in some di¤erent ways. For instance, given a
random variable, X; it informs us about how random X is, how uncertainty we
should about X; or how much variability X has.

3. Graph Symmetry
As we known, Symmetry into a system means invariance of its elements

under a group of transformations [25]. When we take Network Structures [21,
22], it means invariance of adjacency of nodes under the permutations on node
set.

Let G and H be two graphs. An isomorphism from G to H will be a bijection
between the node sets of both graphs, i. e. a

f : G! H

such that any two nodes, u and v, of G are adjacent in G i¤ f(u) and f(v) are
also adjacent in H. Usually, it is called "edge-preserving bijection".

If an isomorphism exists between two graphs, G and H, then such graphs
are called Isomomorphic Graphs.

The graph isomorphism is an equivalence, or equality, as relation on the set
of graphs. Therefore, it partitions the class of all graphs into equivalence classes.
The underlying idea of isomorphism is that some objects have the same

structure, if we omit the individual character of their components.
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A set of graphs isomorphic to each other is denominated an isomorphism
class of graphs.
An automorphism of a graph, G = (V; E), will be an isomorphism from

G onto itself. So, a graph-automorphism of a simple graph, G, is simply a
permutation on the set of its nodes, V (G),

f : G! G

such that the image of any edge of G is always an edge in G: That is, if

e = fu; vg 2 V (G)

then

f (e) = ff (u) ; f (v)g 2 V (G)

Either expressed in group theoretical way, we have

u � v , ug � vg , ug � vg

Being ug and vg (or also ug and vg; in the other very usual notation) the
corresponding images of u and v under the permutation g.

The family of all automorphisms of a graph G is a permutation group on
V(G). The inner operation of such group is the composition of permutations.
Its name is very well-known, the Automorphism Group of G, and abridgedly, it
is denoted by Aut(G):
And conversely, all groups may be represented as the automorphism group

of a connected graph.

The automorphism group is an algebraic invariant of a graph. So, we can say
that an automorphism of a graph is a form of symmetry in which the graph is
mapped onto itself while preserving the edge-node connectivity. Such automor-
phic tool may be applied both on Directed Graphs (DGs) and on Undirected
Graphs (UGs).

About another interesting concept in Mathematics, the word "genus" has
di¤erent, but very related, meanings. So, in Topology, it depends on to consider
orientable or non-orientable surfaces.

In the case of connected and orientable surfaces, it is an integer that rep-
resents the maximum number of cuttings, along closed simple curves, without
rendering the resultant manifold disconnected. For this reason, we may said
that it is the number of "handles" on it. Usually, it is denoted by the letter g.
It will be also de�nable through the Euler number, or Euler Characteristic,

denoted by �:
Such relationship will be expressed, for closed surfaces, by
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� = 2� 2g

When the surface has b boundary components, this equation transforms to

� = 2� 2g � b

which obviously generalizes the above equation.
For example, a sphere, an annulus, or a disc have genus g = 0:
Instead of this, a torus has g = 1:

In the case of non-orientable surfaces, the genus of a closed and connected
surface is a positive integer, representing the number of cross-caps attached to
a sphere.
Recall that a cross-cap is a two-dimensional surface that is topologically

equivalent to a Möbius string.
As in the precedent analysis, it can be expressed in terms of the Euler char-

acteristic, by

� = 2� 2k

being k the non-orientable genus.

For example, a projective plane has non-orientable genus k = 1:
And a Klein bottle has a non-orientable genus k = 2:

Turning to graphs, its corresponding genus will be the minimal integer, n,
such that the graph can be drawn without crossing itself on a sphere with n
handles. So, a planar graph has genus n = 0; because it can be drawn on a
sphere without self-crossing.
In the non-orientable case, the genus will be also the minimal integer, n,

such that the graph can be drawn without crossing itself on a sphere with n
cross-caps.

If we pass now to topological graph theory, we will de�ne as genus of a group,
G, the minimum genus of any of the undirected and connected Cayley graphs
for G.

From the viewpoint of the Computational Complexity, the problem of "graph
genus" is NP-complete [Thomassen, 1989].

We will says either graph invariant or graph property, when it depends only of
the abstract structure, not on graph representations, such as particular labelings
or drawings of the graph.
So, we may de�ne a graph property as every property that is preserved under

all its possible isomorphisms of the graph. Therefore, it will be a property of
the graph itself, not depending on the representation of the graph.

The semantic di¤erence also consists in its character quantitative or quanti-
tative.
For instance, when we said

619



"the graph does not possess directed edges"

this will be a property, because it is a qualitative statement.

While when we says

"the number of nodes of degree two in such graph"

this would be an invariant, because it is a quantitative statement.

From a mathematically strict viewpoint, a graph property can be interpreted
as a class of graphs, composed by the graphs that have in common the accom-
plishment of some conditions.
Hence, also can be de�ned a graph property as a function whose domain

would be the set of graphs, and its range will be the bivalued set composed by
two options, true and false, fT; Fg ; according which a determinate condition
is either veri�ed or violated for the graph.

A graph property is called hereditary, if it is inherited by its induced sub-
graphs. And it is additive, if it is closed under disjoint union.

For example, the property of a graph to be planar is both additive and
hereditary. Instead of this, the property of being connected is neither.

The computation of certain graph invariants may be very useful, with the
purpose to discriminate when two graphs are isomorphic, or rather non-isomorphic.
The support of these criteria will be that for any invariant at all, two graphs

with di¤erent values cannot be isomorphic between them. But however, two
graphs with the same invariants may or may not be isomorphic between them.
So, we will arrive to the notion of completeness.

Let I (G) and I (H) be invariants of two graphs, G and H:
It will be considered complete; if the identity of the invariants ever implies

the isomorphism of the corresponding graphs, i. e.

I (G) = I (H)) G � H

A directed graph, or digraph, is the usual pair G = (V, E), buth now with an
additional condition: it have at most one directed edge from node i to node j;
being 1 � i; j � n: We add the term "acyclic" when there are no cycles of any
length. Usually, we use the acronym DAG to denote an acyclic directed graph.

A very important result may be this:

For each n; the cardinality of the n�DAGs; or DAGs with n labeled nodes,
is equal to the number of (n�n)�matrices of 0�s and 1�s whose eigenvalues are
positive real numbers, i. e.

�i 2 R+;8i 2 f1; 2; :::; ng
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A previous result, due to Cvetkovic, Doob, and Sachs, said that

A digraph contains no cycle i¤ all eigenvalues of its adjacency matrix are equal
to zero.

It is possible to prove that

Every group is the automorphism group of a graph.

If the group is �nite, the graph may be taken to be �nite.

And George Pólya observed that

Not every group is the automorphism group of a tree.

4. Complex Networks
We recall previously that given a random variable, X; its Shannon Entropy

is given by

H (X) = �
P
P (x) log2 P (x)

whereas the Rényi Entropy of order � 6= 1 of such random variable is

H� (X) =
1

1�� log2 (
P
P (x)

�
)

The Renyi Entropy of order � converges to the Shannon Entropy, when
�! 1; i.e.

lim�!1

n
1

1�� log2 (
P
P (x)

�
)
o
= �

P
P (x) log2 P (x)

So,

lim�!1H� (X) = H (X)

Therefore, the Rényi Entropy may be considered as a generalization of the
Shannon Entropy, or dually expressed, the Shannon Entropy will be a particular
case of Rényi Entropy.

The structural information content will be the entropy of the underlying
graph topology.
A method for determining the entropy of graphs, and therefore, of Complex

networks, is possible, essentially due to [7]. In such procedure, we assign a
probability value to each node. For these, we use an information functional
which quanti�es the structure. So, it allows us determining its entropy.
Firstly, it will be convenient to introduce a new geometrical tool, the so-

called j-spheres of a graph.
Given an unlabeled and connected n-graph, G; and vi one of its nodes. Then,

the j-sphere of vi is
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Sj (vi; G) = fv 2 V : d (vi; v) = j; being j � 1g

From these system of expanding-contracting circles and the cardinalities of
their node set which each one of them contains, we introduce the information
functional, denoted as fV ; by

fV (vi) = exp� fk1 card [S1 (v1; G)] + ::: + kn card [Sn (vn; G)]g

where k� > 0; 1 � � � n; � > 0:
Their signi�cation is that it shows the structural information, being the

coe¢ cients, � and k� , useful weighting the di¤erent characteristics of the graph
in each j-sphere.

The probability value associated to each node is given by

PV (vi) =
fV (vi)

card(V )P
j =1

fV (vj)

And so, the Entropy of G would be expressable as

HV
f (G) = �

card(V )P
i=1

PV (vi) logP
V (vi)

A network is said asymmetric, if its automorphism group reduces to the
identity group. I.e. it only contains the identity permutation.
Otherwise, the network is called symmetric. I.e. when the automorphism

have elements di¤erent to the identity.
Current research have revealed a very surprising result, according which the

interaction networks displayed by most complex systems are highly heteroge-
neous [31].

5. Conclusions
Statistical entropy is a probabilistic measure of uncertainty [11, 35], or ig-

norance about data. Whereas Information is a measure of a reduction in that
uncertainty [6, 17]. Whereas the Entropy of a probability distribution is just
the expected value of the information of such distribution [26].

All these improved tools must permits to advance not only in �elds as Opti-
mization Theory, but also on Generalized Fuzzy Measures [12-14, 36], Economics
[15], modeling Biological Systems, for Robustness of the processes, Information
Difussion, Synchronization, and so on.
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