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Abstract

Here we �rst analyze the adequate graph-theoretical framework, and
then we will shown some interesting results about these useful tools and
its equivalence classes.
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1. Introduction
Topological Graph Theory is a branch of this mathematical discipline which

studies the embedding of graphs in surfaces, but also analyze the graphs as
topological spaces.
Such "embedding of graphs in surfaces" signi�es that we want to drawthe

graph on a surface without two edges intersecting. An example of such surfaces
will be the sphere.

It will be also interesting to give some previous concepts, as that of line
graph, vertex-transitivity, edge-transitivity, and so on.
Let G be a graph. Suppose that we denote by V(G) their set of nodes, and

by E(G) their set of edges.
The so-called line graph of G will be the graph whose set of nodes is E

(therefore, it coincides with the set of edges of G), and whose edges connect all
pairs of E which have one common end (or extremity) in G.
Usually, it is abridged by L(G).
Hence, the Line Graph of G is another graph that represents the adjacencies

between edges of G.
The Line Graph is sometimes called either Adjoint Graph, or Interchange

Graph, but also Edge Graph, or Derived Graph of G, and so on.

A graph, G, is said to be node-transitive (or vertex-transitive), if for any two
of its nodes, ni and nj ; there is an automorphism which maps ni to nj :

A simple graph, G, is said to be edge-transitive (or link-transitive), if for any
two of its edges, e and e�; there is an automorphism which maps e into e�:

A simple graph, G, is said to be symmetric, when it is both, node-transitive
and edge-transitive.
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But a simple graph, G, which is edge-transitive, but not node-transitive, is
said semi-symmetric. Obviously, such a graph will be necessarily a bipartite
graph.

A clique of a graph is its maximal complete subgraph.

Let � be a collection of elements into a �nite set, S: The smallest subset
Y � S that meets every member of � is called their hitting set, or also their
node cover.

2. Chordality
An auxiliar concept, which many times appears at Graph Theory problems,

will be the Chordality, or character to be chordal a graph.
Let G be an undirected graph (UG). We says that G is chordal, if every cycle

of length strictly greater than three (l 2 f4; 5; 6; :::g) possesses a "chord".
This name ("chord") means an edge joining two non-consecutive nodes of

the cycle.

Therefore, an UG will be chordal, if it does not contain an induced subgraph
isomorphic to the n-cyclic graph, Cn; when n > 3:

And it also admits di¤erent, but equivalent, de�nitions, as

A graph is chordal, if it is the intersection graph of subtrees of a tree.

A graph is chordal, if it has an ordering such that for each node, the neigh-
bours in front form a clique.

Recall that a clique, into a graph G, is a subset C � V (G) ; such that every
two members of C are adjacent.

The chordality result a hereditary property, because all the induced sub-
graphs of a chordal graph will be also chordal.
Chordal graphs are sometimes called either as Triangulated Graphs, or Per-

fect Elimination Graphs.
For instance, the interval graphs are chordal.

Any complete k-partite graph has maximum clique cardinality equal to k.

An independent set of a graph, G, is a subset of its nodes such that no two
nodes in such subset may represent an edge of G.

For instance, in the case of the utility graph, departing from K
3;3
; we have

two independent sets, composed each one by three nodes colored either in black
or in white, respectively (see the �gure, please).
The name utility graph alluded here to the three-cottage problem. Such

relatively known three-cottage problem asks about the planarity of the complete
bipatite graph, K

3;3
:

Kuratowski (1930) proved that it is not so.
And therefore, the three-cottage problem has no solution.
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Also can be noted in the partition into two classes of the family of nodes that
belongs to the Petersen graph, as the second �gure shown. It has ten nodes,
�fteen edges, radius and diameter in both cases equal to two, chromatic number
three, chromatic index four, and so on. It is strongly regular, 3-connected, it is
3-partite, a snark and cubic, with 120 automorphisms, being its automorphism
group S

5
; the symmetric group of order �ve.

Recall that a snark will be a connected, and bridgeless, cubic graph with
chromatic number equal to four.

The Petersen graph is a little mathematical jewel, because it will be very
useful for examples and counterexamples in many questions of graph theory.
In fact, it is drawn as a pentagon with a pentagram inside, with �ve rodes

radiating from the nodes of the pentagram.

D. Knuth a¢ rms that this graph is "a remarkable con�guration that serves
as a counterexample to many optimization predictions about what might be
true for graphs in general".

The largest order n-graph which does not contain to Kp, the complete p-
graph, is denominated the Turán graph, and it is denoted by Tn; p:
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So, the well known octahedron is a cross polytope whose nodes and edges
form a Turán graph; more exactly, it will be T6; 3 :

3. Planarity
A graph which can be embedded in the plane will be called a planar graph. It

signi�es that can be drawn on the plane, in such a way that its edges intersect
only at their endpoints. Therefore, a non-planar graph is the one cannot be
drawn in the plane without edge intersections.
When a planar graph is so drawn, we said either a plane graph, or a planar

embedding of the graph.

If it can be drawn on the plane, also it can be drawn on the sphere, and vice
versa.

Also it admits a generalization to graphs which can be drawn on a surface
of a given genus.
According these terms, planar graphs have graph genus zero, because both,

the plane and the sphere, are surfaces of such genus.

There exist a known result, due to the polish mathematician Kazimierz Ku-
ratowski, which give us a characterization of planar graphs in terms of forbidden
graphs:

A �nite graph is planar if and only if it does not contain a subgraph that is
a subdivision of K5 or K3;3:

A subdivision of a graph results from inserting nodes into edges.
So, for instance

� ! � ) � � � ! �

in the particular case of a directed edge.

Recall that K5 denotes the complete 5-graph.

And K3;3 the complete bipartite graph on six nodes.

But this theorem may be expressed in some equivalent ways, as for instance,
by:

A �nite graph is planar if and only if it does not contain a subgraph that is
homeomorphic to K5 or K3;3:

The aforementioned problem, about the "embedding graphs into surfaces",
is not only of theoretical interest, but it has many applications. For instance, in
printing electronic circuits. In such cases, the purpose is to print (i.e. "embed")
a circuit (i.e. "the graph") on a circuit board (i.e. "the surface") without two
connections crossing each other, and resulting in an undesirable short circuit.

Hopcroft and Tarjan introduced a new method of testing the planarity of
a graph in time linear to the number of edges. Because the e¢ cient planarity
testing is essential to graph drawing.

Also Chung et al. studied the problem of embedding a graph into a book,
supposing situated for this their graph nodes on a line along the spine of such
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book. And its edges are then drawn on separate pages, in such a way that edges
that belongs to the same page do not cross between them. Such abstraction also
has many practical applications, for instance, in layout problems that appears
in the routing of multilayer printed circuit boards.

A relevant property of the Petersen graph is their non-planarity, with its
consequences. It is because we can prove that it contains both, K5 and K3;3 ; as
minors.

Two di¤erent perspectives of the Petersen graph will be seeing it either as
the complement of the line graph of K5 ; or also as the Kneser graph KG5;2 :

The Petersen graph can be drawn on a torus without edge crossings. There-
fore, it has orientable genus equal to one.
If we pass to non-orientable surfaces, the simplest on which can be embedded

without crossings (the Petersen graph) will be the projective plane.

4. Colorability
Graph Coloring is an assignment of labels to elements of a graph, subject to

certain constraints. Usually, and by tradition, such labels are called "colors".
It proceeds of attempts to mathematization of problems as the known of "four
colors", and other related with them.
So, it will be interpreted as a way of coloring the nodes of a graph such that

no two adjacent nodes share the same color. But it is properly called a node
coloring.

If we substitute the term "node" by "edge", we have the edge coloring.
And if such substitution is by "face" or region, then we have described the

face coloring.
The more typical representation of such "colors" are the �rst non-negative

integers; so, it will be 1, 2, 3..., instead of Red, Blue, etc., only possible when
we need only few labels.
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The �nite collection of such labels, for instance, f1; 2; 3; :::g ; is called the
"color set".
But the nature of the coloring problem not depends indeed on the nature of

such labels. It only depends on the number of such "colors".

Graph coloring posseses many applications, and it is actually an active �eld
of research.

A coloring that use, at most, k colors is called a proper k-coloring.

We said Chromatic Number of the graph G; denoted by � (G) ; the smallest
number of colors needed to color such graph.

If G will be a graph which admits a proper k-coloring, it is k-colorable.

When its chromatic number is exactly k, that is, � (G) = k; it will said
k-chromatic.

A subset of nodes associated to the same color is called a color class.

The chromatic polynomial counts the number of ways a graph can be colored
using no more than a given number of colors.
So, such polynomial will be a function that counts the number of k-colorings

of G.
It contains at least as much information as does the chromatic number, about

the colorabiity of G.
It is the smallest positive integer that is not a root of the chromatic polyno-

mial, as

� (G) = min fk : P (G; k) > 0g

For instance, the chromatic polynomial of the complete n-graph, Kn, would
be

P (G; t) = t (t� 1) (t� 2) ::: (t� (n� 1))
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And for the cycle n-graph, Cn, we have

P (G; t) = (t� 1)n + (�1)n (t� 1)

5. Perfectibility
A graph is perfect, if for every induced subgraph, the maximum size of a

clique (the largest clique of such subgraph) coincides with its chromatic number.
That is, if � (G) is equal to the maximum size of a complete subgraph.
We may remember that the clique number ever provides a lower bound for

the chromatic. In the particular case of perfect graphs, this inequality reveals
an equality.
It will be very interesting, because in many applications, some problems that

are until now intractable, can be solved in the class of perfect graphs.

We made to mention some principal families of graphs that are perfect.
So, for instance,

- interval graphs

- chordal graphs

- bipartite graphs

-distance-hereditary graphs

- permutation graphs

- wheel graphs

-comparability graphs

and so on.

The analysis of Perfect Graphs proceeds from Claude Berge, when working
on a problem of Information Theory, exactly the Shannon´s capacity of a graph.
In 1961, he proposed two famous conjectures about such graphs. The second

conjecture implies the �rst, being so called "strong" and "weak" conjectures,
respectively.

They will be expressed by

(First Conjecture) The complement of each perfect graph is also a perfect
graph.

(Second Conjecture) A graph is perfect if and only if it is a Berge graph.

That is, it has no induced subgraph isomorphism to an odd cycle of length
at least �ve, or the complement of such an odd cycle.

The �rst of such conjectures was proved by Lászlo Lovász, in 1972.

And the second, by Chudnovsky, Robertson, Seymour and Thomas, in 2005.

Recall the subsequent concepts,

The complement of a graph G ; denoted by G; has the same node set as G;
and distinct nodes are adjacent in G just when they are not adjacent in G:

A hole of G is an induced subgraph of G which is a cycle of length l � 4 :
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An antihole of G is an induced subgraph of G whose complement is a hole
in G:
A graph, G; is Berge, if every hole and and antihole of G has even length.

So, a graph that does not contain neither odd holes nor odd antiholes is called
a Berge graph.

We may modulate the strictness of such features of perfection, by these
subtle descriptions:

G is a trivially perfect graph when in every induced subgraph, the size of the
largest independent set equals the number of maximal cliques.

G is a strongly perfect graph when every induced subgraph has an indepen-
dent set intersecting all its maximal cliques.

G is a very strongly perfect graph when in every induced subgraph, every
node belongs to an independent set meeting all maximal cliques.

6. Computational Complexity
There are very hard optimization problems, as

- independent set

- clique

- colouring

- clique cover

Departing of the idea of graph product, we have that there is a clique of size
greater or equal to k in G if and only if there is a clique of size greater or equal
to k2, in GxG:
In certain graphs such hard problems may be considered of "reasonable"

di�culty.
So, taking

� (G) ; ! (G) ; � (G) ; and � (G)

relative to independent set, clique, coloring and clique cover, and being G the
complement graph of G; it holds

� (G) = !
�
G
�

� (G) = �
�
G
�

! (G) � � (G)
� (G) � � (G)

It will be interesting to analyze when such precedent inequalities transforms
to the subsequent equalities

! (G) = � (G)

� (G) = � (G)
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It is very related with the "degrees of perfectness", because we may de�ne
that

A graph is perfect, if for every induced subgraph, H � G; we have

! (H) = � (H)

A graph is co-perfect, if for every induced subgraph, H � G; we have

� (H) = � (H)

To the question on what graphs are perfect, the answer is the Bipartite
Graphs. The same question, but now about the co-perfect, it is the same: the
Bipartite Graphs. And if we want to know cases of non acomplishment of such
conditions, the answer will be the odd cycles.
In 1984, Grötschel, Lovász, and Scrijver showed that the weighted versions of

the stable set problem, the clique problem, the coloring problem, and the clique
covering problem are solvable in polynomial time, when we consider perfect
graphs.
Lovász also proved, in 1983, that the problem of recognizing Berge graphs is

co�NP: But until the proof of the Strong Perfect Graph Theorem was known,
whether or not it is also in the complexity class denoted by P: Chudnovsky et
al. discover a polynomial time algorith for this purpose.

Finding the hitting set is an NP-complete problem. Also the problem of
�nding the size of a clique, for a given graph, is an NP-complete problem. And
the chromatic number problem is one of the famous Karp (1972) relation of 21
NP-complete problems.

Note that one of the major applications of Graph Coloring resides at the
register allocation, in compilers.

Conclusion
So, we will work with the support on a more powerful analytical framework,

improving our theoretical basis, being coherent with the precedent results.
The problems also may be translated to coloring of graphs, intervening fea-

tures such as chordality, planarity, perfectness of graphs, and so on.
My current objective of research is to made such adequated translation, until

to search a new way to solve the control problem of the asymptotic behaviour,
when we consider the aforementioned (in our precedent papers) ratio.
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